Classification

of
 Topological Insulators

Victor Gurarie

Windsor, August 2012

Classes of topologically distinct Hamiltonians

Two matrices are topologically equivalent if one can be deformed into another without any of its energy levels ever becoming equal to 0 .

Application of topological classes

$\hat{H}=\sum \mathcal{H}_{i j} \hat{a}_{i}^{\dagger} \hat{a}_{j}$ fill negative energy levels with fermions
negative = below the chemical potentia

Topological invariants

Mathematical expressions which take integer values and change only if \mathcal{H} acquires a zero eigenvalue (acquires zero energy)

For example: $\quad N_{0}=\#$ of levels below zero
very simple topological invariant

But there are many more less trivial invariants (more on that later)

Example: particle in 2D in a magnetic field

$$
\hat{H}=t \sum_{n_{x}, n_{y}}\left[\hat{a}_{n_{x}+1, n_{y}}^{\dagger} \hat{a}_{n_{x}, n_{y}}+e^{2 \pi i q n_{x}} \hat{a}_{n_{x}, n_{y}+1}^{\dagger} \hat{a}_{n_{x}, n_{y}}+\mathrm{h.c.}\right]-\mu \sum_{n_{x}, n_{y}} \hat{a}_{n_{x}, n_{y}}^{\dagger} \hat{a}_{n_{x}, n_{y}}
$$

The spectrum consists of $1 / q$-bands (or "Landau levels")

$$
E_{n}\left(k_{x}, k_{y}\right)
$$

It is not possible to change the number of bands below 0 by smoothly changing the Hamiltonian (including by changing μ) without tuning through a point with zero energy single-particle states
(Thouless et al, 1982)

$$
\begin{aligned}
& u\left(k_{x}, k_{y} ; \vec{r}\right) \text { Bloch waves } \\
& \sigma_{x y}=\frac{i e^{2}}{2 \pi h} \int d^{2} k \int d^{2} r\left(\frac{\partial u^{*}}{\partial k_{x}} \frac{\partial u}{\partial k_{y}}-\frac{\partial u^{*}}{\partial k_{y}} \frac{\partial u}{\partial k_{x}}\right) \\
& \text { topological invariant (Chern number) }
\end{aligned}
$$

Chern number in terms of Green's functions

$$
G_{n_{x}, n_{y}}=[i \omega-\mathcal{H}]^{-1}
$$

$$
G_{a b \in \text { the basis }}\left(k_{x}, k_{y}\right)=\sum_{n_{x}, n_{y} \in \text { Bravais lattice }} e^{-i\left(n_{x} k_{x}+n_{y} k_{y}\right)} G\left(n_{x}, n_{y}\right)
$$

Chern number (an alternative form)

$$
\begin{aligned}
N_{2}= & \frac{1}{24 \pi^{2}} \sum_{\substack{\alpha \beta \gamma \\
\alpha, \beta, \gamma \text { take values } \omega, \mathrm{k}_{\mathrm{k},}, \mathrm{ky}}} \epsilon_{\alpha \beta \gamma} \int d \omega d k_{x} d k_{y} \operatorname{tr}\left[G^{-1} \partial_{\alpha} G G^{-1} \partial_{\beta} G G^{-1} \partial_{\gamma} G\right]
\end{aligned}
$$

$$
G \rightarrow G+\delta G \longrightarrow \delta N_{2}=0
$$

The only way to change N_{2} is by making G singular. That requires \mathcal{H} to have zero energy eigenvalues.

Edge states

Periodic boundary conditions in the y-direction

Particle hopping on a lattice with
$2 \pi / 3$ magnetic flux through each plaquette

Edge states

Hard wall boundary conditions in the y-direction

Particle hopping on a lattice with
$2 \pi / 3$ magnetic flux through each plaquette

Edge states as a result of topology

Zero energy states must live in the boundary

$$
\begin{gathered}
\psi(x, y) \sim e^{-\frac{|x|}{\ell}} e^{i k_{y} y} \\
E\left(k_{y}\right) \sim k_{y}-k_{0}
\end{gathered}
$$

Other topological classes?

For a long time 2D particle in a magnetic field was considered to be the only example of topological classes of single-particle Hamiltonians

Generalizations to 4D, 6D, generally even d, was known, however

$$
\begin{aligned}
& N_{d}=-\frac{\left(\frac{d}{2}\right)!}{(2 \pi i)^{\frac{d}{2}+1}(d+1)!} \sum_{\alpha_{0} \alpha_{1} \ldots \alpha_{d}} \epsilon_{\alpha_{0} \alpha_{1} \ldots \alpha_{d}} \int d \omega d^{d} k \operatorname{tr}\left[G^{-1} \partial_{\alpha_{0}} G G^{-1} \partial_{\alpha_{1}} G \ldots G^{-1} \partial_{\alpha_{d}} G\right] \\
& d \text { must be even } \quad \text { all } \alpha \text { take values } \omega, \mathrm{k}_{1}, \mathrm{k}_{2}, \ldots, \mathrm{k}_{\mathrm{d}}
\end{aligned}
$$

existence of this topological invariant reflects the homotopy class $\pi_{d+1}(G L(\mathcal{N}, \mathbb{C})=\mathbb{Z}$
if d is even

Topological classes in high dimensions - perhaps not very physical
Fortunately, it turns out these are not the only topological insulators

Chiral systems

What if we have Hamiltonians with a special symmetry

$$
\text { It follows } \quad \Sigma^{2}=1
$$

$$
\begin{gathered}
\Sigma \mathcal{H} \Sigma^{\dagger}=-\mathcal{H} \\
\Sigma \Sigma^{\dagger}=1
\end{gathered}
$$

Example: systems with sublattice symmetry with

$$
\Sigma_{n, n^{\prime}}=(-1)^{n} \delta_{n n^{\prime}}
$$

$$
\hat{H}=\sum_{n}\left[t_{1} \hat{a}_{2 n+1}^{\dagger} \hat{a}_{2 n}+t_{2} \hat{a}_{2 n+2}^{\dagger} \hat{a}_{2 n+1}+\text { h.c. }\right]=\sum_{n_{1}, n_{2}} \mathcal{H}_{n_{1} n_{2}} \hat{a}_{n_{1}}^{\dagger} \hat{a}_{n_{2}}
$$

$$
E(k)= \pm \sqrt{t_{1}^{2}+t_{2}^{2}+2 t_{1} t_{2} \cos (k)} E(k) \quad \mathcal{H}=\left(\begin{array}{cccccc}
0 & t_{1} & 0 & \ldots & 0 & 0 \\
t_{1} & 0 & t_{2} & \ldots & 0 & 0 \\
0 & t_{2} & 0 & \ldots & 0 & 0 \\
0 & 0 & t_{1} & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & 0 & t_{1} \\
0 & 0 & 0 & \ldots & t_{1} & 0
\end{array}\right)
$$

Topological invariant for chiral systems

$$
\Sigma=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad \mathcal{H}=\left(\begin{array}{cc}
0 & V \\
V^{\dagger} & 0
\end{array}\right) \quad \text { basis }\binom{\hat{a}_{\text {odd }}}{\hat{a}_{\text {even }}}
$$

General topological invariant
But here d is odd
$N_{d}=-\frac{\left(\frac{d-1}{2}\right)!}{(2 \pi i)^{\frac{d+1}{2}} d!} \sum_{\alpha_{1} \ldots \alpha_{d}} \epsilon_{\alpha_{1} \ldots \alpha_{d}} \int d^{d} k \operatorname{tr}\left[V^{-1} \partial_{\alpha_{1}} V \ldots V^{-1} \partial_{\alpha_{d}} V\right]$

Topological invariant for chiral systems

$$
\Sigma=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad \mathcal{H}=\left(\begin{array}{cc}
0 & V \\
V^{\dagger} & 0
\end{array}\right) \quad \text { basis }\binom{\hat{a}_{\text {odd }}}{\hat{a}_{\text {even }}}
$$

General topological invariant
But here d is odd

$$
N_{d}=-\frac{\left(\frac{d-1}{2}\right)!}{(2 \pi i)^{\frac{d+1}{2}} d!} \sum_{\alpha_{1} \ldots \alpha_{d}} \epsilon_{\alpha_{1} \ldots \alpha_{d}} \int d^{d} k \operatorname{tr}\left[V^{-1} \partial_{\alpha_{1}} V \ldots V^{-1} \partial_{\alpha_{d}} V\right]
$$

Example: $d=1$

$$
\mathcal{H}=\left(\begin{array}{cc}
0 & t_{1}+t_{2} e^{i k} \\
t_{1}+t_{2} e^{-i k} & 0
\end{array}\right)
$$

With some algebra, one can show
$N_{1}=\int_{-\pi}^{\pi} \frac{d k}{2 \pi i} \partial_{k} \ln \left(t_{1}+t_{2} e^{i k}\right)$

Topological invariant for chiral systems

$$
\Sigma=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad \mathcal{H}=\left(\begin{array}{cc}
0 & V \\
V^{\dagger} & 0
\end{array}\right) \quad \text { basis }\binom{\hat{a}_{\text {odd }}}{\hat{a}_{\text {even }}}
$$

General topological invariant
But here d is odd

$$
N_{d}=-\frac{\left(\frac{d-1}{2}\right)!}{(2 \pi i)^{\frac{d+1}{2}} d!} \sum_{\alpha_{1} \ldots \alpha_{d}} \epsilon_{\alpha_{1} \ldots \alpha_{d}} \int d^{d} k \operatorname{tr}\left[V^{-1} \partial_{\alpha_{1}} V \ldots V^{-1} \partial_{\alpha_{d}} V\right]
$$

Example: $d=1$

$$
\mathcal{H}=\left(\begin{array}{cc}
0 & t_{1}+t_{2} e^{i k} \\
t_{1}+t_{2} e^{-i k} & 0
\end{array}\right)
$$

With some algebra, one can show
$N_{1}=\int_{-\pi}^{\pi} \frac{d k}{2 \pi i} \partial_{k} \ln \left(t_{1}+t_{2} e^{i k}\right)$
$N_{1}=1$

Topological invariant for chiral systems

$$
\Sigma=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad \mathcal{H}=\left(\begin{array}{cc}
0 & V \\
V^{\dagger} & 0
\end{array}\right) \quad \text { basis }\binom{\hat{a}_{\text {odd }}}{\hat{a}_{\text {even }}}
$$

General topological invariant
But here d is odd

$$
N_{d}=-\frac{\left(\frac{d-1}{2}\right)!}{(2 \pi i)^{\frac{d+1}{2}} d!} \sum_{\alpha_{1} \ldots \alpha_{d}} \epsilon_{\alpha_{1} \ldots \alpha_{d}} \int d^{d} k \operatorname{tr}\left[V^{-1} \partial_{\alpha_{1}} V \ldots V^{-1} \partial_{\alpha_{d}} V\right]
$$

Example: $d=1$

$$
\mathcal{H}=\left(\begin{array}{cc}
0 & t_{1}+t_{2} e^{i k} \\
t_{1}+t_{2} e^{-i k} & 0
\end{array}\right)
$$

With some algebra, one can show
$N_{1}=\int_{-\pi}^{\pi} \frac{d k}{2 \pi i} \partial_{k} \ln \left(t_{1}+t_{2} e^{i k}\right)$
$N_{1}=0$
$t_{1}>t_{2}$

Edge states for 1D chiral systems

This works (decays for $\mathrm{n}>0$) only if $\mathrm{t}_{1}<\mathrm{t}_{2}$
That is, if $N_{1}=1$ (not when it is zero)

Class A (no symmetry)
Class AIl (chiral symmetry)

12345
6

Altland-Zirnbauer nomenclature

Other relevant symmetries

Time reversal
Particle-hole conjugation

$$
U_{T}^{\dagger} \mathcal{H}^{*} U_{T}=\mathcal{H} \quad U_{T}^{*} U_{T}=\left\{\begin{array}{cc}
\text { either } & +1 \\
\text { or } & -1
\end{array}\right.
$$

$$
U_{C}^{\dagger} \mathcal{H}^{*} U_{C}=-\mathcal{H} \quad U_{C}^{*} U_{C}=\left\{\begin{array}{cc}
\text { either } & +1 \\
\text { or } & -1
\end{array}\right.
$$

If both symmetries are present, chiral symmetry is automatically present, with $\Sigma=U_{T}^{*} U_{C}$

This leads to 10 "symmetry classes", introduced by Altland and Zirnbauer

Cartan label	T	C	S	$\stackrel{\pi}{\subsetneq} \frac{\pi}{0}$
A (unitary)	0	0	0	
AI (orthogonal)	+1	0	0	
AII (symplectic)	-1	0	0	0
AIII (ch. unit.)	0	0	1	
BDI (ch. orth.)	+1	+1	1	
CII (ch. sympl.)	-1	-1	1	
D (BdG)	0	+1	0	
C (BdG)	0	-1	0	
DIII (BdG)	-1	+1	1	
CI (BdG)	+1	-1	1	

Classes with time reversal invariance only

Time reversal $U_{T}^{\dagger} \mathcal{H}^{*}(-k) U_{T}=\mathcal{H}(k) \quad U_{T}^{*} U_{T}=\left\{\begin{array}{cc}\text { either } & +1 \\ \text { or } & -1\end{array}\right.$
Class Al: time reversal for spinless particles or spin rotation invariant Hamiltonians

Example: $\quad \mathcal{H}_{\alpha \beta}(k)=\frac{k^{2}}{2 m} \delta_{\alpha \beta} \quad \alpha, \beta$
Class All: time reversal for spin-dependent spin-1/2 Hamiltonians (usually implies spin-orbit coupling)

$$
\mathcal{H}_{\alpha \beta}(k)=\frac{k^{2}}{2 m} \delta_{\alpha \beta}+g_{S O} \sum_{\mu} k_{\mu} \sigma_{\alpha, \beta}^{\mu}
$$

$$
\sigma^{y} \mathcal{H}_{\alpha \beta}^{*}(-k) \sigma^{y}=\mathcal{H}(k) \quad U_{T}=\sigma^{y} \quad U_{T} U_{T}^{*}=-1
$$

Only time-reversal is present

These are classes Al, All

$$
G=[i \omega-\mathcal{H}]^{-1} \quad \longrightarrow U_{T}^{\dagger} G^{T} U_{T}=G
$$

transposed

$$
G_{a b}^{T}(k)=G_{b a}(-k)
$$

Applying the symmetry to G, we can show that the invariant is identically zero if $d=2+4 n$

$$
N_{d}=-\frac{\left(\frac{d}{2}\right)!}{(2 \pi i)^{\frac{d}{2}+1}(d+1)!} \sum_{\alpha_{0} \alpha_{1} \ldots \alpha_{d}} \epsilon_{\alpha_{0} \alpha_{1} \ldots \alpha_{d}} \int d \omega d^{d} k \operatorname{tr}\left[G^{-1} \partial_{\alpha_{0}} G G^{-1} \partial_{\alpha_{1}} G \ldots G^{-1} \partial_{\alpha_{d}} G\right]
$$

space dimension	1	2	3	4	5	6	7		8	
Class A (no symmetry)		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}		
Class Al (time reversal)				\mathbb{Z}				\mathbb{Z}		
Class All (time reversal with spin-1/2)				\mathbb{Z}						

Consequence: no topological band structure for time reversal invariant systems in 2D. This is not quite true, however - there is a different topological invariant we haven't yet looked at.

Only particle-hole is present

These are classes D, C

$$
\begin{gathered}
U_{C}^{\dagger} \mathcal{H}^{*} U_{C}=-\mathcal{H} \\
G=[i \omega-\mathcal{H}]^{-1}
\end{gathered}
$$

$$
U_{C}^{\dagger} G^{T}(\omega) U_{C}=-G(-\omega)
$$

Applying the symmetry to G , we can show that the invariant is identically zero if $d=4 n$ $N_{d}=-\frac{\left(\frac{d}{2}\right)!}{(2 \pi i)^{\frac{d}{2}+1}(d+1)!} \sum_{\alpha_{0} \alpha_{1} \ldots \alpha_{d}} \epsilon_{\alpha_{0} \alpha_{1} \ldots \alpha_{d}} \int d \omega d^{d} k \operatorname{tr}\left[G^{-1} \partial_{\alpha_{0}} G G^{-1} \partial_{\alpha_{1}} G \ldots G^{-1} \partial_{\alpha_{d}} G\right]$

space dimension	1		2	3	4	5	6	7	8
Class A (no symmetry)		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}	
Class D $\left(\mathrm{p}-\mathrm{h}, U_{C} U_{C}^{*}=1\right)$		\mathbb{Z}				\mathbb{Z}			
Class C $\left(\mathrm{p}-\mathrm{h}, U_{C} U_{C}^{*}=-1\right)$		\mathbb{Z}				\mathbb{Z}			

The origin of p-h symmetry

$$
\Delta=-\Delta^{T} h=h^{\dagger}
$$

$$
\hat{H}=\sum_{i j}\left[2 h_{i j} \hat{a}_{i}^{\dagger} \hat{a}_{j}+\Delta_{i j} \hat{a}_{i}^{\dagger} \hat{a}_{j}^{\dagger}+\Delta_{i j}^{\dagger} \hat{a}_{i} \hat{a}_{j}\right]=\sum_{i j}\left(\begin{array}{ll}
\hat{a}_{i}^{\dagger} & \hat{a}_{i}
\end{array}\right)\left(\begin{array}{cc}
h_{i j} & \Delta_{i j} \\
\Delta_{i j}^{\dagger} & -h_{i j}^{T}
\end{array}\right)\binom{\hat{a}_{i}}{\hat{a}_{j}^{\dagger}}
$$

$$
\mathcal{H}=\left(\begin{array}{cc}
h_{i j} & \Delta_{i j} \\
\Delta_{i j}^{\dagger} & -h_{i j}^{T}
\end{array}\right) \quad \sigma_{x} \mathcal{H}^{*} \sigma_{x}=-\mathcal{H} \quad \begin{gathered}
U_{C} \equiv \sigma_{x} \\
\text { This is class D }
\end{gathered}
$$

This describes Bogoliubov quasiparticles

Famous example: $p_{x}+i p_{y}$ spin-polarized superconductor (important: it breaks time reversal)

$$
\begin{aligned}
\mathcal{H} & =\left(\begin{array}{cc}
\frac{p^{2}}{2 m}-\mu & \Delta\left(p_{x}+i p_{y}\right) \\
\Delta\left(p_{x}-i p_{y}\right) & -\frac{p^{2}}{2 m}+\mu
\end{array}\right) \quad N_{2}=1 \\
E_{p} & = \pm \sqrt{\left(\frac{p^{2}}{2 m}-\mu\right)^{2}+\Delta^{2} p^{2}} \\
\mathcal{H} & =\sum_{\mu} n_{\mu} \sigma^{\mu} \quad N_{2}=\frac{1}{8 \pi} \sum_{\alpha \beta \gamma} \sum_{\mu \nu} \epsilon_{\mu \nu \gamma} \epsilon_{\alpha \beta} \int d^{2} p \frac{n^{\mu} \partial_{\alpha} n^{\nu} \partial_{\beta} n^{\gamma}}{n^{3}}
\end{aligned}
$$

This superconductor has edge states, just like a particle in a magnetic field

The origin of p-h symmetry

BCS superconductor

$$
\Delta=-\Delta^{T} h=h^{\dagger}
$$

$$
\hat{H}=\sum_{i j}\left[2 h_{i j} \hat{a}_{i}^{\dagger} \hat{a}_{j}+\Delta_{i j} \hat{a}_{i}^{\dagger} \hat{a}_{j}^{\dagger}+\Delta_{i j}^{\dagger} \hat{a}_{i} \hat{a}_{j}\right]=\sum_{i j}\left(\begin{array}{cc}
\hat{a}_{i}^{\dagger} & \hat{a}_{i}
\end{array}\right)\left(\begin{array}{cc}
h_{i j} & \Delta_{i j} \\
\Delta_{i j}^{\dagger} & -h_{i j}^{T}
\end{array}\right)\binom{\hat{a}_{i}}{\hat{a}_{j}^{\dagger}}
$$

$$
\mathcal{H}=\left(\begin{array}{cc}
h_{i j} & \Delta_{i j} \\
\Delta_{i j}^{\dagger} & -h_{i j}^{T}
\end{array}\right)
$$

$$
\sigma_{x} \mathcal{H}^{*} \sigma_{x}=-\mathcal{H}
$$

$$
U_{C} \equiv \sigma_{x}
$$

This is class D

This describes Bogoliubov quasiparticles

Famous example: $p_{x}+i p_{y}$ spin-polarized superconductor (important: it breaks time reversal)

$$
\begin{aligned}
\mathcal{H} & =\left(\begin{array}{cc}
\frac{p^{2}}{2 m}-\mu & \Delta\left(p_{x}+i p_{y}\right) \\
\Delta\left(p_{x}-i p_{y}\right) & -\frac{p^{2}}{2 m}+\mu
\end{array}\right) \quad N_{2}=1 \\
E_{p} & = \pm \sqrt{\left(\frac{p^{2}}{2 m}-\mu\right)^{2}+\Delta^{2} p^{2}} \\
\mathcal{H} & =\sum_{\mu} n_{\mu} \sigma^{\mu} \quad N_{2}=\frac{1}{8 \pi} \sum_{\alpha \beta \gamma} \sum_{\mu \nu} \epsilon_{\mu \nu \gamma} \epsilon_{\alpha \beta} \int d^{2} p \frac{n^{\mu} \partial_{\alpha} n^{\nu} \partial_{\beta} n^{\gamma}}{n^{3}}
\end{aligned}
$$

This superconductor has edge states, just like a particle in a magnetic field

Class C

BCS spin-singlet superconductor

$$
\Delta=\Delta^{T} \quad h=h^{\dagger}
$$

$$
\begin{gathered}
\hat{H}=\sum_{i j}\left[\sum_{\sigma=\uparrow, \downarrow} 2 h_{i j} \hat{a}_{i \sigma}^{\dagger} \hat{a}_{j \sigma}+\Delta_{i j}\left(\hat{a}_{i \uparrow}^{\dagger} \hat{a}_{j, \downarrow}^{\dagger}-\hat{a}_{i, \downarrow}^{\dagger} \hat{a}_{j \uparrow}^{\dagger}\right)+\Delta_{i j}^{\dagger}\left(\hat{a}_{i, \downarrow} \hat{a}_{j, \uparrow}-\hat{a}_{j, \downarrow} \hat{a}_{i, \uparrow}\right)\right] \\
=2 \sum_{i j}\left(\begin{array}{cc}
\hat{a}_{i, \uparrow}^{\dagger} & \hat{a}_{j, \downarrow}
\end{array}\right)\left(\begin{array}{cc}
h_{i j} & \Delta_{i j} \\
\Delta_{i j}^{\dagger} & -h_{i j}^{T}
\end{array}\right)\binom{\hat{a}_{j, \uparrow}}{\hat{a}_{j, \downarrow}^{\dagger}} \\
\mathcal{H}=\left(\begin{array}{cc}
h_{i j} & \Delta_{i j} \\
\Delta_{i j}^{\dagger} & -h_{i j}^{T}
\end{array}\right) \quad \sigma_{y} \mathcal{H}^{*} \sigma_{y}=-\mathcal{H} \quad U_{C}=\sigma_{y} \\
U_{C} U_{C}^{*}=-1
\end{gathered}
$$

Example: d-wave superconductor with the order parameter $d_{x^{2}-y^{2}}+i d_{x y}$

Classes with both TR and PH

Automatically have chiral symmetry. Topological invariant in odd dimensional space.

$$
\begin{aligned}
& N_{d}=-\frac{\left(\frac{d-1}{2}\right)!}{(2 \pi i)^{\frac{d+1}{2}} d!} \sum_{\alpha_{1} \ldots \alpha_{d}} \epsilon_{\alpha_{1} \ldots \alpha_{d}} \int d^{d} k \operatorname{tr}\left[V^{-1} \partial_{\alpha_{1}} V \ldots V^{-1} \partial_{\alpha_{d}} V\right] \\
& N_{d}=-\frac{1}{2} \frac{\left(\frac{d-1}{2}\right)!}{(2 \pi i)^{\frac{d+1}{2}} d!} \sum_{\alpha_{1} \ldots \alpha_{d}} \int d^{d} k \operatorname{tr}\left[\Sigma \mathcal{H}^{-1} \partial_{\alpha_{1}} \mathcal{H} \ldots \mathcal{H}^{-1} \partial_{\alpha_{d}} \mathcal{H}\right] \\
& U_{C} U_{C}^{*}=\epsilon_{C} \quad U_{T} U_{T}^{*}=\epsilon_{T} \\
& \\
& N_{d}=0 \quad \text { if } \quad \epsilon_{C} \epsilon_{T}=1 \quad \begin{array}{l}
d=3+4 n \\
\epsilon_{C} \epsilon_{T}=-1 \\
d=1+4 n
\end{array}
\end{aligned}
$$

Example: class DIII
 $U_{T} U_{T}^{*}=-1$
 $U_{C} U_{C}^{*}=1$

Cartan label	T	C	S
A (unitary)	0	0	0
AI (orthogonal)	+1	0	0
AII (symplectic)	-1	0	0
AIII (ch. unit.)	0	0	1
BDI (ch. orth.)	+1	+1	1
CII (ch. sympl.)	-1	-1	1
D (BdG)	0	+1	0
C (BdG)	0	-1	0
DIII (BdG)	-1	+1	1
CI (BdG)	+1	-1	1

Example: class DIII
$U_{T} U_{T}^{*}=-1$
$U_{C} U_{C}^{*}=1$

1. can be a superconductor

Cartan label	T	C	S
A (unitary)	0	0	0
AI (orthogonal)	+1	0	0
AII (symplectic)	-1	0	0
AIII (ch. unit.)	0	0	1
BDI (ch. orth.)	+1	+1	1
CII (ch. sympl.)	-1	-1	1
D (BdG)	0	+1	0
C (BdG)	0	-1	0
DIII (BdG)	-1	+1	1
CI (BdG)	+1	-1	1

Example: class DIII
$U_{T} U_{T}^{*}=-1$
$U_{C} U_{C}^{*}=1$

1. can be a superconductor
2. has to be a spin-triplet (p-wave) superconductor

Cartan label	T	C	S
A (unitary)	0	0	0
AI (orthogonal)	+1	0	0
AII (symplectic)	-1	0	0
AIII (ch. unit.)	0	0	1
BDI (ch. orth.)	+1	+1	1
CII (ch. sympl.)	-1	-1	1
D (BdG)	0	+1	0
C (BdG)	0	-1	0
DIII (BdG)	-1	+1	1
CI (BdG)	+1	-1	1

Example: class DIII
$U_{T} U_{T}^{*}=-1$
$U_{C} U_{C}^{*}=1$

1. can be a superconductor
2. has to be a spin-triplet (p-wave) superconductor
3. has to have spin-orbit coupling

Cartan label	T	C	S
A (unitary)	0	0	0
AI (orthogonal)	+1	0	0
AII (symplectic)	-1	0	0
AIII (ch. unit.)	0	0	1
BDI (ch. orth.)	+1	+1	1
CII (ch. sympl.)	-1	-1	1
D (BdG)	0	+1	0
C (BdG)	0	-1	0
DIII (BdG)	-1	+1	1
CI (BdG)	+1	-1	1

Example: class DIII

$$
\begin{aligned}
& U_{T} U_{T}^{*}=-1 \\
& U_{C} U_{C}^{*}=1
\end{aligned}
$$

1. can be a superconductor
2. has to be a spin-triplet (p-wave) superconductor

Cartan label	T	C	S
A (unitary)	0	0	0
AI (orthogonal)	+1	0	0
AII (symplectic)	-1	0	0
AIII (ch. unit.)	0	0	1
BDI (ch. orth.)	+1	+1	1
CII (ch. sympl.)	-1	-1	1
D (BdG)	0	+1	0
C (BdG)	0	-1	0
DIII (BdG)	-1	+1	1
CI (BdG)	+1	-1	1

3. has to have spin-orbit coupling

This is ${ }^{3} \mathrm{He}$ phase B .

$\hat{H}=\sum_{p, \alpha=\uparrow, \downarrow}\left(\frac{p^{2}}{2 m}-\mu\right) \hat{a}_{p \alpha}^{\dagger} \hat{a}_{p \alpha}+\Delta \sum_{p, \alpha, \beta, \gamma} p_{\mu} \sigma_{\alpha \beta}^{y} \sigma_{\beta \gamma}^{\mu} \hat{a}_{p \alpha} \hat{a}_{-p \gamma}+\Delta \sum_{p, \alpha, \beta, \gamma} p_{\mu} \sigma_{\alpha \beta}^{\mu} \sigma_{\beta \gamma}^{y} \hat{a}_{-p \alpha}^{\dagger} \hat{a}_{p \gamma}^{\dagger}$
$\mathcal{H}=\left(\begin{array}{cc}\frac{1}{2}\left(\frac{p^{2}}{2 m}-\mu\right) \delta_{\alpha \beta} & \Delta \sum_{\gamma \mu} p_{\mu} \sigma_{\alpha \gamma}^{\mu} \sigma_{\gamma \beta}^{y} \\ \Delta \sum_{\gamma \mu} p_{\mu} \sigma_{\alpha \gamma}^{y} \sigma_{\gamma \beta}^{\mu} & -\frac{1}{2}\left(\frac{p^{2}}{2 m}-\mu\right) \delta_{\alpha \beta}\end{array}\right)$
this must be chirally symmetric. Its invariant is $N_{3}=1$.
${ }^{3} \mathrm{He}$ is topological and has edge states (discovered only in ~2008 by Ludwig et al)

Another example of a 3D DIII insulator

Example: Class CI

$U_{T} U_{T}^{*}=1 \quad$ Spin-singlet time-reversal invariant
$U_{C} U_{C}^{*}=-1 \quad$ superconductor

This is a conventional s-wave spin-singlet superconductor.
Can be topological in 3D

Conventional superconductors are not topological, but an example of a 3D CI topological superconductor is known (Ludwig et al)

Full classification table

White - nonchiral ${ }^{24}$ Grey - chiral

Table from Ryu, Schnyder, Furusaki, Ludwig, 2010

Full classification table

White - nonchiral ${ }^{24}$ Grey - chiral

Table from Ryu, Schnyder, Furusaki, Ludwig, 2010

	d space dimensionality												
Cartan	0	1	2	3	4	5	6	7	8	9	10	11	
Complex case: IQHE A	7	\rightarrow	\mathbb{Z}	0									
QHE AIII	0	\mathbb{Z}											
Real case: AI	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	...
BDI	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	.
D	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	\ldots
DIII	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	
AII	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\ldots
CII	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\ldots
C	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\ldots
CI	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	
symmetry classes							udw	g, R	$\begin{aligned} & \text { Kite } \\ & \text { u, Scl } \end{aligned}$	$\begin{aligned} & \text { ev, } \\ & \text { inyd } \end{aligned}$	$\begin{aligned} & \text { 009; } \\ & \text { er, Fu } \end{aligned}$	usak	2009

Full classification table

White - nonchiral ${ }^{24}$ Grey - chiral

Table from Ryu, Schnyder, Furusaki, Ludwig, 2010

Cartan	d space dimensionality												
	0	1	2	3	4	5	6	7	8	9	10	11	
Complex case: IQHE A	Z	\rightarrow	\mathbb{Z}	0	\ldots								
ME AIII	0	\mathbb{Z}	\ldots										
Su, Schrieffer Realsse.													
Heeger AT	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	\ldots
BDI	$\xrightarrow{4}$	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	\ldots
D	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	\ldots
DIII	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	
AII	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	..
CII	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	.
C	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\ldots
CI	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	
symmetry classes							udw	g, Ry	$\begin{aligned} & \text { Kita } \\ & \text { u, Sc } \end{aligned}$	$\begin{aligned} & \text { ev, } \\ & \text { hnyd } \end{aligned}$	$\begin{aligned} & \text { 009; } \\ & \text { r, Fur } \end{aligned}$	usak	2009

Full classification table

White - nonchiral ${ }^{24}$ Grey - chiral

Table from Ryu, Schnyder, Furusaki, Ludwig, 2010

Full classification table

White - nonchiral ${ }^{24}$ Grey - chiral

Table from Ryu, Schnyder, Furusaki, Ludwig, 2010

Full classification table

White - nonchiral ${ }^{24}$ Grey - chiral

Table from Ryu, Schnyder, Furusaki, Ludwig, 2010

New crucial feature - Z_{2} invariant

Take class All: time reversal invariance with spin-1/2 (with spin-orbit coupling)

$$
U_{T}^{\dagger} G^{T}(\omega,-\mathbf{k}) U^{T}=G(\omega, \mathbf{k})
$$

In 4D it can be topological

Its 3D boundary has gapless excitations. These generally form a Fermi spheres.

3D boundary of a 4D insulator

Declare q "unphysical" and reduce dimensions to 3D insulator with 2D boundary

$$
G_{\text {phys }}\left(\omega, p_{x}, p_{y}\right)=\left.G\left(\omega, p_{x}, p_{y}, q\right)\right|_{q=0}
$$

If the number of Fermi spheres was odd, the physical 3D insulator has gapless excitations.
Otherwise, it does not.

Full classification table

White - nonchiral ${ }^{26}$ Grey - chiral

Cartan	d space dimensionality												
	0	1	2	3	4	5	6	7	8	9	10	11	...
Complex case: A	\mathbb{Z}	0											
AIII	0	\mathbb{Z}	\ldots										
Real case: AI	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	...
BDI	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	
D	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	
DIII	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	
AII	$\begin{gathered} 0 \\ 2 \mathbb{2} \end{gathered}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	
CII	$\begin{array}{cccc} 0 & 2 \mathbb{Z} & 0 \mathbb{Z} & \mathbb{Z}_{2} \uparrow \\ 0 & 0 & 2 \mathbb{Z} & 0 \end{array}$				\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	
C						\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	
CI		$0 \quad 0$				\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	\ldots
symmetry classes					$\stackrel{1}{\mathrm{Ka}}$		e tor	log	al in	ulat			

Edge excitations

Take nonchiral insulator in d-dimensions (d even)
It has a d-1 dimensional edge with gapless excitations
$n_{\alpha_{0}}=-\frac{\left(\frac{d}{2}-1\right)!}{(2 \pi i)^{\frac{d}{2}}(d-1)!} \sum_{\alpha_{1} \ldots \alpha_{d-1}} \epsilon_{\alpha_{0} \alpha_{1} \ldots \alpha_{d-1}} \int d \omega d^{d-2} k \operatorname{tr}\left[G^{-1} \partial_{\alpha_{1}} G G^{-1} \partial_{\alpha_{2}} G \ldots G^{-1} \partial_{\alpha_{d-1}} G\right]$ Here $\boldsymbol{\alpha}$ go over $\omega, k_{1}, \ldots, k_{d-1}$
$\sum_{\alpha} \partial_{\alpha} n_{\alpha}=0 \quad$ except where G is singular or where there are zero-energy excitations
this integral must be equal to the bulk topological invariant of the insulator

$$
N_{d}=\oint d s^{\alpha} n_{\alpha}
$$

similarly for d odd and chiral insulators

Example: quantum hall edge

$\oint d s^{\alpha} n_{\alpha}=N_{0}(\Lambda)-N_{0}(-\Lambda)$
$N_{0}(k)=\operatorname{tr} \int \frac{d \omega}{2 \pi i} G^{-1} \partial_{\omega} G=\sum_{n} \int \frac{d \omega}{2 \pi i} \partial_{\omega} \ln \left(\frac{1}{i \omega-\epsilon_{n}(k)}\right)=\frac{1}{2} \sum_{n} \operatorname{sign} \epsilon_{n}(k)$

Example: an edge of a 3D DIII insulator

This is ${ }^{3} \mathrm{He}$

$$
\mathcal{H}=\sigma^{x} k_{x}+\sigma^{y} k_{y}
$$

$$
\begin{array}{cl}
\sigma_{x} \mathcal{H}^{*}(-k) \sigma_{x}=-\mathcal{H}(k) & \text { p.h. } \\
\sigma_{y} \mathcal{H}^{*}(-k) \sigma_{y}=\mathcal{H}(k) & \text { t.r. } \\
\sigma_{z} \mathcal{H}(k) \sigma_{z}=\mathcal{H}(k) & \text { chiral }
\end{array}
$$

$$
\int \sum_{\alpha=x, y} d s^{\alpha} n_{\alpha}=1
$$

Example: an edge of a 3D DIII insulator

This is ${ }^{3} \mathrm{He}$

$$
\begin{array}{lll}
\mathcal{H}=\sigma^{x} k_{x}+\sigma^{y} k_{y} & \sigma_{x} \mathcal{H}^{*}(-k) \sigma_{x}=-\mathcal{H}(k) & \text { p.h. } \\
& \sigma_{y} \mathcal{H}^{*}(-k) \sigma_{y}=\mathcal{H}(k) & \text { t.r. } \\
& \sigma_{z} \mathcal{H}(k) \sigma_{z}=\mathcal{H}(k) & \text { chiral }
\end{array}
$$

$$
\int \sum_{\alpha=x, y} d s^{\alpha} n_{\alpha}=1 .
$$

$$
\begin{aligned}
\mathcal{H}=\left(\begin{array}{cc}
0 & k_{x}-i k_{y} \\
k_{x}+i k_{y} & 0
\end{array}\right) \quad \int d s^{\alpha} n_{\alpha}=\frac{1}{2 \pi i} \oint d k^{\mu} \partial_{k_{\mu}} \ln \left(k_{x}-i k_{y}\right) \\
V=k_{x}-i k_{y}
\end{aligned}
$$

Edge theory of All 3D topological insulators
Literature states that its 2D edge is a Dirac fermion theory

$$
H=v\left(\sigma_{x} p_{x}+\sigma_{y} p_{y}\right)-\mu
$$

because it is

1. linear in momenta
2. time-reversal invariant

$$
H(p)=\sigma_{y} H^{*}(-p) \sigma_{y}
$$

But does it have the right edge invariant?

Edge theory of All 3D topological insulators

Literature states that its 2D
edge is a Dirac fermion theory

$$
H=v\left(\sigma_{x} p_{x}+\sigma_{y} p_{y}\right)-\mu
$$

because it is

1. linear in momenta
2. time-reversal invariant

$$
H(p)=\sigma_{y} H^{*}(-p) \sigma_{y}
$$

But does it have the right edge invariant?

Enlarge dimensions to 4D (3D edge)

$H=v\left(\sigma_{x} p_{x}+\sigma_{y} p_{y}+\sigma_{z} q\right)-\mu$

Edge theory of All 3D topological insulators
Literature states that its 2D
edge is a Dirac fermion theory

$$
H=v\left(\sigma_{x} p_{x}+\sigma_{y} p_{y}\right)-\mu
$$

because it is

1. linear in momenta
2. time-reversal invariant

$$
H(p)=\sigma_{y} H^{*}(-p) \sigma_{y}
$$

But does it have the right edge invariant?
Enlarge dimensions to 4D (3D edge)

$N_{d-2}(-\Lambda)$
$H=v\left(\sigma_{x} p_{x}+\sigma_{y} p_{y}+\sigma_{z} q\right)-\mu$
Fix $q=+\Lambda$ or $q=-\Lambda$
$H=v \sigma_{x} p_{x}+v \sigma_{y} p_{y} \pm v \Lambda \sigma_{z}-\mu \quad$ Effectively 2D.

Edge theory of All 3D topological insulators
Literature states that its 2D
edge is a Dirac fermion theory

$$
H=v\left(\sigma_{x} p_{x}+\sigma_{y} p_{y}\right)-\mu
$$

because it is

1. linear in momenta
2. time-reversal invariant

$$
H(p)=\sigma_{y} H^{*}(-p) \sigma_{y}
$$

But does it have the right edge invariant?

Enlarge dimensions to 4D (3D edge)

Fix $q=+\Lambda$ or $q=-\Lambda$
$H=v \sigma_{x} p_{x}+v \sigma_{y} p_{y} \pm v \Lambda \sigma_{z}-\mu \quad$ Effectively 2D.
$N_{2}(\Lambda)-N_{2}(-\Lambda)=1$ Well known relation
LFSG, 1994 in this context.

Edge theory of All 3D topological insulators
Literature states that its 2D edge is a Dirac fermion theory

$$
H=v\left(\sigma_{x} p_{x}+\sigma_{y} p_{y}\right)-\mu
$$

because it is

1. linear in momenta
2. time-reversal invariant

$$
H(p)=\sigma_{y} H^{*}(-p) \sigma_{y}
$$

But does it have the right edge invariant?

Enlarge dimensions to 4D (3D edge)

Fix $q=+\Lambda$ or $q=-\Lambda$
$H=v \sigma_{x} p_{x}+v \sigma_{y} p_{y} \pm v \Lambda \sigma_{z}-\mu \quad$ Effectively 2D.
$N_{2}(\Lambda)-N_{2}(-\Lambda)=1$ Well known relation LFSG, 1994 in this context.

Yes, it does have the right edge invariant.

Disorder

Old idea of Thouless, Wu, Niu: impose phases across the system

Disorder

Old idea of Thouless, Wu, Niu: impose phases across the system

This edge level must be delocalized

$$
N_{0}(\Lambda)-N_{0}(-\Lambda)=1
$$

It follows that an edge of a topological insulator does not localize in the presence of disorder

Sigma models with "topological" terms

Describe lack of localization at the boundary of an insulator

$$
S \sim \sigma \int d^{\bar{d}} x\left(\partial_{\mu} Q\right)^{2}+\text { topological term }
$$

Topological term = either WZW term or " Z_{2} " term.
Can be added if either $\quad \pi_{\bar{d}}(T)=\mathbb{Z}_{2} \quad$ or $\quad \pi_{\bar{d}+1}(T)=\mathbb{Z}^{\quad \top \text { - target sp }} \quad \bar{d}=d-1$
It is believed that these sigma models with topological terms result in the absence of localization

| $\begin{array}{l}\text { Cartan } \\ \text { label }\end{array}$ | $\begin{array}{c}\text { Time evolution operator } \\ \exp \{i t \mathcal{H}\}\end{array}$ | $\begin{array}{c}\text { Fermionic replica } \\ \mathrm{NL} \sigma \mathrm{M} \text { target space }\end{array}$ | $\begin{array}{l}10 \text { classes of } \\ \text { sigma models }\end{array}$ |
| :--- | :--- | :--- | :--- | :--- |
| first derived by | | | |$)$

