Known and unknown about graphene.

I. Graphene 101: pure and disordered monolayer graphene.

Lectures 3&4 II. Electronic properties of bilayer graphene, from high to low energies. Interaction effects in graphenes.

Electron-electron interaction in monolayers.

Tight-binding model for electrons in BLG.

Asymmetry gap in bilayer graphene.

Lifshitz transitions & BLG under strain.

Interaction effects in BLG; spontaneous symmetry breaking in pristine BLG due to the e-e interaction.

Wallace, Phys. Rev. 71, 622 (1947) Slonczewski, Weiss, Phys. Rev. 109, 272 (1958)

Eigenfunction

$$\Psi_{j}(\mathbf{k},\mathbf{r}) = \sum_{i=1}^{2} C_{ji}(\mathbf{k}) \Phi_{i}(\mathbf{k},\mathbf{r})$$

Transfer integral on a hexagonal lattice

$$\mathcal{H}_{AB} = \langle \Phi_A | H | \Phi_B \rangle$$

Brillouin zone ky (valleys) K' V kx

 $\pi = p_x + ip_y = pe^{i\vartheta}$

$$\mathcal{H}_{AB} = \underbrace{1}_{N} \sum_{\mathbf{R}_{A}, \mathbf{R}_{B}}^{N} e^{i\mathbf{k}(\mathbf{R}_{B} - \mathbf{R}_{A})} \underbrace{\langle \phi_{A}(\mathbf{r} - \mathbf{R}_{A}) | \mathbf{H} | \phi_{B}(\mathbf{r} - \mathbf{R}_{B})}_{\gamma_{0} \sim 3eV} = \gamma_{0} \begin{bmatrix} e^{-i\frac{2\pi}{3}} e^{-i(\frac{a}{2}p_{x} + \frac{a}{2\sqrt{3}}p_{y})} + e^{i\frac{a}{\sqrt{3}}p_{y}} + e^{i\frac{2\pi}{3}} e^{i(\frac{a}{2}p_{x} - \frac{a}{2\sqrt{3}}p_{y})} \end{bmatrix}$$

$$\approx \frac{\sqrt{3}}{2} \gamma_{0} a(p_{x} - ip_{y}) = v\pi^{+}$$

$$H_{BA,K} \approx \frac{\sqrt{3}}{2} \gamma_{0} a(p_{x} + ip_{y}) = v\pi$$

$$\hat{H} = v \begin{pmatrix} 0 & \pi^{+} \\ \pi & 0 \end{pmatrix} = v\vec{p} \cdot \vec{\sigma}$$

McClure, PR 104, 666 (1956)

Also, one may need to take into account an additional real spin degeneracy of all states

$$H = \int d\vec{r} \ \psi_r^+ v \vec{\sigma} \cdot (-i\nabla) \psi_r + \frac{1}{2} \int d\vec{r} d\vec{r}' \ \frac{e^2}{|\vec{r} - \vec{r}'|} \psi_r^+ \psi_r \psi_r^+ \psi_{r'} \psi_{r'}^+ \psi_{r'} \psi_{r'}^+ \psi_{r'} \psi_{$$

$$v(\varepsilon) \rightarrow v + \frac{e^2}{8\chi v} \ln \frac{\gamma_0}{\varepsilon}$$
Gonzalez, Guinea, Vozmediano - PRB 59, 2474 (1999)
$$-\frac{2\pi e^2}{q}$$
unscreened, if
$$\frac{e^2}{\chi v} < 1$$
dynamically screened
$$-\tilde{v}(q,\omega) = \frac{-2\pi e^2/q}{1+N\Pi 2\pi e^2/q} \rightarrow \frac{-1}{N\Pi(q,\omega)}$$
if
$$\frac{e^2}{\chi v} > 1$$

$$\frac{dv}{d\ln \frac{\gamma_0}{\varepsilon}} = \frac{4}{\pi^2 N} v \implies \varepsilon(p) = Cp^{1-\delta - 0.9 \div 1}$$
Son - PRB 75, 235423 (2007)

 g_l^n remain small (do not renormalize up)

Aleiner, Kharzeev, Tsvelik – PRB 76, 195415 (2007) Drut, Son – PRB 77, 075115 (2008)

Renormalisation of Dirac velocity in suspended monolayer graphene

Elias, Gorbachev, Mayorov, Morozov, Zhukov, Blake, Ponomarenko, Grigorieva, Novoselov, Guinea, Geim Nature Physics 7, 701 (2011)

Electronic properties of bilayer graphene, from high to low energies. Interaction effects in graphenes.

Electron-electron interaction in monolayers.

Tight-binding model for electrons in BLG.

Lifshitz transitions & BLG under strain.

Asymmetry gap in bilayer graphene.

Interaction effects in BLG; spontaneous symmetry breaking in pristine BLG due to the e-e interaction.

Minimal TB model for electrons in BLG

$$\begin{array}{c|c} D_{3d} + T_a D_{3d} + T_a^2 D_{3d} \\ \\ \text{IrReps} \\ \end{array}$$

$$\begin{array}{c|c} sublattice valley \\ \hline \sigma_n \begin{pmatrix} \varphi_{A,+} \\ \varphi_{\tilde{B}+} \\ -\varphi_{A-} \end{pmatrix} \\ \hline \tau_l \\ \hline \sigma_n \begin{pmatrix} \varphi_{A,-} \\ \varphi_{\tilde{B}-} \\ -\varphi_{A-} \end{pmatrix} \\ \hline \tau_l \\ \hline \sigma_n \begin{pmatrix} \varphi_{A,-} \\ \varphi_{\tilde{B}-} \\ -\varphi_{A-} \end{pmatrix} \\ \hline \tau_l \\ \hline \sigma_n - \tau_l \\ \hline \sigma_n \rightarrow - \sigma_n \\ \hline \tau_l \rightarrow - \tau_l \\ \hline \sigma_n \tau_l \rightarrow \sigma_n \tau_l \\ \hline \end{array}$$

$$\begin{array}{c|c} t \rightarrow -t \\ \sigma_n \tau_l \rightarrow -\sigma_n \\ \hline \tau_l \rightarrow -\sigma_n \\ \hline \sigma_n \tau_l \rightarrow \sigma_n \tau_l \\ \hline \end{array}$$

$$\begin{array}{c|c} t \rightarrow -t \\ \sigma_n \tau_l \rightarrow \sigma_n \tau_l \\ \hline \sigma_n \tau_l \rightarrow \sigma_n \tau_l \\ \hline \end{array}$$

$$\begin{array}{c|c} t \rightarrow -t \\ \sigma_n \tau_l \rightarrow -\sigma_n \\ \hline \sigma_n \tau_l \rightarrow \sigma_n \tau_l \\ \hline \end{array}$$

$$\begin{array}{c|c} t \rightarrow -t \\ \sigma_n \tau_l \rightarrow \sigma_n \tau_l \\ \hline \end{array}$$

$$\begin{array}{c|c} t \rightarrow -t \\ \sigma_n \tau_l \rightarrow \sigma_n \tau_l \\ \hline \end{array}$$

$$\begin{array}{c|c} t \rightarrow -t \\ \sigma_n \tau_l \rightarrow \sigma_n \tau_l \\ \hline \end{array}$$

$$\begin{array}{c|c} t \rightarrow -t \\ \sigma_n \tau_l \rightarrow \sigma_n \tau_l \\ \hline \end{array}$$

$$\begin{array}{c|c} t \rightarrow -t \\ \sigma_n \tau_l \rightarrow \sigma_n \tau_l \\ \hline \end{array}$$

$$\begin{array}{c|c} t \rightarrow -t \\ \sigma_n \tau_l \rightarrow \sigma_n \tau_l \\ \hline \end{array}$$

$$\begin{array}{c|c} t \rightarrow -t \\ \sigma_n \tau_l \rightarrow \sigma_n \tau_l \\ \hline \end{array}$$

$$\begin{array}{c|c} t \rightarrow -t \\ \sigma_n \tau_l \rightarrow \sigma_n \tau_l \\ \hline \end{array}$$

$$\begin{array}{c|c} t \rightarrow -t \\ \sigma_n \tau_l \rightarrow \sigma_n \tau_l \\ \hline \end{array}$$

$$\begin{array}{c|c} t \rightarrow -t \\ \sigma_n \tau_l \rightarrow \sigma_n \tau_l \\ \hline \end{array}$$

$$\begin{array}{c|c} t \rightarrow -t \\ \sigma_n \tau_l \rightarrow \sigma_n \tau_l \\ \hline \end{array}$$

$$\begin{array}{c|c} t \rightarrow -t \\ \sigma_n \tau_l \rightarrow \sigma_n \tau_l \\ \hline \end{array}$$

$$\begin{array}{c|c} t \rightarrow -t \\ \sigma_n \tau_l \rightarrow \sigma_n \tau_l \\ \hline \end{array}$$

$$H_{BLG} = \frac{\tau_{z}}{2m} \vec{\sigma} \cdot (p_{y}^{2} - p_{x}^{2}, 2p_{x}p_{y})$$

$$H = v\xi\begin{pmatrix} 0 & \pi^{+} \\ \pi & 0 \end{pmatrix}$$
energy scale $\hbar v/\lambda_{B}$
where $\lambda_{B} = \sqrt{\frac{\hbar}{eB}}$
state at zero energy:
 $\pi \phi_{0} = 0$

$$H = -\frac{1}{2m}\begin{pmatrix} 0 & (\pi^{+})^{2} \\ \pi^{2} & 0 \\ 0 \end{pmatrix}$$
energy scale $\hbar w_{c}$
where $\omega_{c} = \frac{eB}{m}$
 $m \approx 0.035m_{c}$

$$\frac{f^{2} + (1, +)(1, -)}{\pi^{2} \phi_{0} = 0}$$

$$\frac{e^{f\hbar\omega_{c}} \uparrow \downarrow}{\sqrt{2} + (1, +)(1, -)}$$

$$\frac{e^{f\hbar\omega_{c}} \uparrow \downarrow}{\sqrt{2} + (1, +)(1, -)}$$

$$\frac{e^{f\hbar\omega_{c}} \uparrow \downarrow}{\sqrt{2} + (1, +)(1, -)}$$

$$\frac{e^{f}\omega_{c}}{\sqrt{2} + (2, +)(2, -)}$$

$$\frac{e^{f}\omega_{c$$

086805 (2006)

Quantum Hall effect in bilayer graphene

Electronic properties of bilayer graphene, from high to low energies. Interaction effects in graphenes.

Electron-electron interaction in monolayers.

Tight-binding model for electrons in BLG.

Lifshitz transitions & BLG under strain.

Asymmetry gap in bilayer graphene.

Interaction effects in BLG; spontaneous symmetry breaking in pristine BLG due to the e-e interaction.

$$\hat{H} = \frac{1}{2m} \tau_{3} \vec{\sigma} \cdot (p_{y}^{2} - p_{x}^{2}, 2p_{x}p_{y}) + v_{3} \vec{\sigma} \cdot \vec{p}$$

$$= -\frac{\tau_{3}}{2m} \begin{pmatrix} 0 & \pi^{2} \\ (\pi^{+})^{2} & 0 \end{pmatrix} + v_{3} \begin{pmatrix} 0 & \pi^{+} \\ \pi & 0 \end{pmatrix}$$

$$E_{LITr} = \frac{m_{3}^{2}}{2} \sim ImeV$$

$$h_{LITr} = \frac{2}{\pi^{2}} \left(\frac{mv_{3}}{\hbar}\right)^{2} \sim 10^{10} cm^{-2}$$

-

strained monolayer graphene

$$\gamma_0 e^{-i\frac{2\pi}{3}} + \gamma_0 + \gamma_0 e^{i\frac{2\pi}{3}} = 0$$

$$\hat{H} = v\vec{p}\cdot\vec{\sigma} + \zeta\vec{u}\cdot\vec{\sigma} \equiv v[\vec{p} + \frac{\tau_3}{v}\vec{u}]\cdot\vec{\sigma}$$

shift of the Dirac point in the momentum space, opposite in K/K' valleys, like vector potential

$$B_{eff} = \tau_3 [\nabla \times \vec{u}(\vec{r})]_z$$

lordanskii, Koshelev, JETP Lett 41, 574 (1985) Ando - J. Phys. Soc. Jpn. 75, 124701 (2006)

Iordanskii, Koshelev, JETP Lett 41, 574 (1985) Morpurgo, Guinea - PRL 97, 196804 (2006) The four-band Hamiltonian for one DP in BLG:

$$\hat{H} = \begin{pmatrix} 0 & \xi v_3 \hat{\pi} + \mathcal{A}_3 & 0 & \xi v \hat{\pi}^\dagger + \mathcal{A}_0^* \\ \xi v_3 \hat{\pi}^\dagger + \mathcal{A}_3^* & 0 & \xi v \hat{\pi} + \mathcal{A}_0 & 0 \\ 0 & \xi v \hat{\pi}^\dagger + \mathcal{A}_0^* & 0 & \gamma_1 \\ \xi v \hat{\pi} + \mathcal{A}_0 & 0 & \gamma_1 & 0 \end{pmatrix}$$
$$\psi \rightarrow \psi \exp \left\{ -\frac{i\xi}{\hbar v} (x \Re \mathcal{A}_0 + y \Im \mathcal{A}_0) \right\} \qquad \text{Vector potential}$$

Removes constant vector potential from the anti-diagonal

$$H = \begin{pmatrix} 0 & v_3 \pi + w & 0 & v \pi^{\dagger} \\ v_3 \pi^{\dagger} + w^* & 0 & v \pi & 0 \\ 0 & v \pi^{\dagger} & 0 & \gamma_1 \\ v \pi & 0 & \gamma_1 & 0 \end{pmatrix}$$

$$w = \frac{3}{4}(\delta - \delta')\gamma_3(\eta_3 - \eta_0)e^{-i2\theta} - \frac{3}{2}\gamma_3\eta_3\frac{\delta r}{r_{AB}}e^{i\varphi}$$

high-energy
4-band:

$$H = \begin{pmatrix} 0 & v_3 \pi + w & 0 & v \pi^{\dagger} \\ v_3 \pi^{\dagger} + w^* & 0 & v \pi & 0 \\ 0 & v \pi^{\dagger} & 0 & \gamma_1 \\ v \pi & 0 & \gamma_1 & 0 \end{pmatrix}$$
Iow-energy
2-band:

$$H = -\frac{1}{2m} \begin{pmatrix} 0 & (\pi^{\dagger})^2 \\ \pi^2 & 0 \end{pmatrix} + v_3 \begin{pmatrix} 0 & \pi \\ \pi^{\dagger} & 0 \end{pmatrix} + \begin{pmatrix} 0 & w \\ w^* & 0 \end{pmatrix}$$

$$w = \frac{3}{4} (\delta - \delta') \gamma_3 (\eta_3 - \eta_0) e^{-i2\theta} - \frac{3}{2} \gamma_3 \eta_3 \frac{\delta r}{r_{AB}} e^{i\varphi}$$

Mucha-Kruczynski, Aleiner, VF - PRB 84, 041404 (2011)

$$\eta_{0} = \frac{d \ln \gamma_{0}}{d \ln r_{AB}} \approx -3 \quad \text{(Raman and DFT) Basko et al., PRB 80, 165413 (2009)} \quad \eta_{3} = \frac{d \ln \gamma_{3}}{d \ln r_{AB}} << \frac{d \ln \gamma_{0}}{d \ln r_{AB}}$$

Strain effect on the BLG spectrum at low energies

Electronic properties of bilayer graphene, from high to low energies. Interaction effects in graphenes.

Electron-electron interaction in monolayers.

Tight-binding model for electrons in BLG.

BLG under strain.

Asymmetry gap in bilayer graphene.

eV

Interaction effects in BLG; spontaneous symmetry breaking in pristine BLG due to the e-e interaction.

Interlayer asymmetry gap in bilayer graphene

$$\hat{H}_{2} = -\frac{v^{2}}{\gamma_{1}} \begin{pmatrix} 0 & (\pi^{\dagger})^{2} \\ \pi^{2} & 0 \end{pmatrix} + \begin{pmatrix} u & 0 \\ 0 & -u \end{pmatrix}$$
(can be controlled using electrostatic gates)

McCann & VF - PRL 96, 086805 (2006) McCann - PRB 74, 161403 (2006) Castro, et al - PRL 99, 216802 (2007)

T. Ohta et al - Science 313, 951 (2006)

Zhang, et al - Nature 459, 820 (2009)

Gate defined quantum confinement in suspended bilayer graphene

С

nergy

Allen, Martin, Yacoby - arXiv:1202.0820

Interlayer asymmetry-gap can be used to induce confinement in BLG to make quantum dots for spin qubits.

VF – Nature Physics 3, 151 (2007)

Encapsulation of BLG in BN films improves performance QDs circuits (larger gaps better controlled by the gates).

Vandersypen's group, Delft (2012)

Electronic properties of bilayer graphene, from high to low energies. Interaction effects in BLG.

Electron-electron interaction in monolayers.

Tight-binding model for electrons in BLG.

BLG under strain.

Screening of Coulomb interaction in BLG

Asymmetry gap in bilayer graphene: a strongly correlated band insulator.

Spontaneous symmetry breaking in pristine BLG due to the e-e interaction.

2D-screened Coulomb interaction:

$$V(q) = \frac{2\pi e^2}{q} \implies \tilde{V}(q < a_{scr}^{-1}, \omega = 0) \rightarrow \frac{2\pi e^2}{q + Na_{Bohr}^{-1}} \xrightarrow{q \to 0} \frac{1}{Nm}$$

$$(arge' N = 4 \implies 1/N \text{ expansion}$$

$$justifying the use of perturbation theory$$

$$a_{Bohr} \sim 30\dot{A} \qquad r$$

produces a negligibly small renormalisation of the band mass

$$\frac{d \ln m}{d \ln p} \sim 10^{-2}$$
 Lemonik, Aleiner, Toke, VF PRB 82, 201408 (2010)

Electronic properties of bilayer graphene, from high to low energies. Interaction effects in graphenes.

Electron-electron interaction in monolayers.

Tight-binding model for electrons in BLG.

BLG under strain.

Screening of Coulomb interaction in BLG

Asymmetry gap in bilayer graphene: a strongly correlated band insulator.

Spontaneous symmetry breaking in pristine BLG due to the e-e interaction.

$$\varepsilon_{e/h} = \sqrt{\left(\frac{p^2}{2m}\right)^2 + u^2} \approx u + \frac{p^4}{8m^2u}$$

imperfect 2D screening

single electron/hole

el-hole excitations

Electronic properties of bilayer graphene, from high to low energies. Interaction effects in graphenes.

Electron-electron interaction in monolayers.

Tight-binding model for electrons in BLG.

BLG under strain.

Asymmetry gap in bilayer graphene (strongly correlated band insulator).

Spontaneous symmetry breaking in pristine BLG due to the e-e interaction.

Is 'vacuum state' in pristine bilayer graphene stable against spontaneous symmetry breaking due to e-e interaction?

for BLG in a zero magnetic field, there were several suggestions:

ferroelectric 'excitonic insulator'

Nandkishore, L. Levitov, -PRL104, 156803 (2010); Jung, Zhang, MacDonald - PRB 83, 115408 (2011)

layer polarized antiferromagnetic

Kharitonov arXiv:1109.1553; Min, Borghi, Polini, MacDonald - PRB 77, 041407(2008); Vafek - PRB 82 205106 (2010)

quantum anomalous Hall state

Nandkishore, Levitov - PRB 82, 115124 (2010); Zhang, Jung, Fiete, Niu, MacDonald - PRL106, 156801 (2011)

charge density wave state

Dahal, Wehling, Bedell, Zhu, Balatsky - Physica B 405, 2241 (2010)

nematic (breaking rotational symmetry)

Vafek, Yang - PRB 81, 041401 (2010), Lemonik, Aleiner, Toke, VF - PRB 82, 201408 (2010)

nematic, antiferromagnetic, spin flux state.

Lemonik, Aleiner, VF - PRB 85, 245451 (2012)

interaction-driven phases of electronic liquid in bilayer graphene

$$H_{s-p} = -\frac{1}{2m} \left[(p_x^2 - p_y^2) \sigma_1 - 2 p_x p_y \sigma_2 \right] \tau_3 + v_3 \vec{p} \cdot \vec{\sigma}$$

Irreps. R

strain $g_3^1 = g_3^2 = g_{E_2}$ interlayer asymmetry $g_3^3 = g_{B_2}$ $g_0^3 = g_{A_2}$ $g_3^0 = g_{B_1}$ $g_1^3 = g_2^3 = g_{F''}$ charge-density wave $g_1^0 = g_2^0 = g_{F'}$ $g_0^1 = g_0^2 = g_{E_1}$ $g_1^1 = g_2^2 = g_1^2 = g_2^1 = g_G$

 $H_{C} = \frac{e^{2}}{2} \int d^{2}r d^{2}r' \frac{\psi_{r}^{+}\psi_{r} \psi_{r'}^{+}\psi_{r'}}{|r-r'|}$

$$H_{sr} = \frac{2\pi}{m} \sum_{l,n=0123} g_l^n \int d^2 r \left[\psi_r^+ \sigma_n \tau_l \psi_r \right]^2$$

sublattice valley

electron spin degree of freedom included and used when calculating exchange energy

construction blocks

one interaction, mean field theory & Hartree-Fock

$$H_{sr} = -\frac{2\pi}{m} |g| \int d^{2}r \left[\psi_{r}^{+}\hat{R}\psi_{r}\right]^{2} \Delta = |g| \left\langle\psi_{r}^{+}\hat{R}\psi_{r}\right\rangle$$
$$E_{MF} = -N \int_{\frac{k^{2}}{2m} < \frac{\gamma_{1}}{2}} \frac{kdk}{2\pi} \varepsilon(k, \Delta) + \frac{m\Delta^{2}}{8\pi c_{R} |g|}$$
$$= const - N \frac{m\Delta^{2}}{8\pi} \left(\alpha + \beta \ln \frac{\gamma_{1}}{\Delta}\right) + \frac{m\Delta^{2}}{8\pi b_{R} |g|} = \min$$

$$T_c \sim \Delta \sim \gamma_1 e^{-\frac{\#}{N|g|}}$$

The expected small bare values of *g* determines an exponentially weak phase transition (BCS)

construction blocks

renormalisation of one interaction followed by mean field theory & Hartree-Fock

$$\int \int \int e^{-\frac{\pi}{2}} e^{-\frac{\pi}{N|g(\gamma_{1})|}} \frac{d\omega d^{2}q}{(\omega - q^{2})^{2}} \sim -Ng^{2} \ln \frac{\gamma_{1}}{\varepsilon}$$

$$g(\gamma_{1}) <<1$$

$$\frac{dg}{dl} = -\#Ng^{2} \Rightarrow g(\varepsilon) = \frac{g(\gamma_{1})}{1 + \#Ng(\gamma_{1})\ln(\gamma_{1}/\varepsilon)}$$

$$g(\varepsilon_{c}) \rightarrow \infty$$

$$\int \frac{T_{c} \sim \varepsilon_{c} \sim \gamma_{1}e^{-\frac{\#}{N|g(\gamma_{1})|}}}{for one attractive interaction gives the same as MF-FH.}$$

$$L$$

$$g(\varepsilon_{c}) \sim 1$$

For one interaction channel, E₂ renormalisation of g can be helped by Coulomb interaction even more:

 $\frac{dg_{E_2}}{dl} = \dots$ # $\overline{N^2}$

L

<u>Altogether</u>: simultaneous renormalisation group analysis of <u>all</u> short-range interactions helped by screened Coulomb interaction

Renormalisation of short-range interactions

$$\begin{split} \delta(E_2)_{i=3}^{j=1,2} &= 1 \text{ and } \delta(E_2)_i^j = 0 \text{ otherwise} \\ \downarrow \\ \frac{dg_i^j}{d\ell} &= -\frac{\tilde{\alpha}\delta(E_2)_i^j}{N^2} - \frac{\alpha_1 g_i^j}{N} - \frac{NB_i^j \left(g_i^j\right)^2 - \sum_{k,l,m,n=0}^3 C_{i;km}^{j;ln} \tilde{g}_k^l \tilde{g}_m^n \end{split}$$

 $\delta H \propto \left\langle \psi \psi^{+} \right\rangle$

Nematic $\sigma_{1,2}\tau_3$ mimics effect of strain: gaplesss with LiTr

AntiFerro $\sigma_3 \tau_3 \vec{s} \vec{l}$ opposite spin polarisation on A and B sublattices in the opposite layers: gapped

*SpinFlux σ*3*sl* like SO – topological insulator, 'spin Hall'

Density of thermally activated carriers (electrons and holes) in suspended neutral BLG

Mayorov, Elias, Mucha-Kruczynski, Gorbachev, Tudorovskiy, Zhukov, Morozov, Katsnelson, VF, Geim Science 333, 860 (2011)

Gapless persistence of **v=4** SdHO to the lowest fields with activation energy indicating LiTr, **Nematic** (or strain ?)

Suppressed compressibility and conductance Persistence of *v=4* SdHO to the lowest fields: what is the phase?

Feldman, Martin, Yacoby, Nature Physics 5, 889 (2009)

(10°/cm²)

=

0

0.2

0.4

Weitz, Allen, Feldman, Martin, Yacoby Science 330, 812 (2010)

Bao, Velasco, Zhang, Jing, Standley, Smirnov, Bockrath, MacDonald, Lau arXiv:1202.3212

(10ⁿ/cm²)

0.2

0.4

Gapped state AntiFerro ?

Known and unknown about graphene.

I. Graphene 101: pure and disordered monolayer graphene.

Lectures 3&4 II. Electronic properties of bilayer graphene, from high to low energies. Interaction effects in graphenes.

Electron-electron interaction in monolayers.

Tight-binding model for electrons in BLG.

BLG under strain.

Asymmetry gap in bilayer graphene (strongly correlated insulator).

Spontaneous symmetry breaking in pristine BLG due to the e-e interaction.