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Bloch function amplitudes on the AB sites (‘isospin’) 
mimic spin components of a relativistic particle in
a Dirac type Hamiltonian
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Electrons in bilayer graphene
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Slonczewski-Weiss-McClure parameterization for Bernal stacking
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McCann & VF - PRL 96, 086805 (2006)



McCann & VF
PRL 96, 086805 

(2006)

ARPES: heavily doped bilayer graphene 
synthesized on silicon carbide
T. Ohta et al – Science 313, 951 (2006)
(Rotenberg’s group at Berkeley NL)

Fermi level in undoped bilayer 
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Berry phase 2π electrons
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Landau levels and the QHE
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zero-energy Landau level 
J=1 - monolayer 
J=2 - bilayer  







 





 AJ 0also, two-fold real 

spin degeneracy

All non-zero eigenvalues can be easily found by diagonalizing 2H



Monolayer

McClure - Phys. Rev. 104, 666 (1956)
Haldane,  PRL 61, 2015 (1988)

Zheng & Ando - PRB 65, 245420 (2002)
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U ti l t  H ll ff t d B ’  h  f 2 i  bil  hUnconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene
Novoselov, McCann, Morozov, VF, Katsnelson, Zeitler, Jiang, Schedin, Geim 

Nature Physics 2, 177 (2006)



QHE resistance quantisation with accuracy of few parts per 
billion in graphene synthesised on SiCbillion in graphene synthesised on SiC

5 mm

10 nm

5 mm

Tzalenchuk, Lara-Avila,  Kalaboukhov,  Paolillo, Syväjärvi, Yakimova,
Kazakova, Janssen, VF,  Kubatkin,  Nature Nanotechnology 5, 186 - 189 (2010)

10 µm
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Interlayer asymmetry gap in bilayer graphene

i t linter-layer 
asymmetry gap
(can be controlled 
using electrostatic 
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McCann & VF - PRL 96, 086805 (2006)
McCann - PRB 74, 161403 (2006)







T. Ohta et al – Science 313, 951 (2006)
(Rotenberg’s group at Berkeley NL)



Gate-controlled interlayer asymmetry gap (transport measurements)

Oostinga, Heersche, Liu, Morpurgo, and Vandersypen - Nature Physics (2007)



Zhang, Tang, Girit, Hao, Martin, Zettl, Crommie, Shen, Wang - Nature 459, 820 (2009)
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Direct interlayer hopping and the ‘warping’ term in BLG
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Landau levels and magnetic breakdown
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each Dirac point 
provides 4 LLs at ε=0:

16 fold degenerate

8
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8-fold degenerate
zero-energy 

Landau level (LL)

16-fold degenerate
zero-energy LL

‘magnetic 
breakdown’ 1 strong field weak field breakdown  

regime
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Slightly stretched bilayer graphene
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2π = π + π + π – π
B  h

2π = π + π + π – π

|| 2u
Berry phase = π + π

Mucha-Kruczynski, Aleiner, VF - 2010



Landau levels in slightly stretched bilayer graphene

Persistence of different filling factors in the QHE in low magnetic fields.

Mucha-Kruczynski, Aleiner, VF - 2010



Electronic properties of graphene, 
from ‘high’ to ‘low’ energiesfrom high  to low  energies.

Graphene for beginners  tight binding modelGraphene for beginners: tight-binding model.
Berry phase π electrons in monolayers.  
Trigonal warping. Stretched graphene. 

PN junction in graphene. 

Berry phase 2π electrons in bilayer graphene.
L d  l l  & QHE   I t l  t   Landau levels & QHE.  Interlayer asymmetry gap. 

Lifshitz transition and magnetic breakdown in BLG.  Stretched BLG.  
Symmetry and irreducible representations for honeycomb crystals. y y p y y

Renormalisation group theory for interaction and spontaneous 
symmetry breaking in BLG.

Lemonik, Aleiner,Toke,VF, arXiv:1006.1399



Is the symmetric state of the electronic liquid in bilayer 
graphene stable against spontaneous symmetry g p g p y y
breaking of U4 symmetry due to e-e interaction? 
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Here - BLG in a zero magnetic 
field, where one may think of 

man  possible phase transitions

For a BLG at a high magnetic field, 
the e-e interaction lifts the infinite 

d  f th  LL t tmany possible phase transitions:
ferromagnetic

ferroelectric (excitonic insulator)

degeneracy of the LL states:
spin-polarised ν=1 and 3 (QHFM)

valley polarized ν=2 (QHFE)
density wave state 

superconducting (s or p)
fractional QHE states.

(lectures by Eva Andrei)



How shall we approach the problem:

Classify possible phases using irreducible representations of 
the symmetry group of the crystal.the symmetry group of the crystal.

Identify relevant e-e interaction channels potentially 
responsible for the spontaneous symmetry breaking  responsible for the spontaneous symmetry breaking. 

Using renormalisation group approach, determine which 
interaction channel has the fastest growing constant in the RG 
flow, which determines the most plausible phase transition to 

occur in a BLG with low Fermi energy of electrons.occur in a BLG with low Fermi energy of electrons.

Lemonik, Aleiner,Toke,VF, arXiv:1006.1399
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Irreducible representations of the symmetry group of a honeycomb crystal 

I

M sl
s
l




)(inv pMH s 

phenomenology

I 00
),(inv pMH l

interlayer asymmetry 3
3M

21 MM

 KA

strain 2
32

1
31 MuMu 























K'A
K'B~
KB~
KA



MX ss   

IrrepM

MX
s
l

s
l

s
l



 
symmetry-breaking by an order parameter



   2
0

1
03

1
3

1
3

22
2 2)(

2
1 MpMpvMppMpp
m

H yxyxyx 
2m

Irreps. of e-e interaction in various channels




' r'r'rr22
2 

rrddeH

Irreps. of 
symmetry group 

of honeycomb lattice

strain  


|'rr|2
rrddHC

  2
22



interlayer asymmetry
(ferroelectric fluctuations) 

strain 2

1

 rr
2

,

2  s
l

s
l

sl
sr Mrdg

m
H 

h d it

2A

2B

I

M sl
s
l





00

charge-density
wave

'E

''E

1



How shall we approach the problem:

We have classified possible phases and relevant e-e interaction 
channels using irreducible representations of the symmetry channels using irreducible representations of the symmetry 

group of the crystal...

… but the only thing that we know is that Coulomb interaction is but t e o y t g t at e o s t at Cou o b te act o s
strong, whereas interaction in all other channels is weak and 

difficult to estimate microscopically.

Using renormalisation group approach, we determine which 
interaction channel has the fastest growing constant in the RG 
flow  which determines the most plausible phase transition to flow, which determines the most plausible phase transition to 

occur for BLG with a small Fermi energy of electrons.

Lemonik, Aleiner,Toke,VF, arXiv:1006.1399



Screening of Coulomb interaction 

‘large’ N=4 (valley*spin)                 1/N expansion large  N=4 (valley*spin)                 1/N expansion 



Renormalisation of short-range interactions





Renormalisation of short-range interactions

Some diagrams are infrared divergent, Nandkishore &Levitov;  arXiv:0907.5395v1

but for combination of diagrams this           divergence cancels leaving only  
arXiv:0907.5395v2 [PRL 104, 156803, (2010)]

2ln ln



Vafek &Yang,  PRB 81, 041401 (2010) 
RG treatment of short range interactions with 3 couplings
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Symmetry-breaking happens first in the channel which corresponds to the uniaxial 
interlayer bond deformation (mimicking A-B sublattice shift in strained BLG).~



Faster divergence of the interaction constant 
in the ‘uniaxial deformation’ interaction channel (Irrep E2) in the uniaxial deformation  interaction channel (Irrep E2) 

(similar to the effect of strain)
signals possible instability - a phase transition.

6vC 2vC

Lemonik, Aleiner,Toke,VF, arXiv:1006.1399
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Berry phaseBerry phase
2π = π + π

Berry phase
2π = π + π + π - π

8 4

2π  π + π + π π

8

8

4
416-fold 

degenerate

8-fold 
degenerate
LL at ε=0LL at ε=0 LL at ε 0

Two phases can be distinguished by the persistence of different filling factors 
In the Shoubnikov – de Haas oscillations (or QHE) into low magnetic fields
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