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Electrons in two dimensions 
I B

+++++++++++++++

---------------------------------

Classically, 

Hall resistivity           -        
V y

I x
=

B
nec

longitudinal resistivity - unchanged by  B.

Quantum mechanically  degenerate harmonic oscillator spectrum

En=n12 ℏω c

Landau level filling factor =

             density of electrons

             density of flux quanta 

ν ≡¿
¿ Φ0=

hc
e

Landau levels

Introduction to the classical and quantum Hall effect 



  

•  zero longitudinal resistivity - no dissipation, bulk energy gap  

current flows mostly along the edges of the sample

•  quantized Hall resistivity

ρ xy=
1
ν
h

e2

The quantum Hall effect

ν is an integer,

 or q even

 or a fraction        with q odd,
p
q
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Fractionally charged excitations - 
                                    Laughlin quasi-particles

gap
quantized σ xy=ν

e2

h
gauge invariance

Fractional
charge

0  Φ0=
hc

e

Φ

To generate an excitation:

Turn flux on 

gap          adiabaticity           system follows an eigenstate
gauge invariance: eigenstates for        are eigenstates for Φ0 Φ=0



  

Charge configuration at the generated excitation

Φ
ε=−

1
2π r

∂Φ
∂ t

When the flux is switched on -

azimuthal electric field is generated  and radial current flows out

total charge pushed away 

j radial=σ xy ε

eν

The excitation carries a fractional charge



  

Extending the notion of quantum statistics (2D) 

ψ  r1 , . . . . . . . . . . . . . . . . . . . . .r N ; R1 , . . , R4 A ground state:

Adiabatically interchange the position of two excitations 

Energy gap

ψ  eiθψ

Laughlin quasi-
particlesElectrons

“anyons”



  

In a non-abelian quantum Hall state, quasi-particles obey 

non-abelian statistics, meaning that with quasi-particles at 

fixed positions, the ground state is highly degenerate. 

Interchange of quasi-particles shifts between ground states.

More interestingly, non-abelian statistics                (Moore and Read, 91)

For ν=5/2 with 2N quasiparticles: degeneracy = 2N 



  

       ground states2N ∣g . s . 1  R1 , R2 . . . 〉
∣g . s . 2  R1 , R2 . . .  〉

∣g . s . 2N R1 , R2 . . . 〉

…
..

R1 , R2 . . .position of 
quasi-particles

Permutations between quasi-particles positions
                unitary transformations in the ground state subspace



  

Topological quantum computation              (Kitaev 1997-2003)

• Subspace of high dimension, separated by an energy gap from 
the continuum of excited states.
• Unitary transformations within this subspace are defined by the 
topology of braiding trajectories 
• All local operators do not couple between ground states 

– immunity to errors

Up to a global phase, the unitary transformation depends only on 
the topology of the trajectory 

1

1

3

2

2
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“Computing with knots”
Scientific American, April 2006

Topologically Protected Quantum Computation



  

The The νν=5/2 state=5/2 state  [following Willett et al, PRL 1987]



  



  



  



  

The Moore-Read quantum Hall state may be understood by 

Composite Fermion theory, following four steps:

A half filled Landau level on top of 
two filled Landau levels    

Step II:

the Chern-Simons transformation 

    from: electrons at a half filled Landau level 

Step I:

5
2
=2

1
2

to: spin polarized composite fermions at zero (average) 
magnetic field

GM87
R89
ZHK89
LF90
HLR93
KZ93

(Moore-Read, Read-Green)



  

B
e-

B1/2 = 2nsΦ0

B(c)

2Φ0

CF

(b)
B

Electrons in a magnetic  field B

Composite particles in a 
magnetic field B−2Φ0n r 

Mean field (Hartree) approximation

ΔB=B−2Φ0 〈n〉=0

H ψ = E ψ

χ q  {r i} Ð=00 ψ °°  {r i} ���� e
0 i2∑i j

arg  r i−r j  P



  

Spin polarized composite fermions at zero (average) 
magnetic field

Step III: fermions at zero magnetic field pair into Cooper pairs

Spin polarization requires pairing of odd angular momentum 

               a p-wave super-conductor
Read and Green (2000)

Step IV: introducing quasi-particles into the super-conductor 

- shifting the filling factor away from 5/2

ΔB=∇× A−a =B−2Φ0 〈n〉=ν−1−2≠0

The super-conductor is subject to a magnetic field 

The super-conductor is subject to a magnetic field and thus 
accommodates vortices. The vortices, which are charged, are the 
non-abelian quasi-particles.



  



  



  



  



  



  



  



  



  

Experimental Consequences

• Spin polarization

• Quasiparticle charge

• Edge structure

• Quasiparticle entropy

• Fabry-Perot interferometer

• (Coulomb blockade)

• (Mach-Zehnder interferometer)



  

Predicted experimental signatures:

Spin Polarization



  

Activation energy

Energy gap decreases with in-plane field. 
[Eisenstein et al. Surf Science (1990); Dean et al. (2008); Pan et al.(2007)]

Unpolarized groundstate?

Phase transition to a compressible phase? [Morf, PRL (1998)]

Still unresolved [das Sarma, Gervais & Zhou arXiv:1007:1688]

Optical Probes

Photoluminescence [M. Stern et al., arXiv:1005.3112] and light scattering [Pinczuk, 
unpublished] suggest unpolarized groundstates. 
 



  

Spin-Reversed QPs          [Wojs, Moller, Simon & NRC, PRL (2010)]

Quasiparticles acquire spin-textures at small Zeeman energy (“CSTs”).

At very small Z two e/4 quasiholes can bind to form an e/2 “Skyrmion”.

Trapped quasiparticles in local potentials (disorder) are highly susceptible to spin-
reversal. (Reduction of polarisation.)



  

Predicted experimental signatures:

Quasiparticle Charge
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 Radu et al. [Marcus group], Science 320, 899 (2008)

+ Yacoby group (unpublished)



  

Predicted experimental signatures:

Edge Structure

[See lectures of Vadim Cheianov]



  

Science 320, 899 (2008)

Tunneling Conductance  g
T
 ~ T(2g-2)

Pfaffian: g = ¼
AntiPfaffian: g = ½

 



  

Counterpropagating neutral mode [Bid et al. (Weizmann), arXiv:1005.5724]

 Found at nu=2/3, 3/5, 5/2



  

Predicted experimental signatures:

Quasiparticle Entropy

(Cooper & Stern, 2008
Yang & Halperin, 2008)



  

Measuring the entropy of quasi-particles in the bulk

The density of quasi-particles is

Zero temperature entropy is then 

4 ∣n−n5/ 2∣ = 4 ∣n−
5
2

B
Φ0

∣

4 ∣n−
5
2

B
Φ0

∣ log2

To isolate the electronic contribution from other contributions: 

∂ s
∂n

=−
∂ μ
∂T

;
∂ s
∂ B

=
∂m
∂T



  

Leading to ∂ μ
∂T

=−2 log2 sgn  ν−5/2 

∂m
∂T

=−
5
Φ0

log2sgn  ν−5 /2 

(~1.4)

(~12pA/mK)



  

Predicted experimental signatures:

Fabry-Perot interferometer



  

backscattering = |tleft+tright|2

ν=5/2 

A Fabry-Perot interferometer:

Stern and Halperin (2005)
Bonderson, Shtengel, Kitaev (2005)
Following Das Sarma et al (2005)
                 Chamon et al (1996)

interference pattern is observed by varying the cell’s area
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Integer quantum Hall effect (adapted from Neder et al., 2006)The prediction for the ν=5/2 non-abelian state (weak backscattering limit)

(the number of quasi-particles in the bulk)



  

vortex a around vortex 1  -     γ1γa

vortex a around vortex 1 and vortex 2     -              γ1γaγ2γa  ∼  γ2γ1

The effect of the core states on the interference of backscattering 
amplitudes depends crucially on the parity of the number of localized
states.

ψ leftψ right ⊗∣core states 〉Before encircling

1
a ψ left ψ right2



  

After encircling

ψ left⊗∣core states 〉ψ right⊗ γa γ1∣core states 〉

for an even number of localized vortices
only the localized vortices are affected
(a limited subspace)

for an odd number of localized vortices
every passing vortex acts on a different subspace

ψ left⊗∣core states 〉ψ right⊗ γ2 γ1∣core states 〉



  

Interference term:

for an even number of localized vortices
only the localized vortices are affected
Interference is seen

for an odd number of localized vortices
every passing vortex acts on a different subspace
interference is dephased

ψ
left ¿

ψ right 〈 core states∣γ 2γ 1∣core states 〉

ψ
left ¿

ψ right 〈 core states∣γ a γ1∣core states 〉



  

ν=5/2 
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                 Magnetic Field
            (or voltage on anti-dot)

cell 
area

The number of quasi-particles 
on the island may be tuned by 
charging an anti-dot, or more 
simply, by varying the 
magnetic field. 



  

 

Willett,Pfeiffer & West,
 arXiv:0911.0345



  



  

Predicted experimental signatures:

Coulomb blockade



  

A pinched-off interferometer becomes a quantum dot

ν=5/2 

Coulomb blockade !

A Coulomb blockade peak appears in the conductance through the 

dot whenever the energy cost for adding an electron is zero:

E N , B , S =E N1,B ,S 

current

area S, B



  

We look for 

Cell area

Magnetic field

(number of 
electrons in 
the dot)

(number of q.p.s
in the dot)

ΔS

ΔS as a 
function of B

Most naively: ΔS = 1/n0  (the area needed to 
enlarge the dot by one electron)



  

ν=5/2: modulations on ΔS = 1/n0  when the number of bulk 

quasi-particles is even. No modulation when it is odd. 

Basic reason:

The incoming electron enters the edge. The edge has a 

bosonic charged mode (chiral Luttinger liquid) and a neutral 

fermionic mode. 

Most naively: ΔS = 1/n0  (the area needed to 
enlarge the dot by one electron)



  

The bosonic charged mode energy yields the peak spacing of 
ΔS = 1/n0 

The modulation originates from the neutral mode:

ν=5/2: 

• The neutral mode is a Majorana fermion mode. 

• It has either zero or one fermion (the only unpaired fermion in 

the super-conductor, if it exists). 

• The energy cost to be paid by that fermion is determined by the 

boundary conditions (ψ(x)= ±ψ(x+L)) of the mode. 

• It is either zero or 1/L (angular momentum zero or one half).

• The boundary conditions are determined by the number of bulk 

quasi-particles.   



  

The Read-Rezayi states:

2. Heavily based on the use of parafermionic conformal field 

theories (CFT).

3. Ground state trial wave functions, elementary excitations are 

correlators of various fields in these CFTs.

4. The dynamics of the edge is described by the same CFT as 

the ground state wave functions in the bulk

5. The CFT tells us the Fock space and spectrum of the edge.
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4m 4m1 4m2 4m3

The picture obtained (k=4):

Bunching of the Coulomb peaks to groups of n and k-n – 
A signature of the Zk states



  

Predicted experimental signatures:

Shot noise in a Mach-Zehnder interferometer



  

Shot noise through single point contact measures charge

Shot noise at the Mach-Zehnder interferometer measures statistics
                      (Feldman, Gefen, Kitaev, Law, Stern, PRB2007)

S D1D2



  

The probability to get from the source to the drain includes an 

interference term, which depends on the topological state of the interior 

edge. This may be described in terms of a Brattelli-like diagram:

The system propagates along the diagram, with transition rates 

assigned to each bond. The rates depend on the flux. Equal rates 

imply an effective charge of 1/3. 

For ν=1/3, three possible states:

Γ 1 Γ 2

Γ 3



  

Γ 1 Γ 2

Γ 3

But when one rate is much lower than the 

other two, Γ1<<Γ2,Γ3, the effective charge is 

one.

              for ν=1/3, the effective charge 

measured in shot noise should depend on 

flux and span the range between 1/3 and 1. 

The logical path: fractional statistics              dependence of the 

interference term on the topological charge              current passing in 

bursts                    effective charge may be as big as the electron 

charge



  

A more complicated Brattelli diagram:

even odd even
Number of 
q.p.’s in the 
interference loop

Γ1

Γ1/2Γ2

Γ2/2 Γ3

Γ4

Γ4/2

Γ3/2

For ν=5/2, six possible states:

Interference 
term



  

Effective charge span the range from 1/4 to about three. 

Charge larger than one due to the Brattelli diagram having more 

than one “floor”, which is due to the non-abelian statistics 

In summary, flux dependence of the effective charge in a Mach-Zehnder 

interferometer may demonstrate non-abelian statistics at ν=5/2


