Topological Physics in Band Insulators

Gene Mele
University of Pennsylvania

Lecture Topics:

1. Topological Band Insulators (mostly 1D)
2. Topological Insulators (2D and 3D)
3. Low energy models for real materials
4. Wannier representations and band projectors

Collaborators:

Charlie Kane
David DiVincenzo
Liang Fu Petr Kral
Andrew Rappe
Michael Rice
Saad Zaheer
Fan Zhang

Electronic States of Matter
 Benjamin Franklin (University of Pennsylvania)

That the Electrical Fire freely removes from Place to Place in and thro' the Substance of a Non-Electric, but not so thro' the Substance of Glass. If you offer a Quantity to one End of a long rod of Metal, it receives it, and when it enters, every Particle that was before in the Rod pushes it's Neighbour and so on quite to the farther End where the Overplus is discharg'd... But Glass from the Smalness of it's Pores, or stronger Attraction of what it contains, refuses to admit so free a Motion. A Glass Rod will not conduct a Shock, nor will the thinnest Glass suffer any Particle entring one of it's Surfaces to pass thro' to the other.

Band Insulators (orthodoxy)

Examples: $\mathrm{Si}, \mathrm{GaAs}, \mathrm{SiO}_{2}$, etc
Because of the "smallness of its pores"

Band Insulators (atomic limit)

Examples: atoms, molecular crystals, etc.
"Attraction for what it contains"

Transition from covalent to atomic limits

Weaire \& Thorpe (1971)

Modern view: Gapped electronic states are equivalent

Kohn (1964): insulator is exponentially insensitivity to boundary conditions

Postmodern: Gapped electronic states are distinguished by topological invariants

Topological States

Topological classification of valence manifold
Examples in 1D lattices: variants on primer

Cell Doubling (Peierls, SSH)

$$
H(k)=\left(\begin{array}{cc}
0 & t_{1}+t_{2} e^{-2 i k a} \\
t_{1}+t_{2} e^{2 i k a} & 0
\end{array}\right)
$$

$$
\text { smooth gauge } \quad H\left(k+\frac{2 \pi}{2 a}\right)=H(k)
$$

$H(k)=\vec{h}(k) \cdot \vec{\sigma}\left\{\begin{array}{l}h_{x}=t_{1}+t_{2} \cos 2 k a \\ h_{y}=t_{2} \sin 2 k a \\ h_{z}=0\end{array}\right.$
Su, Schrieffer, Heeger (1979)

Project onto Bloch Sphere

$$
\begin{gathered}
H=|h(k)| \vec{d}(k) \cdot \vec{\sigma} \\
|h(k)|=\sqrt{t_{1}^{2}+t_{2}^{2}+2 t_{1} t_{2} \cos 2 k a} \\
\text { Closed loop }
\end{gathered}
$$

Formulation as a Berry's Phase

$$
\begin{aligned}
& \psi_{-}=\frac{1}{\sqrt{2}}\binom{1}{-e^{i \phi}} ; \psi_{+}=\frac{1}{\sqrt{2}}\binom{1}{e^{i \phi}} \\
& \operatorname{Im}\left\langle\psi_{\lambda} \left\lvert\, \frac{\partial \psi_{\lambda}}{\partial \lambda}\right.\right\rangle=\frac{\partial \gamma}{\partial \lambda} \quad \psi_{\lambda}=e^{i \gamma}\left|\psi_{\lambda}\right| \\
& \gamma=\oint \frac{\partial \gamma}{\partial \phi} d \phi \quad\left\{\begin{aligned}
\pi: \text { A phase } & \text { Closed loop } \\
0: \text { B phase } & \text { Retraced path }
\end{aligned}\right.
\end{aligned}
$$

Formulation using Electric Polarization

$$
\begin{aligned}
& \vec{h}(k) \Rightarrow \vec{h}(k, \delta) \\
& \begin{array}{l}
\delta=t_{1}-t_{2} \\
\vec{\lambda}=(k, \delta)
\end{array} \\
& \gamma_{A}-\gamma_{B}=\operatorname{Im} \underbrace{\oint\left\langle\psi \left\lvert\, \frac{\partial \psi}{\partial k}\right.\right\rangle}_{A_{k}:} d k
\end{aligned}
$$

Stokes Integral of Berry Curvature

$$
\begin{gathered}
\vec{h}(k) \Rightarrow \vec{h}(k, \delta) \\
\delta=t_{1}-t_{2} \\
\vec{\lambda}=(k, \delta) \\
\gamma_{A}-\gamma_{B}=\int_{S} \operatorname{Im}\{\langle\left.\frac{\underbrace{}_{\text {Aphase }}}{\partial \delta} \right\rvert\, \frac{\partial \psi}{\partial k}\rangle-\left\langle\frac{\partial \psi}{\partial k} \left\lvert\, \frac{\partial \psi}{\partial \delta}\right.\right\rangle\} d^{2} \lambda
\end{gathered}
$$

$F_{k, \delta}$ Berry curvature

Polarization from adiabatic current

$$
\begin{aligned}
& \vec{h}(k) \Rightarrow \vec{h}(k, \delta) \\
& \delta=t_{1}-t_{2} \\
& \vec{\lambda}=(k, \delta) \\
& \gamma_{A}-\gamma_{B}= \begin{cases}\frac{\Omega}{2} & \Omega: \text { Solid angle swept out } \\
\frac{2 \pi}{e} \int d t\langle J\rangle_{\delta} & =\frac{2 \pi}{e L}\left(P_{A}-P_{B}\right)\end{cases} \\
&\langle J\rangle_{\delta} \text { Ground state current (via Kubo) }
\end{aligned}
$$

Example: dimerized 1D lattice

$$
\gamma=\pi
$$

$$
P= \pm \frac{e}{2}
$$

$$
\left.\begin{array}{l}
\Omega \rightarrow \Omega+4 \pi \\
\gamma \rightarrow \gamma+2 \pi \\
P \rightarrow P+e
\end{array}\right\}
$$

displaces a single charge across each unit cell

Topological Domain Walls

$$
Q^{*}= \pm \frac{e}{2} \quad \text { (spinless) }
$$

State Counting

Particle-hole symmetry

$$
C H C^{-1}=-H ; \quad C=\sum_{n}(-1)^{n} c_{n}^{\dagger} c_{n}
$$

on odd numbered chain
self conjugate state on one sublattice

...with spin

spin-less charge
spin-less charge

...for strong coupling

Continuum Model

$$
\begin{gathered}
\left(\begin{array}{cc}
e^{-\frac{i \pi}{4}} & 0 \\
0 & e^{\frac{i \pi}{4}}
\end{array}\right) H\left(\frac{\pi}{2 a}+q\right)\left(\begin{array}{cc}
e^{\frac{i \pi}{4}} & 0 \\
0 & e^{-\frac{i \pi}{4}}
\end{array}\right)=-i v_{F} \hat{\sigma}_{x} \frac{\partial}{\partial x}+m \hat{\sigma}_{y} \\
E= \pm \sqrt{m^{2}+v^{2} q^{2}}
\end{gathered}
$$

"relativistic bands" back-scattered by mass $m=t_{1}-t_{2}$

Mass inversion at domain wall

Sublattice-polarized $\mathrm{E}=0$ bound state

$$
\psi(x)=A \exp \left[-\int_{0}^{x} \frac{m(x)}{v} d x\right]\binom{0}{1} \quad \xi=\frac{\hbar v}{m}
$$

Jackiw-Rebbi (1976)

Backflow of filled Fermi sea

48브․

Heteropolar Lattice

$$
\begin{aligned}
H=t & \sum_{n} c_{n+1}^{\dagger} c_{n}+c_{n}^{\dagger} c_{n+1} \\
& +{ }_{\sim}^{\delta} \sum_{n}(-1)^{n}\left(c_{n+1}^{\dagger} c_{n}+c_{n}^{\dagger} c_{n+1}\right)+\underset{\text { modulate bond strength }}{\Delta} \sum_{n}(-1)^{n} c_{n}^{\dagger} c_{n} \\
& { }_{\text {magered potential }}
\end{aligned}
$$

Rice and GM (1982)

On Bloch Sphere

$$
H(k)=\vec{h}(k) \cdot \vec{\sigma}\left\{\begin{array}{l}
h_{x}=t+\delta+(t-\delta) \cos 2 k a \\
h_{y}=(t-\delta) \sin 2 k a \\
h_{7}=\Delta
\end{array}\right.
$$

High symmetry cases

Continuously tunes the domain wall charge

$$
Q^{*}=n e+Q_{v}(\delta, \Delta)
$$

Heteropolar NT's of Boron Nitride

BN is the III-V variant of graphene. The B and N occupy different sublattices
-- this lowers the symmetry and leads to new physical effects

Conducting v. Semiconducting Nanotubes

Conducting v. Semiconducting Nanotubes

Nanotube Polarization

ionicity

$$
H\left(q_{x}, \delta, \Delta\right)=\Psi^{\dagger}\left(\begin{array}{cc}
\Delta & \hbar v_{F}\left(q_{x}-i \delta\right) \\
\hbar v_{F}\left(q_{x}+i \delta\right) & -\Delta
\end{array}\right) \Psi
$$

Nanotube Polarization

GM and P. Kral (2002)

Polarization and elastic strain
 (twist is a gauge field that modulates δ)

Heteropolar NT's are molecular piezoelectrics

GM and P. Kral (2002)

One Parameter Cycle
 e.g. periodic tube torsion modulates P

Bond strengths are modulated periodically
in a reversible cycle

Two Parameter Cycle ionicity and chirality are nonreciprocal potentials

Nonreciprocal cycle enclosing a point of degeneracy with Chern number:

$$
n=\frac{1}{4 \pi} \int_{S} d k d t\left[\vec{d}(k, t) \cdot\left(\partial_{k} \vec{d} \times \partial_{t} \vec{d}\right)\right]
$$

Thouless Charge Pump

$H(k, t+T)=H(k, t)$
with no gap closure on path

$$
\begin{aligned}
\Delta P & =\frac{e}{2 \pi}\left(\int_{t+T} A_{k} d k-\int_{t} A_{k} d k\right) \\
& =\frac{e}{2 \pi} \int_{S} F_{k, t} d k d t=n e
\end{aligned}
$$

$\mathrm{n}=0$ if potentials commute
Thouless (1983)

Quantized Hall Conductance

Adiabatic flux insertion through 2DEG on a cylinder:

$$
2 \pi R \int d t\langle j\rangle=2 \pi R \int d t \sigma_{x y} E=Q
$$

$$
\sigma_{x y} \frac{h}{e}=Q=n e
$$

$$
\sigma_{x y}=n \frac{e^{2}}{h} \quad \begin{gathered}
\text { TKNN invariant } \\
\text { is the Chern number }
\end{gathered}
$$

Laughlin (1981), Thouless et al. (1983)

Some References:

Berry Phases: Di Xiao, M-C Chang, Q. Niu Rev. Mod. Phys. 82, 1959 (2010)

SSH Model: A.J. Heeger. S. Kivelson, J.R. Schrieffer and W-P Su, Rev. Mod. Phys. 60, 781 (1988)

Heteropolar One Dimensional Lattice: M. J. Rice and E.J. Mele, Phys. Rev. Lett. 49, 1455 (1982)

Heteropolar Nanotubes: E.J. Mele and P. Kral Phys. Rev. Lett. 88, 05603 (2002)

