Feshbach resonance and BCS-BEC crossover

Victor Gurarie

Windsor, August 2012

Atomic gases

Very dilute gas of Li, K or Rb

Interparticle spacing $d = 10^3 \,\mathrm{nm}$

De Broglie wavelength
$$\lambda_{dB} = \frac{h}{\sqrt{mT}}$$

hot

cold

Condition of quantum degeneracy

$$\lambda_{dB} = \frac{h}{\sqrt{mT}} \sim d$$

Degenerate weakly interacting gases

Bosons:

- Integer spin
- Symmetric wave function
 - Bose condensate

Fermions:

- Half-integer spin
- Antisymmetric wave function

Degenerate Fermi gas: "Fermi condensate"

Bose Einstein

Bose-Einstein condensate

Macroscopic occupation of the single particle ground state

BEC detection

Time of flight measurement

BEC detection

Time of flight measurement

First BEC

6

Cornell Wieman

CU Boulder

Atomic interactions

Atoms are neutral, no direct Coulomb interaction

Van der Waals attraction, hard core repulsion

Level structure of Lithium

 6 Li 3 protons + 3 electrons + 3 neutrons = fermion Nuclear spin /=1, electronic spin S=1/2

Hyperfine interactions + magnetic field $H = g \vec{S} \cdot \vec{I} + \mu \vec{B} \cdot \vec{S}$

Feshbach resonance

Feshbach resonance

Atoms in "closed channel"

Feshbach resonance

Notations

Two channel model

$$\hat{H} = \sum_{p,\sigma=\uparrow,\downarrow} \frac{p^2}{2m} \hat{a}^{\dagger}_{p,\sigma} \hat{a}_{p,\sigma} + \sum_{q} \left(\epsilon_0 + \frac{q^2}{4m} \right) \hat{b}^{\dagger}_{q} \hat{b}_{q} + \frac{g}{\sqrt{V}} \left(\sum_{p,q} \hat{b}^{\dagger}_{q} \hat{a}_{\frac{q}{2}+p,\uparrow} \hat{a}_{\frac{q}{2}-p,\downarrow} + \sum_{p,q} \hat{b}_{q} \hat{a}^{\dagger}_{\frac{q}{2}-p,\downarrow} \hat{a}^{\dagger}_{\frac{q}{2}+p,\uparrow} \right)$$

Free motion of atoms

Free motion of molecules shifted by detuning

Atomic-molecular interconversion

Weak g limit

$$\hat{H} = \sum_{p,\sigma=\uparrow,\downarrow} \frac{p^2}{2m} \hat{a}^{\dagger}_{p,\sigma} \hat{a}_{p,\sigma} + \sum_q \left(\epsilon_0 + \frac{q^2}{4m}\right) \hat{b}^{\dagger}_q \hat{b}_q + \frac{g}{\sqrt{V}} \left(\sum_{p,q} \hat{b}^{\dagger}_q \hat{a}_{\frac{q}{2}+p,\uparrow} \hat{a}_{\frac{q}{2}-p,\downarrow} + \sum_{p,q} \hat{b}_q \hat{a}^{\dagger}_{\frac{q}{2}-p,\downarrow} \hat{a}^{\dagger}_{\frac{q}{2}+p,\uparrow}\right)$$

Free motion of atoms

Free motion of molecules shifted by detuning

Atomic-molecular interconversion

g->0 limit

$$\hat{H} - \mu \hat{N} = \sum_{p,\sigma=\uparrow,\downarrow} \frac{p^2}{2m} \hat{a}^{\dagger}_{p,\sigma} \hat{a}_{p,\sigma} + \sum_{q} \left(\epsilon_0 + \frac{q^2}{4m}\right) \hat{b}^{\dagger}_{q} \hat{b}_{q} - \mu \left(\sum_{p,\sigma=\uparrow,\downarrow} \hat{a}^{\dagger}_{p,\sigma} \hat{a}_{p,\sigma} + 2\sum_{q} \hat{b}^{\dagger}_{q} \hat{b}_{q}\right)$$

It is equivalent to noninteracting bosons with chemical potential 2μ and fermions, with chemical potential μ .

Weak g limit, zero temperature

$$\hat{H} - \mu \hat{N} = \sum_{p,\sigma=\uparrow,\downarrow} \left(\frac{p^2}{2m} - \mu\right) \hat{a}_{p,\sigma}^{\dagger} \hat{a}_{p,\sigma} + \sum_{q} \left(\epsilon_0 + \frac{q^2}{4m} - 2\mu\right) \hat{b}_q^{\dagger} \hat{b}_q$$

 $-\varepsilon_{F}$

 $\overline{(b)}$

 $\epsilon_0 > 2\epsilon_F$ No bosons, all particles are fermions. $\mu = \epsilon_F$

 $2\epsilon_F$

 ϵ_0

k

13

Scattering amplitude

generally
$$f_p = \frac{1}{g(p) - ip}$$

 $g(p) = g_0 + g_2 p^2 + g_4 p^4 + \dots$

$$\hat{H} = \sum_{p,\sigma=\uparrow,\downarrow} \frac{p^2}{2m} \hat{a}^{\dagger}_{p,\sigma} \hat{a}_{p,\sigma} + \sum_q \left(\epsilon_0 + \frac{q^2}{4m}\right) \hat{b}^{\dagger}_q \hat{b}_q + \frac{g}{\sqrt{V}} \left(\sum_{p,q} \hat{b}^{\dagger}_q \hat{a}_{\frac{q}{2}+p,\uparrow} \hat{a}_{\frac{q}{2}-p,\downarrow} + \sum_{p,q} \hat{b}_q \hat{a}^{\dagger}_{\frac{q}{2}-p,\downarrow} \hat{a}^{\dagger}_{\frac{q}{2}+p,\uparrow} \right)$$

$$f_p = \frac{1}{-\frac{1}{a} + r_0 \frac{p^2}{2} - ip}$$

Scattering length

Effective range

$$a = -\frac{mg^2}{4\pi\omega_0}$$
$$r_0 = -\frac{8\pi}{m^2g^2}$$
$$\omega_0 = \epsilon_0 - \frac{g^2m}{2\pi^2R_e}$$

The poles of the scattering amplitude with **Re p=0, Im p > 0** correspond to the **bound state** of two atoms with the wave function

$$\psi \sim e^{ip|\mathbf{r_1} - \mathbf{r_2}|}$$

exist only for a>0 or $\omega_0 < 0$

Small g behavior

$$\hat{H} = \sum_{p,\sigma=\uparrow,\downarrow} \frac{p^2}{2m} \hat{a}^{\dagger}_{p,\sigma} \hat{a}_{p,\sigma} + \sum_{q} \left(\epsilon_0 + \frac{q^2}{4m} \right) \hat{b}^{\dagger}_{q} \hat{b}_{q} + \frac{g}{\sqrt{V}} \left(\sum_{p,q} \hat{b}^{\dagger}_{q} \hat{a}_{\frac{q}{2}+p,\uparrow} \hat{a}_{\frac{q}{2}-p,\downarrow} + \sum_{p,q} \hat{b}_{q} \hat{a}^{\dagger}_{\frac{q}{2}-p,\downarrow} \hat{a}^{\dagger}_{\frac{q}{2}+p,\uparrow} \right)$$

mean field theory $\ \hat{b}_q
ightarrow \delta_{q,0} B$

$$\begin{split} \hat{H} &= \sum_{p,\sigma=\uparrow,\downarrow} \left(\frac{p^2}{2m} - \mu \right) \hat{a}_{p,\sigma}^{\dagger} \hat{a}_{p,\sigma} + V \left(\epsilon_0 - 2\mu \right) \bar{B}B + g \left(\bar{B} \sum_p \hat{a}_{p,\uparrow} \hat{a}_{-p,\downarrow} + B \sum_p \hat{a}_{-p,\downarrow}^{\dagger} \hat{a}_{p,\uparrow}^{\dagger} \right) \\ \text{minimize the ground state energy} \quad \frac{\partial}{\partial \bar{B}} E_{\text{G.S.}} \left(B \right) = 0 \end{split}$$

Two important equations

$$\omega_0 - 2\mu = \frac{g^2}{2} \int \frac{d^3 p}{(2\pi)^3} \left[\frac{1}{\sqrt{\left(\frac{p^2}{2m} - \mu\right)^2 + g^2 B^2}} - \frac{2m}{p^2} \int \frac{d^3 p}{(2\pi)^3} \left[1 - \frac{\frac{p^2}{2m} - \mu}{\sqrt{\left(\frac{p^2}{2m} - \mu\right)^2 + g^2 B^2}} \right] + 2B^2 = n$$

BCS-BEC crossover

BEC (Bose-Einstein condensate) of the diatomic molecules

BCS (Bardeen-Cooper-Schrieffer) superconductor

$$\hat{H} = \sum_{p,\sigma=\uparrow,\downarrow} \frac{p^2}{2m} \hat{a}^{\dagger}_{p,\sigma} \hat{a}_{p,\sigma} + \sum_q \left(\epsilon_0 + \frac{q^2}{4m}\right) \hat{b}^{\dagger}_q \hat{b}_q + \frac{g}{\sqrt{V}} \left(\sum_{p,q} \hat{b}^{\dagger}_q \hat{a}_{\frac{q}{2}+p,\uparrow} \hat{a}_{\frac{q}{2}-p,\downarrow} + \sum_{p,q} \hat{b}_q \hat{a}^{\dagger}_{\frac{q}{2}-p,\downarrow} \hat{a}^{\dagger}_{\frac{q}{2}+p,\uparrow}\right)$$

 ω_0

One channel model limit

 \hat{H}

Interesting limit:
$$\epsilon_0 \to \infty, \ g \to \infty, \ \frac{g^2}{\epsilon_0} = \lambda$$

$$\frac{d\hat{b}_q}{dt} = i[\hat{H}, \hat{b}_q] = -\epsilon_0 \hat{b}_q - \frac{g}{\sqrt{V}} \hat{a}_{\frac{q}{2}+p,\uparrow} \hat{a}_{\frac{q}{2}-p,\downarrow} \approx 0$$
$$= \sum_{p,\sigma=\uparrow,\downarrow} \frac{p^2}{2m} \hat{a}_{p,\sigma}^{\dagger} \hat{a}_{p,\sigma} - \frac{\lambda}{V} \sum_{q,p,p'} \hat{a}_{\frac{q}{2}+p,\uparrow} \hat{a}_{\frac{q}{2}-p,\downarrow} \hat{a}_{\frac{q}{2}-p',\downarrow} \hat{a}_{\frac{q}{2}+p',\uparrow}$$

One channel model: interacting particles with variable attractive interactions

The physics of one channel model

$$\hat{H} = \sum_{p,\sigma=\uparrow,\downarrow} \frac{p^2}{2m} \hat{a}_{p,\sigma}^{\dagger} \hat{a}_{p,\sigma} - \frac{\lambda}{V} \sum_{q,p,p'} \hat{a}_{\frac{q}{2}+p,\uparrow} \hat{a}_{\frac{q}{2}-p,\downarrow} \hat{a}_{\frac{q}{2}-p',\downarrow} \hat{a}_{\frac{q}{2}+p',\uparrow} \hat{a}_{\frac{q}{2}+p',\uparrow} \hat{a}_{\frac{q}{2}+p',\downarrow} \hat{a}_{\frac{q}{2}+p',\uparrow} \hat{a}_{\frac{q}{2}+p',\downarrow} \hat{a}_{\frac{q$$

Critical interaction strength for two fermions to form a bound state $~\lambda>\lambda_c$

One channel model: superconductor

$$\begin{split} \hat{H} &= \sum_{p,\sigma=\uparrow,\downarrow} \frac{p^2}{2m} \hat{a}_{p,\sigma}^{\dagger} \hat{a}_{p,\sigma} - \frac{\lambda}{V} \sum_{q,p,p'} \hat{a}_{\frac{q}{2}+p,\uparrow} \hat{a}_{\frac{q}{2}-p,\downarrow} \hat{a}_{\frac{q}{2}-p',\downarrow} \hat{a}_{\frac{q}{2}+p',\uparrow} \\ &- \frac{m}{4\pi a} = \frac{1}{2} \int \frac{d^3 p}{(2\pi)^3} \left[\frac{1}{\sqrt{\left(\frac{p^2}{2m} - \mu\right)^2 + \Delta^2}} - \frac{2m}{p^2} \right] \\ &n = \int \frac{d^3 p}{(2\pi)^3} \left[1 - \frac{\frac{p^2}{2m} - \mu}{\sqrt{\left(\frac{p^2}{2m} - \mu\right)^2 + \Delta^2}} \right] \qquad \Delta \text{- gap function} \end{split}$$

Unlike small g case, these equations are valid only for very small λ or very large λ

Small λ - BCS

$$-\frac{m}{4\pi a} = \frac{1}{2} \int \frac{d^3 p}{(2\pi)^3} \left[\frac{1}{\sqrt{\left(\frac{p^2}{2m} - \mu\right)^2 + \Delta^2}} - \frac{2m}{p^2} \right]$$

Small λ - small and negative a - large integral - small Δ

$$\Delta \sim e^{\frac{\pi}{4k_F a}}$$

Conventional weakly coupled superconductor

$$-\frac{m}{4\pi a} = \frac{1}{2} \int \frac{d^3 p}{(2\pi)^3} \left[\frac{1}{\sqrt{\left(\frac{p^2}{2m} - \mu\right)^2 + \Delta^2}} - \frac{2m}{p^2} \right]$$

Large λ - small and positive *a*. $\mu < 0, |\mu| >> \Delta$

$$-\frac{m}{4\pi a} = \frac{1}{2} \int \frac{d^3 p}{(2\pi)^3} \left[\frac{1}{\frac{p^2}{2m} + |\mu|} - \frac{2m}{p^2} \right] \longrightarrow \mu = -\frac{1}{2ma^2}$$

µ - binding energy of a diatomic molecule

This is a Bose condensate of noninteracting (weakly interacting) diatomic molecules It has a very high BEC transition temperature $T\sim \frac{\hbar^2}{m\ell^2}$

If we arranged for this BEC among electrons in a solid, T would have been 10,000K

Chemical potential

Unitary point

Ground state energy is proportional to the Fermi energy in the absence of interactions

$$E_g = \xi \epsilon_F$$

 $\boldsymbol{\xi}$ is a constant which can be determined only numerically:

$$\xi \approx 0.4$$

Transition temperature

BCS: conventional superconductor BEC: weakly interacting diatomic molecules

RG picture of the BCS-BEC crossover

RG picture of the BCS-BEC crossover

RG picture of the BCS-BEC crossover

Feshbach resonance for bosons

Molecular relaxation processes

These fly out of the condensate

Suppressed for fermions due to Pauli principle

Not suppressed for bosons

Results in the bosonic condensate lifetime close to resonance

$$au \sim rac{m\ell^2}{\hbar}$$
 That's very short, less than a ms

The end