Topological Physics in Band Insulators II Gene Mele University of Pennsylvania

Topological Insulators in Two and Three Dimensions

The canonical list of electric forms of matter is actually incomplete

Conductor

Insulator

18th century

Superconductor

20th century

Topological Insulator

Electronic States of Matter

Topological Defects in (CH)_x

Self conjugate state from Dirac mass inversion

Summary of First Lecture: The unsual spin charge relation appears in the strong coupling limit, where it is a property of atoms and decoupled dimers.

This is <u>adiabatically connected</u> to a continuum limit where it arises as a transition in the ground state topology.

Summary of Second Lecture: This transition occurs at the boundary between a topological insulator and an ordinary insulator.

Electronic States of Matter

Topological Insulators

This novel electronic state of matter is gapped in the bulk and supports the transport of spin and charge in gapless edge states that propagate at the sample boundaries. The edge states are ... insensitive to disorder because their directionality is correlated with spin.

2005 Charlie Kane and GM University of Pennsylvania

Electron spin admits a topologically distinct insulating state

Electronic States of Matter

Topological Insulators

This state is realized in three dimensional materials where spin orbit coupling produces a bandgap "inversion."

It has boundary modes (surface states) with a 2D Dirac singularity protected by time reversal symmetry.

 Bi_2Se_3 is a prototype.

.... it has a critical electronic state

The dispersion of a free particle in 2D..

...is replaced by an unconventional E(k) relation on the graphene lattice

The low energy theory is described by an effective mass theory for massless electrons

(Bloch Wavefunction) = (Wavefunction(s) at K) • $\psi(\vec{r})$

$$H_{eff}\psi(\vec{r}) = -iv_F \left(\vec{\sigma} \cdot \nabla\right)\psi(\vec{r})$$

It is a massless Dirac Theory in 2+1 Dimensions

NOTE: Here the "spin" degree of freedom describes the sublattice polarization of the state, called <u>pseudospin</u>. In addition electrons carry a <u>physical</u> spin ½ and an <u>isospin</u> ½ describing the valley degeneracy.

D.P. DiVincenzo and GM (1984)

Valley mixing from broken translational symmetry

A continuum of structures all with $\sqrt{3} \times \sqrt{3}$ period hybridizes the two valleys

Valley mixing from broken translational symmetry

Charge transfer from broken inversion symmetry

$$H' = \Delta_{\rm BN} \begin{pmatrix} \sigma_z & 0 \\ 0 & \sigma_z \end{pmatrix}_{\tau}$$

Orbital currents from modulated flux (Broken T-symmetry)

Gauged <u>second neighbor</u> hopping breaks T. "Chern insulator" with Hall conductance e²/h

FDM Haldane "Quantum Hall Effect without Landau Levels" (1988)

Topological Classification

Topological Classification

Crucially, this ignores the electron spin

Coupling orbital motion to the electron spin

Microscopic $H_{so} = \vec{s} \cdot \nabla V \times \vec{p}$ $V(\vec{r}) = V(\vec{r} + \vec{T})$

Lattice model

$$H_{SO} = i\lambda \left(\psi_m^{\dagger} \,\vec{\sigma} \,\psi_n - \psi_n^{\dagger} \,\vec{\sigma} \,\psi_m \right) \cdot \vec{\varepsilon} \times (\vec{r}_m - \vec{r}_n)$$

Spin orbit field Bond vector

Intersite hopping with spin precession

Coupling orbital motion to the electron spin

Breaking mirror symmetry with a perpendicular spin orbit field

$$\varepsilon_{xy} = 0, \, \varepsilon_z \neq 0 \quad H_R = \vec{s} \cdot \varepsilon \hat{n} \times \vec{p} = -\varepsilon \hat{n} \cdot \vec{s} \times \vec{p}$$
$$-it_1 \psi_n^{\dagger} \left(\hat{n} \cdot \vec{s} \times \vec{d}_{mn} \right) \psi_m$$

Modifies first neighbor coupling by spin dependent potential

$$\Delta_R = \lambda_R \left(\sigma_x \tau_z s_y - \sigma_y s_x \right)$$

Renormalizes Fermi velocity and can fission the Dirac point

Coupling orbital motion to the electron spin

Preserve mirror symmetry with a parallel spin orbit field

Generates a <u>spin-dependent</u> Haldane-type mass (two copies)

$$\Delta_{SO} = \lambda_{SO} \ \sigma_z \tau_z s_z$$

Mass Terms (amended)

*This term respects all symmetries and is therefore present, though possibly weak

For carbon definitely weak, but still important

Topologically different states

Charge transfer insulator

Spin orbit coupled insulator

$$n = \frac{1}{4\pi} \int_{S} d^{2}k \left[\vec{d}(k_{1}, k_{2}) \cdot \left(\partial_{k_{1}} \vec{d} \times \partial_{k_{2}} \vec{d} \right) \right]$$
$$n = 0 \qquad \qquad n = 1 + (-1) = 0$$

Topology of Chern insulator in a T-invariant state

Boundary Modes

Quantum Spin Hall Effect

Its boundary modes are spin filtered propagating surface states (edge states)

Comments

The H² model conserves S_z and is oversimplified. Spin, unlike charge, is not conserved.

But the edge state picture is robust!

Boundary modes: Kramers pair

(a) Band crossing protected by T-reversal symmetry

(b) Elastic backscattering eliminated by T-symmetry

QSHE: quantum but not quantized

More comments

Counter-propagating <u>surface</u> modes reflect the <u>bulk</u> topological order. They can only be eliminated by a phase transition to a non-topological phase.

weak sublattice strong sublattice symmetry breaking symmetry breaking

Symmetry Classification

Conductors: unbroken state¹

Insulators: broken translational symmetry: bandgap from Bragg reflection²

Superconductor: broken gauge symmetry

Topological Insulator ?

¹possibly with mass anisotropy

²band insulators

Symmetry Classification

Ordinary insulators and topological insulators are distinguished by a two-valued (even-odd) surface index.

Kramers Theorem: T-symmetry requires $E(k,\uparrow) = E(-k,\downarrow)$

But at special points k and -k are identified (TRIM)

even: ordinary (trivial) odd: topological

Bulk Signature

The <u>surface</u> modes reflect <u>bulk</u> topological order distinguished by a bulk symmetry

e.g. TKKN invariant = Chern number = Hall conductance

Valence Band

Γ,

Γ_h

Γ,

$$n = \frac{1}{4\pi} \int_{S} d^{2}k \left[\vec{d}(k_{1},k_{2}) \cdot \left(\partial_{k_{1}} \vec{d} \times \partial_{k_{2}} \vec{d} \right) \right]$$

T-reversal symmetry requires n=0 "Spin Chern number" in S_z conserving model is nontopological TI index is defined mod 2

Valence Band

Bulk time-reversal invariant momenta

Symmetry-protected twofold degeneracy at opposing points (**d** and –**d**) on Bloch sphere

Comparison of T reversal pairs allows topological classification of ground state

Diagnostic for Topological Order:

Periodic part of Bloch state: $u_n(\vec{k}) = e^{-i\vec{k}\cdot\vec{r}}\psi_n(\vec{k};\vec{r})$ Q. **How different are** $\{\Theta u_n(\vec{k})\}_N$ and $\{u_n(-\vec{k})\}_N^2$ A. For a trivial atomic insulator they are the **same** A. For N bands quantify by $w_{mn}(\vec{k}) = \langle u_m(-\vec{k}) | \Theta | u_n(\vec{k}) \rangle$

Antisymmetric: periodic complex-valued $P(\vec{k}) = Pf(w)$

$$P(\vec{k}) = 0 \begin{cases} \text{points (vortices) at } \pm k \\ \text{but never at TRIM (k=-k)} \end{cases}$$

Kane and GM (2005)

Pfaffian Test

Count the zeroes of P(k) in <u>one half</u> of Brillouin zone

Zero: Trivial, like an atomic insulator

- **Even**: Adiabatically **connected** to atomic insulator by pairwise annihilation of its zeroes
- **Odd**: Can't be adiabatically connected to atomic insulator since $P(\vec{k}) = 0$ is **forbidden** at TRIM.

Direct integration requires a smooth gauge and is awkward

Pointwise Integration Rules

 Γ_1

$$(-1)^{v} = \prod_{a} \delta_{a} \qquad \delta_{a} = \frac{\operatorname{Pf}(w(\Lambda_{a}))}{\sqrt{\det w(\Lambda_{a})}} = \pm 1$$

Track sign changes of δ 's between TRIM Atomic insulator: all $\delta_a > 0$ (or < 0)

 $\delta_a \delta_b < 0$: exchange Kramers partners

Fu, Kane and GM (2007)

With inversion symmetry

Ordinary insulators and topological insulators are distinguished by a two-valued (v = 0,1) bulk index.

Fu, Kane and GM (2007)

Example: one orbital diamond lattice

Example: Bi_xSb_{1-x}

TABLE II. Symmetry labels for the Bloch states at the 8*T* invariant momenta Λ_a for the five valence bands of Bi and Sb. δ_a 's are given by Eq. (12) and determine the topological class (ν_0 ; $\nu_1\nu_2\nu_3$) by relations similar to Eq. (10). The difference between Bi and Sb is due to the inversion of the L_s and L_a bands that occurs at $x \sim 0.04$.

Bi: Class (0;000)							Sb: Class (1;111)						
Λ_a	Symmetry label					δ_a	Λ_a	Symmetry label					δ_a
1Г	Γ_6^+	Γ_6^-	Γ_6^+	Γ_6^+	Γ_{45}^+	-1	1Γ	Γ_6^+	Γ_6^-	Γ_6^+	Γ_6^+	Γ^+_{45}	-1
3L	L_s	L_a	L_s	L_a	L_a	-1	3L	L_s	La	L_s	L_a	L_s	+1
3X	X_a	X_s	X_s	X_a	X_a	-1	3X	X_a	X_s	Xs	X_a	Xa	-1
1T	T_6^-	T_6^+	T_6^-	T_{6}^{+}	T_{45}^{-}	-1	1T	T_6^-	T_6^+	T_6^-	T_6^+	T_{45}^{-}	-1

Fu Kane (2007)

Some References:

Review Article: M.Z. Hasan and C.L. Kane Rev. Mod. Phys. 82, 3045 (2010)

QSH in Graphene: C.L. Kane and E.J. Mele Phys. Rev. Lett. 95, 226801 (2005)

Z2 insulators: C.L. Kane and E.J. Mele Phys. Rev. Lett. 95, 146802 (2005)

Three Dimensional TI's. L. Fu, C.L. Kane and E.J. Mele Phys. Rev. Lett. 98, 106803 (2007)

Inversion symmetric TI's. L. Fu and C.L. Kane Phys. Rev. B 76, 045302 (2007)

