Spin Qubits in Quantum Dots

Daniel Loss Department of Physics University of Basel

Tutorial Review: **R. Zak, B. Röthlisberger, S. Chesi,** D. L., Riv. Nuovo Cim. 033, 345 (2010); arXiv:0906.4045

\$\$: Swiss NSF, Nano Center Basel, EU, ESF, DARPA, IARPA

Outline

A. Spin qubits in quantum dots

- Basics of quantum computing and quantum dots
- universal gates & entanglement: via interaction or parity measurements

B. Spin decoherence in GaAs quantum dots

- Spin orbit interaction and spin decay
- Alternative spin qubits: holes, graphene, nanotubes,...
- Nuclear spins and hyperfine induced decoherence

C. Nuclear spin order in 1D (and 2D)

- reduce noise in spin bath by nuclear spin ordering
- Kondo lattice in Luttinger liquids (and marginal Fermi liquid)

Quantum Information

Classical digital computer

network of 'Boolean logic gates', e.g. XOR

- bits: a, b = 0, 1
- physical implementation:
 e.g. 2 voltage levels
- 'gate': electronic circuit

Quantum computer

- qubits $|a\rangle, |b\rangle = \alpha |0\rangle + \beta |1\rangle, |\alpha|^2 + |\beta|^2 = 1$
- physical implementation: quantum 2-level-system: $|\uparrow\rangle \equiv |0\rangle$, $|\downarrow\rangle \equiv |1\rangle$
- 'quantum gate': unitary transformation (is reversible!)

Quantum Computing (basics)

basic unit: qubit → any state of a quantum two-level system

 $|\Psi
angle = a|1
angle + b|0
angle$

"natural" candidate: electron spin

• quantum computation:

- 1) prepare N qubits (input)
- 2) apply unitary transformation in 2^{N} -dim. Hilbert space \rightarrow computation
- 3) measure result (output)
- quantum computation faster than classical:
 - factoring algorithm (Shor 1994): exp N \rightarrow N²
 - database search (Grover 1996): $N \rightarrow N^{1/2}$
 - quantum simulations

What a quantum computer could do faster:

...search large database (→ biology, climate, physics...)
...break `RSA-Encryption' (banking, industry, military,...)
...simulate physical und chemical processes
(→ physics, chemical & pharma industry, medicine,...)
...play quantum games

...and many unforseen applications!

Intense search for new quantum algorithms !

Electron qubit: spin better than charge

due to longer relaxation/decoherence* times

→ natural choice for qubit: spin ½ of electron

*) theory: $T_2 \sim T_1$ for single spin in GaAs dot ('everything optimized')

VOLUME 57, NUMBER 1

JANUARY 1998

Quantum computation with quantum dots

Daniel Loss^{1,2,*} and David P. DiVincenzo^{1,3,†}

¹Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, California 93106-4030 ²Department of Physics and Astronomy, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland ³IBM Research Division, T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598 (Received 9 January 1997; revised manuscript received 22 July 1997)

DL & DiVincenzo, PRA 57 (1998)

Spin 1/2 of electron = qubit

A quantum dot as a tunable artificial atom

Delft group, since 2003

Electrical control and detection

- Tunable # of electrons
- Tunable tunnel barriers
- Electrical contacts

Confinement

- Discrete # charges
- Discrete orbitals

A quantum dot as a tunable artificial atom

Confinement

- Discrete # charges
- Discrete orbitals

TU Delft, Harvard, Princeton, MIT, Ottawa, Waterloo, Tokyo, Sidney, Munich, Aachen, Basel, Zurich,...

Marcus group (Harvard, 2004)

Temp.: 100 mK

DL & DiVincenzo, PRA 57 (1998)

2 quantum dots, each with 1 electron-spin (= qubit)

Key idea: **all-electrical** control of spins → spin-qubits are scalable

artificial hydrogen molecule \rightarrow exchange splitting J~t²/U

→ 'CNOT quantum gate'

DL & DiVincenzo, PRA 57 (1998)

sqrt-of-swap:

DL & DiVincenzo, PRA 57 (1998)

$$H(t) = J(t) S_{L} \cdot S_{R}$$

$$\Rightarrow \text{CNOT} (\text{XOR}) \text{ gate}$$

$$U_{XOR} = e^{i\frac{\pi}{2}S_{1}^{z}} e^{-i\frac{\pi}{2}S_{2}^{z}} U_{SW}^{1/2} e^{i\pi S_{1}^{z}} U_{SW}^{1/2}$$

$$U_{SW} : \uparrow \downarrow \implies \downarrow \uparrow$$

$$U_{SW}^{1/2} : \uparrow \downarrow \implies \uparrow \downarrow + e^{i\alpha} \downarrow \uparrow$$

$$\text{switching time: 180 ps}$$

$$\text{Petta et al.. Science. 2005}$$

Quantum XOR gate with 'sqrt-of-swap' $U_{XOR} = e^{i(\pi/2)S_1^z} e^{-i(\pi/2)S_2^z} U_{SW}^{1/2} e^{+i\pi S_1^z} U_{SW}^{1/2},$

Loss & DiVincenzo, PRA 1998

How to make entanglement 'visible'

Basel theory '98-'06

How to make entanglement 'visible'

Basel theory '98-'06

→ entanglement oscillates !

Entanglement oscillations observed

Petta et al., Science 2005

ultra-fast 'clock speed' to create entanglement: 180 ps !

6

Quantum XOR gate with 'sqrt-of-swap'

$$U_{XOR} = e^{i(\pi/2)S_1^z} e^{-i(\pi/2)S_2^z} U_{SW}^{1/2} e^{+i\pi S_1^z} U_{SW}^{1/2},$$

Entanglement is crucial for quantum computing!

Universal set of quantum gates

Single-qubit operations and a two-qubit gate that generates entanglement are sufficient for **universal quantum computation**:

A. Barenco et al., Phys. Rev. A 52, 3457 (1995)

Note: Control of exchange interaction J and switching time needs to be very precise (1:10⁴) → experimental challenge

 \rightarrow CNOT gate without interaction?

Yes: CNOT gates based on measurement:

Full Bell state analyzer & GHZ state *Partial* Bell-state (parity) measurements \rightarrow deterministic quantum computing [3]

- Linear optics & single-photon detection \rightarrow conditional sign flip (non-deterministic) [1]
 - \rightarrow deterministic quantum computing [2]

- [1] E. Knill, R. Laflamme and G. J. Milburn, Nature 409, 46 (2001). [2] D. Gottesman and I.L. Chuang, Nature 402, 390 (1999).
- [3] C.W.J. Beenakker et al., Phys. Rev. Lett. 93, 020501 (2004).

Deterministic entangler:

a,b: input arms c,d: output arms

$$(\alpha \uparrow_a + \beta \downarrow_a) \otimes (\uparrow_b + \downarrow_b) = (\alpha \uparrow_a \uparrow_b + \beta \downarrow_a \downarrow_b) + (\alpha \uparrow_a \downarrow_b + \beta \downarrow_a \uparrow_b)$$

input state in arm a input state in arm b (ancilla) $\uparrow_{a} \downarrow_{b} = |\uparrow\rangle_{a} \otimes |\downarrow\rangle_{b}$ $\left\{\begin{array}{c} \alpha \uparrow_{c} \uparrow_{d} + \beta \downarrow_{c} \downarrow_{d} , \text{ if } p = 1 \\ \alpha \uparrow_{c} \downarrow_{d} + \beta \downarrow_{c} \uparrow_{d} , \text{ if } p = 0, \Rightarrow \alpha \uparrow_{c} \uparrow_{d} + \beta \downarrow_{c} \downarrow_{d} \end{array}\right.$

Projective measurement: measurement of parity p projects input state into either parallel output state (p=1) or antiparallel output state (p=0). If p=0, then apply $\sigma_x^{(d)}$ on output state \rightarrow get always same final output state in arms c and d.

Thus, we get:

$$\alpha \uparrow_a + \beta \downarrow_a \implies \alpha \uparrow_c \uparrow_d + \beta \downarrow_c \downarrow_d$$

Beenakker et al., 2004

Measurement-based quantum computing with spin qubits

Engel & DL, Science 309, 586 (2005)

Advantage:

parity measurement is digital (0 or 1) \rightarrow quantum gate is digital

Q: Does scheme exist for electron spins to measure parity of Bell states non-destructively?

Double Quantum Dot and QPC

Current I_{QPC} depends on charge state¹

odd parity: tunneling even parity: no tunneling

[1] J.M. Elzerman *et al.*, Nature **430**, 431 (2004)

Convert spin parity to charge info

Different Zeeman splittings $\Delta^{z}_{L} \neq \Delta^{z}_{R}$

12 dim. Hilbert space Bloch-Redfield eq.

$$W_{L\leftrightarrow R} = \frac{2t_{\rm d}^4}{U^2} \frac{\Gamma_{\rm d2}}{\varepsilon^2 + \Gamma_{\rm d2}^2}$$

- resonant tunneling (ϵ =0) for antiparallel spins
- but NOT ($\epsilon >> \Gamma_{d2}$) for parallel spins

QPC detects charge on right dot -> parity of Bell state

1 List of symbols

J	exchange splitting for two electrons on the same dot $(LL\rangle$ or $ RR\rangle$)
J_{LR}	exchange splitting for states $ LR\rangle$ (taken into account implicitly)
t_S, t_T	tunneling amplitudes for singlet/triplet states
$t_{\rm d}$	tunneling amplitude for simplified model
Ũ	charging energy: $ LL\rangle$ vs $ LR\rangle$; $U = E_{SLL} - E_{\uparrow,\uparrow,p}$
$\Delta_{*}^{L}, \Delta_{*}^{R}$	Zeeman splitting in left/right dot
Γ_{d}	intrinsic dephasing rate
Γ _{d1}	intrinsic dephasing rate for a superposition of $ LR\rangle$ and $ LL\rangle$ (or for
	superposition of $ LR\rangle$ and $ RR\rangle$)
Γ_{d2}	intrinsic dephasing rate for a superposition of $ LL\rangle$ and $ RR\rangle$
Γ_r	intrinsic relaxation $ LL\rangle \rightarrow LR\rangle$ or $ RR\rangle \rightarrow LR\rangle$
ε	energy detuning $ LL\rangle$ vs. $ RR\rangle$, i.e., $\varepsilon = E_{LL} - E_{RR}$
$W_{L\leftrightarrow R}$	effective tunneling rate from left to right, $ LL\rangle \leftrightarrow RR\rangle$, as function of ε
W_{relax}	effective relaxation rate, $ LL\rangle \rightarrow LR\rangle$ or $ RR\rangle \rightarrow LR\rangle$
Γ_{meas}	measurement rate, inverse time that is required for partial Bell state
	measurement
Γ_{φ}	dephasing rate, rate at which superpositions of states with different par-
	ity are decohered
$ LL\rangle$	charge state with two electrons on the left dot, $ RR\rangle$ for two electrons
	on the right dot, $ LR\rangle$ for one electron on each dot
$ SLL\rangle$	singlet with both electrons on left dot, $ SLL\rangle = (\uparrow_L\downarrow_L\rangle - \downarrow_L\uparrow_L\rangle)/\sqrt{2}$,
	analogously for $ SLR\rangle$, and $ SRR\rangle$, and with "-" \rightarrow "+" for $ T_0LL\rangle$,
	$\langle T_0 L R \rangle$, and $\langle T_0 R R \rangle$
H_{d}	Hamiltonian of double dot in the absence of inter-dot tunneling [Eq. (5)]
H_T	inter-dot tunnel coupling [Eq. (6)]
δ	orbital level spacing
$\rho_n, \rho_{n,m}$	reduced density matrix ρ of double dot, diagonal elements $\rho_n = \langle n \rho n \rangle$
	and off-diagonal elements $\rho_{n,m} = \langle n \rho m \rangle$
$\hat{n}_{L/R}$	number of electrons on left/right dot
$E_{L/R}^{C}$	charging energy of left/right dot
n_{α}	charge induced in single (uncoupled) dot via gate voltages
λ_i	eigenenergies of $H_d + H_T$
V_{-}	coupling of double dot to QPC, $V = V_{dot}V_{QPC}$
t <u></u> g	tunneling amplitude in QPC for double-dot charge state $ n\rangle$
c^{\dagger}	creation operator of electrons in incoming/outgoing lead of QPC
ρ_Q^0	equilibrium density matrix of leads of QPC
$\Delta \mu$	applied bias across QPC
I_n	current in QPC when double dot is in charge state $ n\rangle$
$\Gamma_{\varphi i}$	dephasing rates $\Gamma_{\varphi 2}$, $\Gamma_{\varphi 1L}$, $\Gamma_{\varphi 1R}$ due to quantum measurement via QPC
	[Eqs. (47)-(49)]

Tunneling transitions (coherent)

- Single level picture
- Many processes for small level spacing δ
- But for δ >> U
 only transitions (a)
 and (d) are relevant

Imperfections

• Phases due to different Zeeman interaction

-during virtual occupation of state *LR* $-|\uparrow_L\downarrow_R\rangle vs |\downarrow_L\uparrow_R\rangle$ -correctable via one-qubit gates -suppression via large t_d and fast read-out

Detuning from resonance

-increases measurement time

• Finite exchange J for LL and RR

–additional dynamical phase–correctable via one-qubit operations

• Tunneling $t_S \neq t_T$ and/or $J_L \neq J_R$

 $-|S\rangle$ and $|T_0\rangle$ are distinguishable \rightarrow decoherence!

Parity detection is robust against imperfections:

- initial state e.g. $\frac{1}{\sqrt{2}} |\uparrow\downarrow\rangle + \frac{1}{2} (|\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle)$
- simulation in 144-dimensional Liouville space
- compare ideal result
- quantify with the Uhlmann (square-root) fidelity

lity
$$F = Tr \sqrt{\rho_f^{1/2} \rho_e \rho_f^{1/2}}$$

Universal Quantum Computing with Parity Gates

CNOT gate can be implemented with two parity gates (Beenakker et al., PRL '04):

Parity gate for spin ½: (Engel & Loss, Science '05):

Two qubit dots (1 and L), parity measurement using reference dot (R) $(1, 1, 0) \rightarrow (0, 2, 0) \leftrightarrow (0, 0, 2)$ Transfer back adiabatically to (1,1,0)

Protocol for CNOT gate (1)

 $U_{CNOT} |c\rangle_1 |t\rangle_2 = |c\rangle_1 |c \oplus t\rangle_2$

Protocol for CNOT gate (1) $U_{CNOT} |c\rangle_1 |t\rangle_2 = |c\rangle_1 |c \oplus t\rangle_2$

11 Steps for implementing CNOT gate on qubits "c" (control) and "t" (target):

- 1. Prepare "a" in state $(|0\rangle + |1\rangle) / \sqrt{2}$
- 2. Move electron from QD "a" to QD "c"
- 3. Perform parity measurement p_1 using QDs "c" and " R_1 "
- 4. Move electrons back to QDs "c" and "a"
- 5. Perform a Hadamard single-qubit gate on "a" and on "t"
- 6. Move electron from QD "a" to QD "t"
- 7. Perform parity measurement p_2 using QDs "t" and " R_2 "
- 8. Move electrons back to QD "t" and "a"
- 9. Perform a Hadamard single-qubits gate on "a" and on "t"
- 10. Measure qubit "a"
- 11. Apply conditional operations, according to table

Protocol for CNOT gate (3): Conditional operations

- p_1 , p_2 , m represent the outcome of the measurements of steps 3, 7, and 10.
- Detection of even parity (superposition of $|00\rangle$ and $|11\rangle$) is labeled as "0"; odd parity as "1"
- In step 11, single-qubit gates listed on the rhs are applied to qubits "c" and "t"
- "I" stands for identity (do nothing), X for $\sigma_{\!X},$ Z for $\sigma_{\!Z}$

p ₁	p ₂	m	"C"	"t"
0	0	0	1	1
0	0	1	I	Х
0	1	0	Z	1
0	1	1	Z	Х
1	0	0	I	Х
1	0	1	I	I
1	1	0	Z	Х
1	1	1	Z	

Topological Quantum Computing via braiding of non-abelian anyons (Kitaev '03)

E.g. 'Ising anyons' (FQHE 5/2, Majorana fermions,..)

Topological Quantum Computing via braiding of non-abelian anyons (Kitaev '03)

E.g. 'Ising anyons' (FQHE 5/2, Majorana fermions,..)

But: Braiding of 'Ising anyons' <=> classical computing

Solution: Parity-measurement gates (but they're *not* topological...) Bravyi '06

CNOT-Gate via Parity Measurement & Braiding

e.g. 5/2 FQHE edge states Bravyi, PRA 73, 042313 (2006)

FIG. 6. Measurement-based CNOT gate implemented on $\nu = 5/2$ Ising anyon qubits. The control, ancilla, and target qubits are shown from left to right, e.g., the control qubit is represented by anyons 1,2,3,4. The representative "spin"-parity measurements are shown by the \hat{P} boxes and the ancilla measurement by the box at the bottom. The braiding between the measurements represents Hadamard rotations on the qubits.

Zilberberg, Braunecker, and Loss, PRA 77, 012327 (2008)

(general scheme for composite qubit systems)

Spin qubits in GaAs dots – present status

See also Hanson et al., Rev. Mod. Phys. 2007

All-electrical control and read-out achieved

Initialization 1-electron, low *T*, high B_0 duration ~ 5 T_1 ; 99% fidelity ?

Read-outvia spin-charge conversionduration ~ 100 μs; 82-97% fidelity

1-qubit gate electron spin resonance gate duration ~ 25 ns; observed 8-50 periods

2-qubit gate exchange interaction
gate duration ~ 0.2 ns; observed 3 periods

Energy relaxation *T*₁~ 1 sec

Phase coherence $T_2^* \sim 90 \text{ ns}$ $T_2 > 270 \mu \text{s}$

Are Spin-Qubits Scalable ?

Quantum error correction requires: $T_2/T_s \sim 10^4$

GaAs quantum dots:
$$T_2/T_s \sim 10^3 - 10^6$$

→ spin qubits *are* scalable

Spin qubits are **scalable** → quantum dot array

DL & DiVincenzo, PRA 57 (1998) 120

Single-Spin Rotations by Exchange only

Coish & DL, Phys. Rev. B 75, 161302 (2007)

Requires auxiliary spins,
Zeeman gradient & exchange
➔ fast switching times (1ns) with high fidelity (< 10⁻³)

$$\mathcal{H} = -\sum_{l\sigma} V_l n_{l\sigma} + U_c \sum_l n_{l\uparrow} n_{l\downarrow} + U'_c \prod_l (n_{l\uparrow} + n_{l\downarrow}) + t_{12} \sum_{\sigma} \left(d^{\dagger}_{1\sigma} d_{2\sigma} + d^{\dagger}_{2\sigma} d_{1\sigma} \right) - \sum_l \mathbf{S}_l \cdot \mathbf{b}_l.$$

Single-Spin Rotations by Exchange only

Coish & DL, Phys. Rev. B 75, 161302 (2007)

Requires auxiliary spins,
Zeeman gradient & exchange
➔ fast switching times (1ns) with high fidelity (< 10⁻³)

$$\mathcal{H} = -\sum_{l\sigma} V_l n_{l\sigma} + U_c \sum_l n_{l\uparrow} n_{l\downarrow} + U'_c \prod_l (n_{l\uparrow} + n_{l\downarrow}) + t_{12} \sum_{\sigma} \left(d^{\dagger}_{1\sigma} d_{2\sigma} + d^{\dagger}_{2\sigma} d_{1\sigma} \right) - \sum_l \mathbf{S}_l \cdot \mathbf{b}_l.$$

for dot 2:
$$\mathcal{H}_{\mathrm{eff}} = -\frac{1}{2} \mathbf{\Delta} \cdot \boldsymbol{\sigma}; \ \mathbf{\Delta} = (b_2^x, 0, b_2^z - J(\epsilon)/2)$$

Universal set of quantum gates

Single-qubit operations and a two-qubit gate that generates entanglement are sufficient for **universal quantum computation**:

A. Barenco et al., Phys. Rev. A 52, 3457 (1995)

Single-qubit gates via 'holonomic' QC* Golovach, Borhani & DL, PRA 81, 022315 (2010)

- > qubit = Kramers doublet in quantum dot (time-reversal invariance)
- > spin-orbit interaction provides a non-Abelian gauge field $A_{\mu} = a_{\mu\nu} \sigma^{\nu}$ which couples to the qubit (even at B = 0)
- Is all single-qubit gates are realized by moving the qubits around close loops (holonomies) in the parameter space of the Hamiltonian

SU(2) rotation at zero magnetic field

$$U = P exp \left(\int A_{\mu} d\lambda_{\mu} \right)$$

Wilson loop

*Holonomic QC: Zanardi & Rasetti, Phys. Lett. A264, 94 (1999)

Spin rotation by moving the quantum dot

$$H(t) = H_d(t) + H_Z + H_{SO}$$

$$H_d(t) = \frac{p^2}{2m_e} + U(\vec{r} - \vec{r_0}(t))$$

$$H_{SO} = \alpha(p_x \sigma_y - p_y \sigma_x) + \beta(-p_x \sigma_x + p_y \sigma_y)$$

> The generator of the SU(2) rotation (B = 0):

$$\Delta = 1 - i \,\vec{\sigma} \cdot \lambda_{SO}^{-1} \cdot \delta \vec{r}_0$$
$$\lambda_{SO}^{-1} \equiv \begin{pmatrix} 0 & 1/\lambda_- \\ 1/\lambda_+ & 0 \end{pmatrix} \qquad \lambda_{\pm} = \frac{\hbar}{m_e(\beta \pm \alpha)}$$

Physical implementation

Adiabaticity criterion and decoherence time limit the velocity of the quantum dot:

 $\Gamma\lambda_{SO}\ll |\vec{v}|\ll\lambda_d\omega_0$

Physical implementation

Adiabaticity criterion and decoherence time limit the velocity of the quantum dot:

$$\Gamma\lambda_{SO} \ll |\vec{v}| \ll \lambda_d \omega_0$$

E.g. holonomic rotation matrix for *circular* path:

$$U(2\pi) = \exp(-rac{i}{2}ec{\eta}\cdotec{\sigma})$$

$$\vec{\eta} = 2\pi(1-\frac{1}{\epsilon})(\frac{2}{\lambda},0,1)$$

 $\epsilon = \sqrt{1 + 4/\lambda^2} \qquad \lambda \equiv \lambda_{\pm}/R$

Golovach et al., PRA 81 (2010)

Spin-Qubits from Electrons

simplest spin-qubit: spin-1/2 of 1 electron $|0\rangle = \uparrow$, $|1\rangle = \downarrow$

Many more choices for spin qubits:

- 'exchange-only qubits' DiVincenzo *et al.*, 2000 3 electrons: $|0\rangle = S \uparrow$, $|1\rangle = T_+ \downarrow - T_0 \uparrow$
- 'singlet-triplet' qubits Levy 2002, Taylor *et al.*, 2005 2 electrons: $|0\rangle = S$, $|1\rangle = T_0$
- 'spin-cluster qubits' Meier, Levy & DL, `03 N electrons: AF spin chains, ladders, clusters,...
- molecular magnets Leuenberger & DL, '01; Affronte et al., '06, Lehmann et al., '07; Trif et al., '08, '10

Quantum Computing with Spin-Qubits

CNOT (XOR) gate based on entanglement such as

$$\uparrow \downarrow + e^{i\alpha} \downarrow \uparrow \quad or \quad \uparrow \uparrow + e^{i\alpha} \downarrow \downarrow$$

i.e. phase coherence is crucial

Need to understand the dynamics and **decoherence** mechanisms for electron spins in quantum dots

Outline

A. Spin qubits in quantum dots

- Basics of quantum computing and quantum dots
- universal gates & entanglement: via interaction or parity measurements

B. Spin decoherence in GaAs quantum dots

- Spin orbit interaction and spin decay
- Alternative spin qubits: holes, graphene, nanotubes,...
- Nuclear spins and hyperfine induced decoherence
- C. Nuclear spin order in 1D (and 2D)
- reduce noise in spin bath by nuclear spin ordering
- Kondo lattice in Luttinger liquids (and marginal Fermi liquid)