5th Windsor Summer School "Quantum Phenomena in Low-Dimensional Materials and Nanostructures", Cumberland Lodge, Windsor, UK, August 9 - 21, 2010

### Heterostructures of transition-metal oxides - Experiment, mainly spectroscopy -

Atsushi Fujimori University of Tokyo



### New opportunities with oxide thin films



## Outline

- Electronic structure of transition-metal oxides
- Fabrication and characterization
- Interfacial electronic structure
- Effects of finite thickness
- Effects of epitaxial strain

# Electronic structure of transition-metal oxides



### Metal-insulator transition through collapse of Mott gap – Bandwidth control



# Metal-insulator transition through carrier doping into Mott insulator – Filling control



# Bandwidth- versus filling-controlled metal-insulator transition



M. Imada, A. Fujimori and Y. Tokura, Rev. Mod. Phys. 1998

### Electronic structure change across bandwidthcontrolled metal-insulator transition



### Electronic structure change across bandwidthcontrolled metal-insulator transition



### Bandwidth- versus filling-controlled in Mott-Hubbard systems



### Electronic structure change across bandwidthcontrolled metal-insulator transition



### Bandwidth- versus filling-controlled in Mott-Hubbard systems



## Filling-controlled Mott-Hubbard system La<sub>1-x</sub>Sr<sub>x</sub>TiO<sub>3</sub>



### **Perovskite-type transition-metal oxdies**



### Zaanen-Sawatzky-Allen diagram



J. Zaanen, G.A. Sawatzky and J.W. Allen, PRL '85

### Metal-insulator transition through collapse of charge-transfer gap – Bandwidth control



## Metal-insulator transition through carrier doping into charge-transfer insulator



### **Perovskite-type transition-metal oxdies**



### **Perovskite-type Mn oxdies**



### Double exchange model for magnetoresistance in Mn oxdies



### **Colossal magnetoresistance of Mn oxdies**



Y. Tokura et al., J. Phys. Soc. Jpn. '94

### **Perovskite-type transition-metal oxdies**



M. Imada, A. Fujimori and Y. Tokura, Rev. Mod. Phys. '98

### Spin-charge-orbital ordering in perovskite-type Mn oxdies

Pr<sub>1-x</sub>Ca<sub>x</sub>MnO<sub>3</sub>

## Jahn-Teller distortion of MnO<sub>6</sub> octahedron



### Even bigger magnetoresistance in narrow-band Mn oxdies



### **Fabrication and characterization**



## **MBE using pulsed laser deposition (PLD)**

### PLD system



### **Monitoring RHEED oscillations**



T. Ohnishi et al., APL '01.

## Characterization of epitaxially grown thin film on SrTiO<sub>3</sub>(001) substrate



K. Yoshimatsu et al.

# Characterization of epitaxially grown superlattice on SrTiO<sub>3</sub>(001) substrate

### [(LaMnO<sub>3</sub>)<sub>11.8</sub> / (SrMnO<sub>3</sub>)<sub>4.4</sub>]<sub>6</sub> superlattice

**TEM** image

**X-ray reflection** 



## Soft x-ray scattering from [(LaMnO<sub>3</sub>)<sub>m</sub>/(SrMnO<sub>3</sub>)<sub>m</sub><sup>,</sup>]<sub>n</sub> superlattice



q,

S.J. May et al. PRB '08

S. Smadici et al.,. PRL '07

# In-situ ARPES measurement system of PLD-grown oxide thin films

#### **AFM** image



LEED



### Combined photoemission-laser MBE system Oshima-Kumigashira group



Photon Factory BL-1c, BL2c, BL-28

K. Horiba et al., Rev. Sci. Instrum. 74, 3406 (2003).









# Polarized soft x-ray absorption spectroscopy (XAS)



### **XMCD of buried interfaces**


### Outline

- Electronic structure of transition-metal oxides
- Fabrication and characterization
- Interfacial electronic structure
- Effects of finite thickness
- Effects of epitaxial strain

#### Interfacial electronic structure

#### Metallic states between two insulators -States near the Fermi level-



#### Metallic behavior of interfaces between Mott insulator and band insulator

Perovskite-type oxides ABO<sub>3</sub>





SrTiO<sub>3</sub>: *d*<sup>0</sup> (Ti<sup>4+</sup>) band insulator

Metallic interfaces !

LaTiO<sub>3</sub>: *d*<sup>1</sup> (Ti<sup>3+</sup>) Mott insulator



### LaTiO<sub>3</sub> layers embedded in SrTiO<sub>3</sub>: Penetration of Ti 3*d* electrons into SrTiO<sub>3</sub>

LaTiO<sub>3</sub>:  $d^1$  (Ti<sup>3+</sup>) Mott insulator SrTiO<sub>3</sub>:  $d^0$  (Ti<sup>4+</sup>) band insulator

5 unite cells

Ľa

2

#### Atomically resolved EELS



## Metallic transport of SrTiO<sub>3</sub>/LaTiO<sub>3</sub> superlattices



## Photoemission spectra of SrTiO<sub>3</sub>/LaTiO<sub>3</sub> interfaces



# Photoemission spectra of SrTiO<sub>3</sub>/LaTiO<sub>3</sub> interfaces

#### Ti 2p-3d resonant photoemission



# Metallicity at SrTiO<sub>3</sub>/LaTiO<sub>3</sub> interfaces resulting from electronic reconstruction



Layer DMFT calculation including long-range Coulomb interaction

S. Okamoto and A. J. Millis, Nature '04, PRB '04

#### Interfacial electronic structure

#### Metallic states between two insulators -Charge transfer in electronic reconstruction-



# High mobility of *n*-type carriers at interfaces between two band insulators



### Critical thickness of ~4 uc for conductivity transition at LaAIO<sub>3</sub>/SrTiO<sub>3</sub> interface



S. Thiel et al., Science '06

M. Huijben et al., Nature Mater.'06

## Polar (111) surface of K<sub>3</sub>C<sub>60</sub> and its electronic reconstruction



Position

## Photoemission spectroscopy of buried interfaces



### Evidence for Ti<sup>3+</sup> states at the *n*-type LaAIO<sub>3</sub>/SrTiO<sub>3</sub> interface



#### LaAIO<sub>3</sub> overlayer thickness dependence of Ti<sup>3+</sup> concentration at LaAIO<sub>3</sub>/SrTiO<sub>3</sub> interface

LaAlO<sub>3</sub>(x uc)/SrTiO<sub>3</sub>



### *p*-type LaAlO<sub>3</sub>/SrTiO<sub>3</sub> interface



A. Ohtomo and H.Y. Hwang, Nature '04; N. Nakagawa et al, Nat. Mater. '06 H.Y. Hwang, Science '07

#### LaAIO<sub>3</sub> overlayer thickness dependence of Ti<sup>3+</sup> concentration at LaAIO<sub>3</sub>/SrTiO<sub>3</sub> interface

LaAlO<sub>3</sub>(x uc)/SrTiO<sub>3</sub>



#### Interfacial electronic structure

Metallic states between two insulators -Potential change in electronic reconstruction-



#### **Polar catastrophe model of LaAlO<sub>3</sub>/SrTiO<sub>3</sub>**



### Probing the potential slope in the LaAlO<sub>3</sub> layer of LaAlO<sub>3</sub>/SrTiO<sub>3</sub>



M. Takizawa et al.

### Probing the potential slope in the LaAlO<sub>3</sub> layer of LaAlO<sub>3</sub>/SrTiO<sub>3</sub>



### Probing the potential slope in GaN (0001) layers

GaN/AIN(0001)

#### GaN/SiC(0001)



A. Rizzi et al., JVSTB '99

#### Calculated potential in polar GaN/SiC(0001)



A. Rizzi et al., JVSTB '99

#### **Short summary**

- Metallic states between two insulators -

Electronic reconstruction at insulator-insulator interfaces:

- Charge transfer occurs as expected to avoid the polar catastroph, but the charge transfer starts well below the critical thickness of transport.
- Potential slope as expected to avoid the polar catastrophe model is much reduced.
- The above observations can be explained by the gradual reconstruction which starts well below the critical thickness.

### Preparation dependence of carrier distributions at the *n*-type LaAIO<sub>3</sub>/SrTiO<sub>3</sub> interface

**Cross-sectional AFM** 



M. Sing et al., PRL '09

M. Basletic et al., Nat. Phys. '08

# Novel physical properties of LaAIO<sub>3</sub>/SrTiO<sub>3</sub> interfaces



#### **Superconductivity**

Ferromagnetism



N. Reyren et al. Science '07

A. Brinkman et al. Nat. Mater. '07 cf: MR by M B. Shalom et al., PRB '09

# Gate-voltage control of superconductivity at LaAIO<sub>3</sub>/SrTiO<sub>3</sub> interface

#### **Resistivity for various gate voltages**



#### Gate-voltage-controlled LaAIO<sub>3</sub>/SrTiO<sub>3</sub> interface: Filling control or mobility control?

### Resistivity for various gate voltages

### Gate-voltage dependence of carrier density and mobility



C. Bell et al., PRL '09

#### Interfacial electronic structure

#### Ferromagnetism between non-magnetic materials



### Ferromagnetism in [(LaMnO<sub>3</sub>)<sub>m</sub>/(SrMnO<sub>3</sub>)<sub>m</sub>,]<sub>n</sub> superlattices

Magnetization, resistivity



**Polarized neutron reflectivity** 



S.J. May et al.,. PRB '08

### Soft x-ray scattering from [(LaMnO<sub>3</sub>)<sub>8</sub>/(SrMnO<sub>3</sub>)<sub>4</sub>]<sub>7</sub>/SrTiO<sub>3</sub>(001)

STEM image

#### **Temperature dependence**



H. Wadati

## Ferromagnetism in AF insulator-paramagnetic metal interfaces

CaMnO<sub>3</sub>: AF insulator CaRuO<sub>3</sub> : PM metal

Magnetization and Tc



S. Takahashi et al., APL '01

# Mn 2p and Ru 3p XMCD for $CaMn_{1-x}Ru_xO_3$ thin films

#### **XMCD** spectra

#### Magnetic moments on Mn and Ru



# Mechanism for ferromagnetism in $CaMn_{1-x}Ru_xO_3 - CaMnO_3/CaRuO_3$ , too ?



cf.) Double peroskite Sr<sub>2</sub>FeMoO<sub>6</sub> D.D. Sarma et al., PRL '00, Z. Fang et al., PRB '01

#### Interfacial electronic structure

#### Interface between different ground states



### Interface between superconductor YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub> and ferromagnet (La,Ca)MnO<sub>3</sub>



J. Chakhalian et al., Nat. Phys. '06


# Interface between superconductor YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub> and ferromagnet (La,Ca)MnO<sub>3</sub>



J. Chakhalian et al., Nat. Phys. '06



### Interfacial electronic structure

### **Chemical potential**



# To deduce chemical potential from *I-V* characteristics of junction

*I-V* characteristics of SrRuO<sub>3</sub>/SrTiO<sub>3</sub>



Schottky barrier height =  $\Phi_A - \Phi_B = \mu_B - \mu_A$ (or built-in potential in *p-n* junction)

T. Fujii et al., APL '05

# To deduce chemical potential shift from *I-V* characteristics of junction

Chemical potential shift from the built-in potential of La<sub>1-x</sub>Sr<sub>x</sub>MO<sub>3</sub>/SrTiO<sub>3</sub> *p-n* (Schottky) junction



A. Sawa et al., APL '07

# To deduce chemical potential shift from *I-V* characteristics of junction

#### **Chemical potential shift** 0.0 from the built-in potential \_a<sub>1-v</sub>Sr<sub>v</sub>TiO<sub>3+v/2</sub> ·↓ -0.2 Ti 3d $(\delta = x + y)$ $E_{\mathrm{F}}$ 0.0 łŧ 3.2 eV La<sub>2-x</sub>Sr<sub>x</sub>CuO<sub>4</sub> Chemical potential shift $\Delta\mu$ (eV) $\phi_{\rm B}$ -0.2 *V* bi $(\delta = x)$ O 2p0.6 Fermi level shift (eV) (b) LSMO Nb:STO La<sub>2-x</sub>Sr<sub>x</sub>NiO<sub>4+v/2</sub> 0.3 -0.2 $(\delta = x+y)$ LSFeO, **LSCoO** -0.4 0 LSMnO\_ 0.0 La<sub>1-v</sub>Sr<sub>v</sub>FeO<sub>3</sub> -0.3 -0.2 $(\delta = x - 0.67)$ 0.0 Ba<sub>1-x</sub>K<sub>x</sub>BiO<sub>3</sub> t÷∓ -0.6 -0.2 0.2 0.40.6 0.8 $(\delta = x)$ 0 Sr content (x)-0.4 0.0 0.2 0.4 0.6 0.8 1.0 Hole concentration $\delta$ A. Sawa et al., APL '07 A. Fujimori et al.,

#### **Chemical potential shift from core-level XPS**

A. Fujimori et al., J. Electron Spectrosc. '02

# Magnetic field-induced chemical potential shift in La<sub>2/3</sub>Sr<sub>1/3</sub>MnO<sub>3</sub>/organic conductor junction



# To deduce chemical potential shift from core-level photoemission



# Carrier doping utilizing chemical potential differences



#### Manganite Cuprate

Superconducting

S. Yunoki et al., PRB, 2007

## **Effects of finite thickness**

### Metal-insulator transitions



Finite thickness

# Metal-to-insulator transition in SrVO<sub>3</sub> with decreasing film thickness of



# Metal-to-insulator transition in SrRuO<sub>3</sub> with decreasing film thickness of

• Small  $W \rightarrow$  large U/W?



# Outline

- Electronic structure of transition-metal oxides
- Fabrication and characterization
- Interfacial electronic structure
- Effects of finite thickness
- Effects of epitaxial strain



# Effects of epitaxial strain

### Superconductivity



## Band structure of La<sub>2-x</sub>Sr<sub>x</sub>CuO<sub>4</sub> (x=0.15) under compressive strain studied by ARPES



M. Abrecht et al., PRL '91

## Fermi surface of La<sub>2-x</sub>Sr<sub>x</sub>CuO<sub>4</sub> (x=0.15) under compressive strain studied by ARPES



 $\xi_k = -2t[\cos(k_x a) + \cos(k_y a)]$  $+ 4t'\cos(k_x a)\cos(k_y a) - \mu$ 

cf: Tensile strain: La<sub>2-x</sub>Sr<sub>x</sub>CuO<sub>4</sub>/SrTiO<sub>3</sub>(001) D. Coleta et al., PRB '06

# Empirical correlation between $T_{c,max}$ and next-nearest-neighbor hopping t'



E. Pavarini et al., PRL '01





D. Feng et al., PRL '01

# **Effects of epitaxial strain**

### Metal-insulator transitions



# Electronic phase diagram of R<sub>1-x</sub>A<sub>x</sub>MnO<sub>3</sub>



# Electronic phase diagram of La<sub>1-x</sub>Sr<sub>x</sub>MnO<sub>3</sub> under epitaxial strain



## HX-PES spectra of La<sub>1-x</sub>Sr<sub>x</sub>MnO<sub>3</sub> (x=0.4) under epitaxial strain



# Electronic phase diagram of La<sub>1-x</sub>Sr<sub>x</sub>MnO<sub>3</sub> under epitaxial strain



## HX-PES spectra of La<sub>1-x</sub>Sr<sub>x</sub>MnO<sub>3</sub> (x=0.5) under epitaxial strain



# Summary

- Electronic structure of transition-metal oxides
- Fabrication and characterization
- Interfacial electronic structure
  - Metallic states between two insulators
    - States near the Fermi level
    - Charge transfer in electronic reconstruction
    - Potential change in electronic reconstruction
  - Ferromagnetism between non-magnetic materials
  - Interface between different ground states
  - Chemical potential
- Effects of finite thickness
  - Metal-insulator transitions
- Effects of epitaxial strain
  - Metal-insulator transitions
  - Madelung potential shifts
  - Changes in chemical potential shift

# Acknowledgement

#### VUV, soft x-ray photoemission

M. Takizawa, H. Wadati, M. Takizawa, T. Yoshida, K. Maekawa (U of Tokyo)

- H. Kumigashira, K. Horiba, K. Yoshimatsu, T. Okabe, M. Oshima,
- A. Maniwa, M. Minohara (U of Tokyo)

### Hard x-ray photoemission

- S. Shin, Y. Takata, K. Horiba, M. Matsunami, M. Yabashi,
- K. Tamasaku, Y. Nishino, D. Miwa, T. Isikawa (SPring-8, RIKEN)
- E. Ikenaga, K. Kobayashi (JASRI)

#### Materials synthesis

H.Y. Hwang, Y. Hotta, S. Tsuda, T. Higuchi, T. Susaki (U of Tokyo)

- M. Lippmaa, K. Shibuya, N. Mihara (ISSP)
- M. Kawasaki (Tohoku U), H. Koinuma (U Tokyo, JST)
- Y. Muraoka (Okayama U), Z. Hiroi (ISSP)

Supported by: a Grant-in-Aid for Scientific Research, JSPS & Quantum Beam Technology Development Program, JST