Classification

of

Topological Insulators

Victor Gurarie

Windsor, August 2012

Sunday, August 19, 12

Classes of topologically distinct Hamiltonians

 \mathcal{H}_{ij} matrix (Hamiltonian)

 E_n

eigenvalues

Two matrices are **topologically equivalent** if one can be deformed into another without any of its energy levels ever becoming equal to 0.

Application of topological classes

Topological invariants

Mathematical expressions which take integer values and change only if \mathcal{H} acquires a zero eigenvalue (acquires zero energy)

For example: $N_0 = #$ of levels below zero

very simple topological invariant

But there are many more less trivial invariants (more on that later)

Example: particle in 2D in a magnetic field

$$\hat{H} = t \sum_{n_x, n_y} \left[\hat{a}_{n_x+1, n_y}^{\dagger} \hat{a}_{n_x, n_y} + e^{2\pi i q n_x} \hat{a}_{n_x, n_y+1}^{\dagger} \hat{a}_{n_x, n_y} + \text{h.c.} \right] - \mu \sum_{n_x, n_y} \hat{a}_{n_x, n_y}^{\dagger} \hat{a}_{n_x, n_y}$$

The spectrum consists of 1/q-bands (or "Landau levels") $E_n(k_x,k_y)$

It is not possible to change the number of bands below 0 by smoothly changing the Hamiltonian (including by changing μ) without tuning through a point with zero energy single-particle states

(Thouless et al, 1982)

 n_x

 $u(k_x, k_y; \vec{r})$ Bloch waves

$$\sigma_{xy} = \frac{ie^2}{2\pi h} \int d^2k \int d^2r \left(\frac{\partial u^*}{\partial k_x} \frac{\partial u}{\partial k_y} - \frac{\partial u^*}{\partial k_y} \frac{\partial u}{\partial k_x} \right)$$

topological invariant (Chern number)

Chern number in terms of Green's functions

$$G_{n_x,n_y} = \left[i\omega - \mathcal{H}\right]^{-1}$$

$$G_{ab\in \text{the basis}}(k_x, k_y) = \sum_{\substack{n_x, n_y \in \text{Bravais lattice}}} e^{-i(n_x k_x + n_y k_y)} G(n_x, n_y)$$

Chern number (an alternative form)
$$N_2 = \frac{1}{24\pi^2} \sum_{\alpha\beta\gamma} \epsilon_{\alpha\beta\gamma} \int d\omega dk_x dk_y \operatorname{tr} \left[G^{-1} \partial_{\alpha} G G^{-1} \partial_{\beta} G G^{-1} \partial_{\gamma} G \right]_{\alpha, \beta, \gamma}$$

 α, β, γ take values ω, k_x, k_y

$$G \to G + \delta G \longrightarrow \delta N_2 = 0$$

The only way to change N_2 is by making G singular. That requires \mathcal{H} to have zero energy eigenvalues.

Edge states

Periodic boundary conditions in the y-direction

7

Particle hopping on a lattice with 2π/3 magnetic flux through each plaquette

➤ X

Edge states

Hard wall boundary conditions in the y-direction

→ X

7

Particle hopping on a lattice with 2π/3 magnetic flux through each plaquette

Edge states as a result of topology

Zero energy states must live in the boundary

$$\psi(x,y) \sim e^{-\frac{|x|}{\ell}} e^{ik_y y}$$

$$E(k_y) \sim k_y - k_0$$

Other topological classes?

For a long time 2D particle in a magnetic field was considered to be the only example of topological classes of single-particle Hamiltonians

Generalizations to 4D, 6D, generally even *d*, was known, however

$$N_{d} = -\frac{\left(\frac{d}{2}\right)!}{(2\pi i)^{\frac{d}{2}+1}(d+1)!} \sum_{\alpha_{0}\alpha_{1}...\alpha_{d}} \epsilon_{\alpha_{0}\alpha_{1}...\alpha_{d}} \int d\omega d^{d}k \operatorname{tr} \left[G^{-1}\partial_{\alpha_{0}}GG^{-1}\partial_{\alpha_{1}}G\ldots G^{-1}\partial_{\alpha_{d}}G\right]$$

d must be even all **\alpha** take values **\omega**, k₁, k₂, ..., k_d

existence of this topological invariant reflects the homotopy class $\pi_{d+1}\left(GL(\mathcal{N},\mathbb{C})=\mathbb{Z}
ight)$ if *d* is even

Topological classes in high dimensions - perhaps not very physical

Fortunately, it turns out these are not the only topological insulators

Sunday, August 19, 12

Chiral systems

Sunday, August 19, 12

$$\Sigma = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad \mathcal{H} = \begin{pmatrix} 0 & V \\ V^{\dagger} & 0 \end{pmatrix} \qquad \text{basis} \quad \begin{pmatrix} \hat{a}_{\text{odd}} \\ \hat{a}_{\text{even}} \end{pmatrix}$$

General topological invariant

But here *d* is **odd**

$$N_d = -\frac{\left(\frac{d-1}{2}\right)!}{(2\pi i)^{\frac{d+1}{2}}d!} \sum_{\alpha_1...\alpha_d} \epsilon_{\alpha_1...\alpha_d} \int d^d k \operatorname{tr} \left[V^{-1} \partial_{\alpha_1} V \dots V^{-1} \partial_{\alpha_d} V \right]$$

$$\Sigma = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad \mathcal{H} = \begin{pmatrix} 0 & V \\ V^{\dagger} & 0 \end{pmatrix} \qquad \text{basis} \quad \begin{pmatrix} \hat{a}_{\text{odd}} \\ \hat{a}_{\text{even}} \end{pmatrix}$$

General topological invariant E

But here *d* is **odd**

$$N_d = -\frac{\left(\frac{d-1}{2}\right)!}{(2\pi i)^{\frac{d+1}{2}}d!} \sum_{\alpha_1...\alpha_d} \epsilon_{\alpha_1...\alpha_d} \int d^d k \operatorname{tr} \left[V^{-1} \partial_{\alpha_1} V \dots V^{-1} \partial_{\alpha_d} V \right]$$

Example: d=1

$$\mathcal{H} = \begin{pmatrix} 0 & t_1 + t_2 e^{ik} \\ t_1 + t_2 e^{-ik} & 0 \end{pmatrix}$$

With some algebra, one can show

$$N_1 = \int_{-\pi}^{\pi} \frac{dk}{2\pi i} \partial_k \ln\left(t_1 + t_2 e^{ik}\right)$$

Sunday, August 19, 12

$$\Sigma = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad \mathcal{H} = \begin{pmatrix} 0 & V \\ V^{\dagger} & 0 \end{pmatrix} \qquad \text{basis} \quad \begin{pmatrix} \hat{a}_{\text{odd}} \\ \hat{a}_{\text{even}} \end{pmatrix}$$

General topological invariant

But here *d* is **odd**

$$N_d = -\frac{\left(\frac{d-1}{2}\right)!}{(2\pi i)^{\frac{d+1}{2}}d!} \sum_{\alpha_1...\alpha_d} \epsilon_{\alpha_1...\alpha_d} \int d^d k \operatorname{tr} \left[V^{-1} \partial_{\alpha_1} V \dots V^{-1} \partial_{\alpha_d} V \right]$$

Example: d=1

$$\mathcal{H} = \begin{pmatrix} 0 & t_1 + t_2 e^{ik} \\ t_1 + t_2 e^{-ik} & 0 \end{pmatrix}$$

With some algebra, one can show

$$N_1 = \int_{-\pi}^{\pi} \frac{dk}{2\pi i} \partial_k \ln\left(t_1 + t_2 e^{ik}\right)$$

$$\Sigma = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad \mathcal{H} = \begin{pmatrix} 0 & V \\ V^{\dagger} & 0 \end{pmatrix} \qquad \text{basis} \quad \begin{pmatrix} \hat{a}_{\text{odd}} \\ \hat{a}_{\text{even}} \end{pmatrix}$$

General topological invariant

But here *d* is **odd**

$$N_d = -\frac{\left(\frac{d-1}{2}\right)!}{(2\pi i)^{\frac{d+1}{2}}d!} \sum_{\alpha_1...\alpha_d} \epsilon_{\alpha_1...\alpha_d} \int d^d k \operatorname{tr} \left[V^{-1} \partial_{\alpha_1} V \dots V^{-1} \partial_{\alpha_d} V \right]$$

Example: d=1

$$\mathcal{H} = \begin{pmatrix} 0 & t_1 + t_2 e^{ik} \\ t_1 + t_2 e^{-ik} & 0 \end{pmatrix}$$

With some algebra, one can show

$$N_1 = \int_{-\pi}^{\pi} \frac{dk}{2\pi i} \partial_k \ln\left(t_1 + t_2 e^{ik}\right)$$

 $N_1 = 0$ $t_1 + t_2 e^{ik}$ $t_1 = 0$ $t_1 > t_2$

This works (decays for n>0) only if $t_1 < t_2$

That is, if $N_1=1$ (not when it is zero)

Symmetry classes

space dimension	1	2	3	4	5	6
Class A (no symmetry)		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}
Class AllI (chiral symmetry)	\mathbb{Z}		\mathbb{Z}		\mathbb{Z}	

Altland-Zirnbauer nomenclature

Other relevant symmetries

Time reversal
$$U_T^{\dagger} \mathcal{H}^* U_T = \mathcal{H}$$
 $U_T^* U_T = \begin{cases} \text{either} +1 \\ \text{or} & -1 \end{cases}$

Particle-hole conjugation $U_C^{\dagger} \mathcal{H}^* U_C = -\mathcal{H} \qquad U_C^* U_C = \begin{cases} \text{either} +1 \\ \text{or} & -1 \end{cases}$

If both symmetries are present, chiral symmetry is automatically present, with $\Sigma = U_T^* U_C$

This leads to 10 "symmetry classes", introduced by Altland and Zirnbauer

Cartan label	Т	С	S	
A (unitary)	0	0	0	Iru
AI (orthogonal)	+1	0	0	sal
AII (symplectic)	-1	0	0	ر. بر بک
AIII (ch. unit.)	0	0	1	Ĺ, Ĺ
BDI (ch. orth.)	+1	+1	1	ğ v
CII (ch. sympl.)	-1	-1	1	vic
D (BdG)	0	+1	0), í
C (BdG)	0	-1	0	
DIII (BdG)	-1	+1	1	1 J.
CI (BdG)	+1	-1	1	

Classes with time reversal invariance only

Time reversal
$$U_T^{\dagger} \mathcal{H}^*(-k) U_T = \mathcal{H}(k)$$
 $U_T^* U_T = \begin{cases} \text{either} & +1 \\ \text{or} & -1 \end{cases}$

Class AI: time reversal for spinless particles or spin rotation invariant Hamiltonians

Example:
$$\mathcal{H}_{\alpha\beta}(k) = \frac{k^2}{2m} \delta_{\alpha\beta}$$
 $\alpha, \beta = \uparrow, \downarrow$

Class All: time reversal for spin-dependent spin-1/2 Hamiltonians (usually implies spin-orbit coupling) $\mathcal{H}_{\alpha\beta}(k) = \frac{k^2}{2m} \delta_{\alpha\beta} + g_{SO} \sum k_{\mu} \sigma^{\mu}_{\alpha,\beta}$

$$\sigma^{y} \mathcal{H}^{*}_{\alpha\beta}(-k) \sigma^{y} = \mathcal{H}(k) \qquad \qquad U_{T} = \sigma^{y} \qquad \qquad U_{T} U_{T}^{*} = -1$$

Only time-reversal is present

These are classes AI, All

$$Green's function transposed$$

$$G = [i\omega - \mathcal{H}]^{-1} \longrightarrow U_T^{\dagger} G^T U_T = G$$

$$Green's function transposed$$

Applying the symmetry to G, we can show that the invariant is identically zero if d = 2 + 4n $N_d = -\frac{\left(\frac{d}{2}\right)!}{(2\pi i)^{\frac{d}{2}+1}(d+1)!} \sum_{\alpha_0\alpha_1...\alpha_d} \epsilon_{\alpha_0\alpha_1...\alpha_d} \int d\omega d^d k \operatorname{tr} \left[G^{-1}\partial_{\alpha_0}GG^{-1}\partial_{\alpha_1}G\ldots G^{-1}\partial_{\alpha_d}G\right]$

space dimension	1	2	3	4	5	6	7	8	
Class A (no symmetry)		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}	
Class AI (time reversal)				\mathbb{Z}				\mathbb{Z}	
Class All (time reversal with spin-1/2)				\mathbb{Z}				\mathbb{Z}	

Consequence: no topological band structure for time reversal invariant systems in 2D. This is not quite true, however - there is a different topological invariant we haven't yet looked at.

Sunday, August 19, 12

Only particle-hole is present

These are classes D, C

 $U_{C}^{\dagger}\mathcal{H}^{*}U_{C} = -\mathcal{H}$ $G = [i\omega - \mathcal{H}]^{-1} \qquad \longrightarrow \qquad U_{C}^{\dagger}G^{T}(\omega)U_{C} = -G(-\omega)$

Applying the symmetry to G, we can show that the invariant is identically zero if d = 4n

 $N_d = -\frac{\left(\frac{\alpha}{2}\right)!}{(2\pi i)^{\frac{d}{2}+1}(d+1)!} \sum_{\alpha_0\alpha_1\dots\alpha_d} \epsilon_{\alpha_0\alpha_1\dots\alpha_d} \int d\omega d^d k \operatorname{tr} \left[G^{-1}\partial_{\alpha_0}GG^{-1}\partial_{\alpha_1}G\dots G^{-1}\partial_{\alpha_d}G\right]$

space dimension	1	2	3	4	5	6	7	8	
Class A (no symmetry)		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}	
Class D (p-h, $U_C U_C^* = 1$)		\mathbb{Z}				\mathbb{Z}			
Class C (p-h, $U_C U_C^* = -1$)		\mathbb{Z}				\mathbb{Z}			

The origin of p-h symmetry

BCS superconductor

$$\begin{split} \hat{H} &= \sum_{ij} \left[2h_{ij} \hat{a}_i^{\dagger} \hat{a}_j + \Delta_{ij} \hat{a}_i^{\dagger} \hat{a}_j^{\dagger} + \Delta_{ij}^{\dagger} \hat{a}_i \hat{a}_j \right] = \sum_{ij} \left(\hat{a}_i^{\dagger} \quad \hat{a}_i \right) \begin{pmatrix} h_{ij} \quad \Delta_{ij} \\ \Delta_{ij}^{\dagger} & -h_{ij}^T \end{pmatrix} \begin{pmatrix} \hat{a}_i \\ \hat{a}_j^{\dagger} \end{pmatrix} \\ \mathcal{H} &= \begin{pmatrix} h_{ij} \quad \Delta_{ij} \\ \Delta_{ij}^{\dagger} & -h_{ij}^T \end{pmatrix} \qquad \sigma_x \mathcal{H}^* \sigma_x = -\mathcal{H} \qquad \begin{array}{c} U_C \equiv \sigma_x \\ U_C \equiv \sigma_x \\ \text{This is class D} \end{array}$$

This describes Bogoliubov quasiparticles

Famous example: $p_x+i p_y$ spin-polarized superconductor (important: it breaks time reversal)

$$\mathcal{H} = \begin{pmatrix} \frac{p^2}{2m} - \mu & \Delta(p_x + ip_y) \\ \Delta(p_x - ip_y) & -\frac{p^2}{2m} + \mu \end{pmatrix} \qquad N_2 = 1$$
$$E_p = \pm \sqrt{\left(\frac{p^2}{2m} - \mu\right)^2 + \Delta^2 p^2}$$

$$\mathcal{H} = \sum_{\mu} n_{\mu} \sigma^{\mu} \qquad N_2 = \frac{1}{8\pi} \sum_{\alpha\beta\gamma} \sum_{\mu\nu} \epsilon_{\mu\nu\gamma} \epsilon_{\alpha\beta} \int d^2p \, \frac{n^{\mu} \partial_{\alpha} n^{\nu} \partial_{\beta} n^{\gamma}}{n^3}$$

This superconductor has edge states, just like a particle in a magnetic field

Sunday, August 19, 12

 $\Delta = -\Delta^T \ h = h^{\dagger}$

The origin of p-h symmetry

BCS superconductor

$$\begin{split} \hat{H} &= \sum_{ij} \begin{bmatrix} 2h_{ij}\hat{a}_{i}^{\dagger}\hat{a}_{j} + \Delta_{ij}\hat{a}_{i}^{\dagger}\hat{a}_{j}^{\dagger} + \Delta_{ij}^{\dagger}\hat{a}_{i}\hat{a}_{j} \end{bmatrix} = \sum_{ij} \begin{pmatrix} \hat{a}_{i}^{\dagger} & \hat{a}_{i} \end{pmatrix} \begin{pmatrix} h_{ij} & \Delta_{ij} \\ \Delta_{ij}^{\dagger} & -h_{ij}^{T} \end{pmatrix} \begin{pmatrix} \hat{a}_{i} \\ \hat{a}_{j}^{\dagger} \end{pmatrix} \\ \mathcal{H} &= \begin{pmatrix} h_{ij} & \Delta_{ij} \\ \Delta_{ij}^{\dagger} & -h_{ij}^{T} \end{pmatrix} \qquad \sigma_{x}\mathcal{H}^{*}\sigma_{x} = -\mathcal{H} \qquad \begin{array}{c} U_{C} \equiv \sigma_{x} \\ U_{C} \equiv \sigma_{x} \\ \text{This is class D} \end{array}$$

This describes Bogoliubov quasiparticles

Famous example: $p_x+i p_y$ spin-polarized superconductor (important: it breaks time reversal)

$$\mathcal{H} = \begin{pmatrix} \frac{p^2}{2m} - \mu & \Delta(p_x + ip_y) \\ \Delta(p_x - ip_y) & -\frac{p^2}{2m} + \mu \end{pmatrix} \qquad N_2 = 1$$
$$E_p = \pm \sqrt{\left(\frac{p^2}{2m} - \mu\right)^2 + \Delta^2 p^2}$$

$$\mathcal{H} = \sum_{\mu} n_{\mu} \sigma^{\mu} \qquad N_2 = \frac{1}{8\pi} \sum_{\alpha\beta\gamma} \sum_{\mu\nu} \epsilon_{\mu\nu\gamma} \epsilon_{\alpha\beta} \int d^2p \, \frac{n^{\mu} \partial_{\alpha} n^{\nu} \partial_{\beta} n^{\gamma}}{n^3}$$

 $\Delta = -\Delta^T \ h = h^{\dagger}$

This superconductor has edge states, just like a particle in a magnetic field

Sunday, August 19, 12

Class C

BCS spin-singlet superconductor

$$\begin{split} \Delta &= \Delta^T \qquad h = h^{\uparrow} \\ \hat{H} = \sum_{ij} \left[\sum_{\sigma=\uparrow,\downarrow} 2h_{ij} \hat{a}_{i\sigma}^{\dagger} \hat{a}_{j\sigma} + \Delta_{ij} (\hat{a}_{i\uparrow}^{\dagger} \hat{a}_{j,\downarrow}^{\dagger} - \hat{a}_{i,\downarrow}^{\dagger} \hat{a}_{j\uparrow}^{\dagger}) + \Delta_{ij}^{\dagger} (\hat{a}_{i,\downarrow} \hat{a}_{j,\uparrow} - \hat{a}_{j,\downarrow} \hat{a}_{i,\uparrow}) \right] \\ &= 2 \sum_{ij} \left(\hat{a}_{i,\uparrow}^{\dagger} \quad \hat{a}_{j,\downarrow} \right) \begin{pmatrix} h_{ij} \quad \Delta_{ij} \\ \Delta_{ij}^{\dagger} & -h_{ij}^{T} \end{pmatrix} \begin{pmatrix} \hat{a}_{j,\uparrow} \\ \hat{a}_{j,\downarrow}^{\dagger} \end{pmatrix} \\ \mathcal{H} = \begin{pmatrix} h_{ij} \quad \Delta_{ij} \\ \Delta_{ij}^{\dagger} & -h_{ij}^{T} \end{pmatrix} \qquad \sigma_{y} \mathcal{H}^{*} \sigma_{y} = -\mathcal{H} \qquad U_{C} = \sigma_{y} \end{split}$$

$$U_C U_C^* = -1$$

Example: d-wave superconductor with the order parameter $d_{x^2-y^2} + i d_{xy}$

Classes with both TR and PH

Automatically have chiral symmetry. Topological invariant in odd dimensional space.

$$N_d = -\frac{\left(\frac{d-1}{2}\right)!}{(2\pi i)^{\frac{d+1}{2}}d!} \sum_{\alpha_1...\alpha_d} \epsilon_{\alpha_1...\alpha_d} \int d^d k \operatorname{tr} \left[V^{-1} \partial_{\alpha_1} V \dots V^{-1} \partial_{\alpha_d} V \right]$$

$$N_d = -\frac{1}{2} \frac{\left(\frac{d-1}{2}\right)!}{(2\pi i)^{\frac{d+1}{2}} d!} \sum_{\alpha_1 \dots \alpha_d} \int d^d k \operatorname{tr} \left[\Sigma \mathcal{H}^{-1} \partial_{\alpha_1} \mathcal{H} \dots \mathcal{H}^{-1} \partial_{\alpha_d} \mathcal{H} \right]$$

 $U_C U_C^* = \epsilon_C \qquad \qquad U_T U_T^* = \epsilon_T$

$$N_d = 0 \quad \text{if} \qquad \begin{array}{l} \epsilon_C \epsilon_T = 1 \\ \epsilon_C \epsilon_T = -1 \end{array} \quad \begin{array}{l} d = 3 + 4n \\ d = 1 + 4n \end{array}$$

$$U_T U_T^* = -1$$
$$U_C U_C^* = 1$$

	-		-
Cartan label	Т	С	S
A (unitary)	0	0	0
AI (orthogonal)	+1	0	0
AII (symplectic)	-1	0	0
AIII (ch. unit.)	0	0	1
BDI (ch. orth.)	+1	+1	1
CII (ch. sympl.)	-1	-1	1
D (BdG)	0	+1	0
C (BdG)	0	-1	0
DIII (BdG)	-1	+1	1
CI (BdG)	+1	-1	1

$$U_T U_T^* = -1$$
$$U_C U_C^* = 1$$

1. can be a superconductor

-		-
Т	С	S
0	0	0
+1	0	0
-1	0	0
0	0	1
+1	+1	1
-1	-1	1
0	+1	0
0	-1	0
-1	+1	1
+1	-1	1
	$\begin{array}{c} T \\ 0 \\ +1 \\ -1 \\ 0 \\ +1 \\ -1 \\ 0 \\ 0 \\ -1 \\ +1 \end{array}$	$\begin{array}{ccc} T & C \\ 0 & 0 \\ +1 & 0 \\ -1 & 0 \\ 0 & 0 \\ +1 & +1 \\ -1 & -1 \\ 0 & +1 \\ 0 & +1 \\ 0 & -1 \\ -1 & +1 \\ +1 & -1 \end{array}$

$$U_T U_T^* = -1$$
$$U_C U_C^* = 1$$

 can be a superconductor
 has to be a spin-triplet (p-wave) superconductor

^	-		-
Cartan label	Т	С	S
A (unitary)	0	0	0
AI (orthogonal)	+1	0	0
AII (symplectic)	-1	0	0
AIII (ch. unit.)	0	0	1
BDI (ch. orth.)	+1	+1	1
CII (ch. sympl.)	-1	-1	1
D (BdG)	0	+1	0
C (BdG)	0	-1	0
DIII (BdG)	-1	+1	1
CI (BdG)	+1	-1	1

 $U_T U_T^* = -1$ $U_C U_C^* = 1$

- 1. can be a superconductor
- 2. has to be a spin-triplet (p-wave) superconductor
- 3. has to have spin-orbit coupling

	-		-
Cartan label	Т	С	S
A (unitary)	0	0	0
AI (orthogonal)	+1	0	0
AII (symplectic)	-1	0	0
AIII (ch. unit.)	0	0	1
BDI (ch. orth.)	+1	+1	1
CII (ch. sympl.)	-1	-1	1
D (BdG)	0	+1	0
C (BdG)	0	-1	0
DIII (BdG)	-1	+1	1
CI (BdG)	+1	-1	1

$$U_T U_T^* = -1$$
$$U_C U_C^* = 1$$

- 1. can be a superconductor
- 2. has to be a spin-triplet (p-wave) superconductor
- 3. has to have spin-orbit coupling

This is ³He phase B.

$$\begin{split} \hat{H} &= \sum_{p,\alpha=\uparrow,\downarrow} \left(\frac{p^2}{2m} - \mu \right) \hat{a}_{p\alpha}^{\dagger} \hat{a}_{p\alpha} + \Delta \sum_{p,\alpha,\beta,\gamma} p_{\mu} \sigma_{\alpha\beta}^{y} \sigma_{\beta\gamma}^{\mu} \hat{a}_{p\alpha} \hat{a}_{-p\gamma} + \Delta \sum_{p,\alpha,\beta,\gamma} p_{\mu} \sigma_{\alpha\beta}^{\mu} \sigma_{\beta\gamma}^{y} \hat{a}_{-p\alpha}^{\dagger} \hat{a}_{p\gamma}^{\dagger} \\ \mathcal{H} &= \begin{pmatrix} \frac{1}{2} \left(\frac{p^2}{2m} - \mu \right) \delta_{\alpha\beta} & \Delta \sum_{\gamma\mu} p_{\mu} \sigma_{\alpha\gamma}^{\mu} \sigma_{\gamma\beta}^{y} \\ \Delta \sum_{\gamma\mu} p_{\mu} \sigma_{\alpha\gamma}^{y} \sigma_{\gamma\beta}^{\mu} & -\frac{1}{2} \left(\frac{p^2}{2m} - \mu \right) \delta_{\alpha\beta} \end{pmatrix} \end{split}$$
this must be chirally symmetric.
Its invariant is $N_3 = 1$.
³He is topological and has edge states (discovered only in ~2008 by Ludwig et al)

Cartan label	Т	С	S
A (unitary)	0	0	0
AI (orthogonal)	+1	0	0
AII (symplectic)	-1	0	0
AIII (ch. unit.)	0	0	1
BDI (ch. orth.)	+1	+1	1
CII (ch. sympl.)	-1	-1	1
D (BdG)	0	+1	0
C (BdG)	0	-1	0
DIII (BdG)	-1	+1	1
CI (BdG)	+1	-1	1

Example: Class Cl

 $U_T U_T^* = 1$ Spin-singlet time-reversal invariant $U_C U_C^* = -1$ superconductor

This is a conventional s-wave spin-singlet superconductor.

Can be topological in 3D

Conventional superconductors are not topological, but an example of a 3D CI topological superconductor is known (Ludwig et al)

Table from Ryu, Schnyder, Furusaki, Ludwig, 2010

							d sp	bace	dimer	nsiona	ality		
Cartan	0	1	2	3	4	5	6	7	8	9	10	11	••
Complex case:				14			8	SH	INE	12	2		
А	\mathbb{Z}	0	••										
AIII	0	\mathbb{Z}	••										
Real case:													
AI	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	••
BDI	\mathbb{Z}_2	\mathbb{Z}	0	0	0	2ℤ	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	••
D	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	••
DIII	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	••
AII	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	••
CII	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	2ℤ	0	\mathbb{Z}_2	••
С	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	••
CI	0	0	0	2ℤ	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	••
nmetry asses									Kita	aev, 2	009; or Eur		00

Table from Ryu, Schnyder, Furusaki, Ludwig, 2010

			d space dimensionality											
	Cartan	0	1	2	3	4	5	6	7	8	9	10	11	•••
	Complex case:							2	SH	INE		~		
IOHE .	А	7	-0>	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	• • •
	AIII	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	
	Real case:													
	AI	\mathbb{Z}	0	0	0	2ℤ	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	
	BDI	\mathbb{Z}_2	\mathbb{Z}	0	0	0	2ℤ	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	
	D	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	• • •
	DIII	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	
	AII	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	• • •
	CII	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	
	С	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	
	CI	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	•••
syr cl	nmetry asses						Į	_udwi	g, Ry	Kita u, Sc	aev, 20 hnyde	009; er, Fur	usaki	, 2009

Table from Ryu, Schnyder, Furusaki, Ludwig, 2010

					-//	2		d sp	bace (dimer	nsiona	ality		
	Cartan	0	1	2	3	4	5	6	7	8	9	10	11	
	Complex case:							2	SH	INE		~		
IOHE .	A	7	_0→	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	
	AIII	0	\mathbb{Z}	0	\mathbb{Z}	•••								
Su,	Real case:													
Heener	AI	\mathbb{Z}	0	0	0	2ℤ	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	
ricegei	BDI	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	
	D	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	
	DIII	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	
	AII	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	• • •
	CII	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	•••
	С	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	•••
	CI	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	• • •
syr cl	nmetry asses						Ĺ	_udwi	g, Ry	Kita u, Scl	aev, 20 hnyde	009; er, Fur	usaki	, 2009

Table from Ryu, Schnyder, Furusaki, Ludwig, 2010

					-//	2~1		d sp	bace	dimer	nsiona	lity		
	Cartan	0	1	2	3	4	5	6	7	8	9	10	11	
	Complex case:				14			8	SH	INE	12			
	А	\mathbb{Z}	<u>_</u>	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	•••
	AIII	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	•••
Su, Schrieffer.	Real case.													
Heeger	AI	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	• • •
	BDI	\mathbb{Z}_2	\mathbb{Z}	0	0	0	2ℤ	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	•••
	D	\mathbb{Z}_2	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	2ℤ	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	
2D p-wave	DIII	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	•••
supercond	AII	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	• • •
uctor	CII	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	•••
	С	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	• • •
	CI	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	•••
syn cla						Ĺ	_udwi	g, Ry	Kita u, Sc	aev, 20 hnyde	009; er, Fur	usaki	, 2009	

Table from Ryu, Schnyder, Furusaki, Ludwig, 2010

					- //	2		d sp	bace	dimer	nsiona	lity		
	Cartan	0	1	2	3	4	5	6	7	8	9	10	11	•••
	Complex case:				14			8	SH	INE	12	~		
	А	\mathbb{Z}	<u>_</u>	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	•••
	AIII	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	
Su, Schrieffer.	Real case:													
Heeger	Al	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	•••
	BDI	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	• • •
	D	\mathbb{Z}_2	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	2ℤ	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	
2D p-wave	DIII	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	•••
supercond	AII	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	• • •
uctor	CII	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	• • •
	С	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	• • •
	CI	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	
symmetry classes			^з Не,	/ , phas	se B		Ĺ	_udwi	g, Ry	Kita u, Sc	aev, 20 hnyde	009; er, Fur	usaki	, 2009

Table from Ryu, Schnyder, Furusaki, Ludwig, 2010

					-//	2~1		d sp	bace (dimer	nsiona	lity		
	Cartan	0	1	2	3	4	5	6	7	8	9	10	11	•••
	Complex case:							8	SH	INE	12			
	А	\mathbb{Z}	<u>_</u> + →	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	•••
	AIII	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	
Su, Schrieffer.	Real case:													
Heeaer	AI	\mathbb{Z}	0	0	0	2ℤ	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	• • •
10090	BDI	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	• • •
	D	\mathbb{Z}_2	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	
2D p-wave	DIII	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	
supercond	AII	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	
uctor	CII	0	$2\mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	
	С	0	0	$2\mathbb{Z}$	$\sqrt{0}$	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	• • •
	CI	0	0	0	22	\mathbf{n}^{0}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	
symmetry classes		New Kane-Mele topological insulators ³ He, phase B Kitaev, 2009; Ludwig, Ryu, Schnyder, Furusaki, 2009												

New crucial feature - Z₂ invariant

Take class All: time reversal invariance with spin-1/2 (with spin-orbit coupling)

$$U_T^{\dagger} G^T(\omega, -\mathbf{k}) U^T = G(\omega, \mathbf{k})$$

In 4D it can be topological

Its 3D boundary has gapless excitations. These generally form a Fermi spheres.

Declare q "unphysical" and reduce dimensions to 3D insulator with 2D boundary

$$G_{\text{phys}}(\omega, p_x, p_y) = \left. G(\omega, p_x, p_y, q) \right|_{q=0}$$

If the number of Fermi spheres was odd, the physical 3D insulator has gapless excitations. Otherwise, it does not.

							d sp	bace	dimer	nsiona	ality		
Cartan	0	1	2	3	4	5	6	7	8	9	10	11	••
Complex case:				14			8	SH	INE	12	2		
А	\mathbb{Z}	0											
AIII	0	\mathbb{Z}											
Real case:													
AI	\mathbb{Z}	0	0	0	2ℤ	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	• • •
BDI	\mathbb{Z}_2	\mathbb{Z}	0	0	0	2ℤ	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	
D	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	• • •
DIII	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	
AII	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	
CII	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	2ℤ	0	\mathbb{Z}_2	• • •
С	0	0	$2\mathbb{Z}$	$\searrow 0$	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	• • •
CI	0	0	0	22	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	• • •
nmetry asses				Ne	w Kar	ne-Me	ele top	ologi	cal in:	sulato	ors		

Edge excitations

Take nonchiral insulator in d-dimensions (d even) It has a d-1 dimensional edge with gapless excitations

$$n_{\alpha_0} = -\frac{\left(\frac{d}{2}-1\right)!}{(2\pi i)^{\frac{d}{2}}(d-1)!} \sum_{\alpha_1...\alpha_{d-1}} \epsilon_{\alpha_0\alpha_1...\alpha_{d-1}} \int d\omega d^{d-2}k \operatorname{tr} \left[G^{-1}\partial_{\alpha_1}GG^{-1}\partial_{\alpha_2}G\ldots G^{-1}\partial_{\alpha_{d-1}}G\right]$$

Here **\alpha** go over $\omega, k_1, \ldots, k_{d-1}$

 $\sum_{\alpha} \partial_{\alpha} n_{\alpha} = 0 \quad \text{except where G is singular or where there are zero-energy excitations}$

this integral must be equal to the bulk topological invariant of the insulator

$$N_d = \oint ds^\alpha n_\alpha$$

similarly for d odd and chiral insulators

Example: quantum hall edge

$$\oint ds^{\alpha} n_{\alpha} = N_0(\Lambda) - N_0(-\Lambda)$$

$$N_0(k) = \operatorname{tr} \int \frac{d\omega}{2\pi i} G^{-1} \partial_{\omega} G = \sum_n \int \frac{d\omega}{2\pi i} \partial_{\omega} \ln\left(\frac{1}{i\omega - \epsilon_n(k)}\right) = \frac{1}{2} \sum_n \operatorname{sign} \epsilon_n(k)$$

$$-\overline{\Lambda}$$
chiral edge state
$$\overline{\Lambda} k$$

Example: an edge of a 3D DIII insulator

This is ³He

$$\mathcal{H} = \sigma^x k_x + \sigma^y k_y$$

$$\sigma_x \mathcal{H}^*(-k)\sigma_x = -\mathcal{H}(k) \quad \text{p.h.}$$

$$\sigma_y \mathcal{H}^*(-k)\sigma_y = \mathcal{H}(k) \quad \text{t.r.}$$

$$\sigma_z \mathcal{H}(k)\sigma_z = \mathcal{H}(k) \quad \text{chiral}$$

$$\int \sum_{\alpha=x,y} ds^{\alpha} n_{\alpha} = 1.$$

Example: an edge of a 3D DIII insulator

This is ³He

$$\mathcal{H} = \sigma^x k_x + \sigma^y k_y$$

$$\begin{split} \sigma_x \mathcal{H}^*(-k) \sigma_x &= -\mathcal{H}(k) \quad \text{p.h.} \\ \sigma_y \mathcal{H}^*(-k) \sigma_y &= \mathcal{H}(k) \quad \text{t.r.} \\ \sigma_z \mathcal{H}(k) \sigma_z &= \mathcal{H}(k) \quad \text{chiral} \end{split}$$

$$\int \sum_{\alpha=x,y} ds^{\alpha} n_{\alpha} = 1.$$

$$\mathcal{H} = \begin{pmatrix} 0 & k_x - ik_y \\ k_x + ik_y & 0 \end{pmatrix} \qquad \int ds^{\alpha} n_{\alpha} = \frac{1}{2\pi i} \oint dk^{\mu} \partial_{k_{\mu}} \ln \left(k_x - ik_y \right)$$
$$V = k_x - ik_y$$

Literature states that its 2D

edge is a Dirac fermion theory

$$H = v\left(\sigma_x p_x + \sigma_y p_y\right) - \mu$$

because it is

1. linear in momenta

2. time-reversal invariant

$$H(p) = \sigma_y H^*(-p)\sigma_y$$

But does it have the right edge invariant?

Literature states that its 2D

edge is a Dirac fermion theory

$$H = v\left(\sigma_x p_x + \sigma_y p_y\right) - \mu$$

because it is

1. linear in momenta

2. time-reversal invariant

 $H(p) = \sigma_y H^*(-p)\sigma_y$

But does it have the right edge invariant?

Enlarge dimensions to 4D (3D edge) $H = v \left(\sigma_x p_x + \sigma_y p_y + \sigma_z q \right) - \mu$

Literature states that its 2D edge is a Dirac fermion theory

$$H = v\left(\sigma_x p_x + \sigma_y p_y\right) - \mu$$

because it is

1. linear in momenta 2. time-reversal invariant $H(p) = \sigma_u H^*(-p)\sigma_u$

But does it have the right edge invariant?

Enlarge dimensions to 4D (3D edge) $H = v \left(\sigma_x p_x + \sigma_y p_y + \sigma_z q\right) - \mu$ Fix q=+ Λ or q=- Λ

 $H = v\sigma_x p_x + v\sigma_y p_y \pm v\Lambda\sigma_z - \mu$ Effectively 2D.

Literature states that its 2D edge is a Dirac fermion theory

$$H = v\left(\sigma_x p_x + \sigma_y p_y\right) - \mu$$

because it is

1. linear in momenta 2. time-reversal invariant $H(p) = \sigma_u H^*(-p)\sigma_u$

But does it have the right edge invariant?

Enlarge dimensions to 4D (3D edge) $H = v \left(\sigma_x p_x + \sigma_y p_y + \sigma_z q\right) - \mu$ Fix q=+ Λ or q=- Λ

 $N_2(\Lambda) - N_2(-\Lambda) = 1$ Well known relation LFSG, 1994 in this context.

Literature states that its 2D edge is a Dirac fermion theory

$$H = v\left(\sigma_x p_x + \sigma_y p_y\right) - \mu$$

because it is

1. linear in momenta 2. time-reversal invariant $H(p) = \sigma_u H^*(-p)\sigma_u$

But does it have the right edge invariant?

Enlarge dimensions to 4D (3D edge) $H = v \left(\sigma_x p_x + \sigma_y p_y + \sigma_z q\right) - \mu$ Fix q=+A or q=-A

$$H = v\sigma_x p_x + v\sigma_y p_y \pm v\Lambda\sigma_z - \mu$$
 Effectively 2D.

 $N_2(\Lambda) - N_2(-\Lambda) = 1$ Well known relation LFSG, 1994 in this context.

Yes, it does have the right edge invariant.

Disorder

Old idea of Thouless, Wu, Niu: impose phases across the system

$$egin{aligned} & G_{ij}(\omega, heta_x, heta_y\dots) \ & N_d = C_d \, \epsilon_{lpha_0\dotslpha_d} \, \mathrm{tr} \, \int d\omega d^d heta \, G^{-1} \partial_{lpha_0} G \dots G^{-1} \partial_{lpha_d} G \ & \mathrm{Summation} \, \mathrm{over} \, \mathrm{each} \, lpha = \omega, heta_1, \dots, heta_d \, \mathrm{is} \, \mathrm{implied} \end{aligned}$$

It follows that an edge of a topological insulator does not localize in the presence of disorder

Disorder

Old idea of Thouless, Wu, Niu: impose phases across the system

 θ_y

This edge level must be delocalized

$$N_0(\Lambda) - N_0(-\Lambda) = 1$$

It follows that an edge of a topological insulator does not localize in the presence of disorder

Sigma models with "topological" terms

Describe lack of localization at the boundary of an insulator

$$S \sim \sigma \int d^{\bar{d}} x \left(\partial_{\mu} Q\right)^2 + \text{topological term}$$

Topological term = either WZW term or " Z_2 " term.

Can be added if either $\pi_{\bar{d}}(T) = \mathbb{Z}_2$ or $\pi_{\bar{d}+1}(T) = \mathbb{Z}$ $\overline{d} = d-1$

It is believed that these sigma models with topological terms result in the absence of localization

Cartan label	Time evolution operator exp{itH}	Fermionic replica $NL\sigma M$ target space		10 classes of sigma models
A AIII	$\frac{U(N) \times U(N)/U(N)}{U(N + M)/U(N) \times U(M)}$	$\frac{U(2n)/U(n) \times U(n)}{U(n) \times U(n)/U(n)}$	Fron Furus	first derived by Altland & Zirnbauer to describe localization
AI BDI	$\frac{U(N)}{O(N)} = \frac{U(N)}{O(N)} \times O(M)$	$Sp(2n)/Sp(n) \times Sp(n)$ U(2n)/Sp(2n)	n: Ryu, saki, Lu	properties
D DIII	$O(N) \times O(N)/O(N)$ SO(2N)/U(N)	O(2n)/U(n) $O(n) \times O(n)/O(n)$ O(2n)/O(n)	Schny Idwig,	Justifies 10 symmetry
CII	O(2N)/Sp(2N) $Sp(N + M)/Sp(N) \times Sp(M)$ $Sp(2N) \times Sp(2N)/Sp(2N)$	$\frac{(N-1)}{(N-1)} = \frac{(N-1)}{(N-1)} = \frac{(N-1)}{($		classes of topological insulators
CI	$Sp(2N) \times Sp(2N)/Sp(2N)$ Sp(2N)/U(N)	Sp(2n)/O(n) $Sp(2n) \times Sp(2n)/Sp(2n)$		