Charge pumping with Coulomb blockade devices

Yuri Pashkin ypashkin@mail.ru

Physics Department, Lancaster University, UK NEC Smart Energy Research Laboratories and RIKEN Advanced Science Institute, Japan

- O. Astafiev, S. Kafanov, J. S. Tsai
- J.P. Pekola, O.-P. Saira, M.M. Möttönen (Aalto U)
- A. Kemppinen, V.F. Maisi (MIKES)
- F. Hoehne (TU Munich)

D.V. Averin (SUNY)

Until 2007: Fundamental Research Laboratories Until 2010: Nano Electronics Research Labs. Until 2012; Green Innovation Research Labs. Tsukuba, Ibaraki, Japan

RMP submitted (2012)

Windsor Summer School – 16 August 2012

International System of Units (SI)

SI base units:

meter for length

kilogram for mass

second for time

ampere for electric current

kelvin for temperature

candela for luminous intensity

mole for the amount of substance.

<u>Pre-SI definition of A:</u> the current required to deposit 1.118 milligrams of silver per second from a solution of silver nitrate

<u>SI definition</u>: The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 meter apart in vacuum, would produce between these conductors a force equal to 2×10^{-7} N/m." 9th CGPM (1948)

impractical, usually realized through the Josephson and Hall effects

Motivation

Idea: to define the units in terms of fundamental constants h, e, $k_{\rm B}$ and $N_{\rm A}$

In 2005, CIPM approved the preparation of new definitions for the kilogram, the ampere and the kelvin

1. Redefinition of the unit of ampere

Proposed definition: Ampere = Coulomb/second

will not depend on the definition of the meter and kilogram

1 Coulomb = $6.24150948 \times 10^{18} e \Rightarrow 1 \text{ A} = 6.24150948 \times 10^{18} e/s$

Can we pump electrons

Frequency 6×10^{18} Hz too high for controlling solid-state devices:

- working with lower frequency
- parallelization of charge pumps
- current amplification (CCC: gain 10⁴, accuracy 10⁻⁸)

Motivation (2)

2. Quantum metrological triangle

Reaching stable current ~ 1 nA:

- understanding error processes
- effect of the EM environment

Turnstiles in public transportation

passengers can go one by one

Parallel turnstiles in public transportation

Parallel operation possible, but not synchronized

Error events in public transportation

must be suppressed

Coulomb blockade

C (F)	0.8x10 ⁻¹⁵	0.8x10 ⁻¹⁶	0.8x10 ⁻¹⁷	0.8x10 ⁻¹⁸
Ec	100 µeV	1 meV	10 meV	0.1 eV
<i>E</i> _c /k _в (К)	1	10	100	1000

Single-electron transistor (SET)

Implementations of SETs

Granular films

Kuzmin and Likharev JETP Lett. (1987) Barner and Ruggiero PRL (1987)

Electron-beam lithography +

STM configuration

van Bentum et al., *PRL* (1987) Wilkins et al., *PRL* (1989)

2D gas – split gates

Meirav et al. PRL (1990)

Implementations of SETs (2)

Takahashi et al. Electron. Lett. (1995)

EB based technologies:

- excellent control of parameters
- precise positioning on chip

Charge pumps: operation principle

Cyclic gate operation (with frequency f), $q_i = C_{gi}V_{gi}/e$, charge transfer through the circuit

 10^{-8} accuracy in f !

H. Pothier et al., EPL 17, 249 (1992)

Sources of quantized current

Single-electron turnstiles and pumps: Geerligs et al. 1990, Pothier et al. 1992, Keller et al. 1996, Lotkhov et al. 2000 High accuracy, but low current:

 $I < 10 \, pA$

Geerligs et al. 1991, Aumentado et al. 2003 *Mechanical shuttles:*

Semiconducting devices:

Konig et al. 2008 *Graphene pumps:* Low et al. 2012

inaccurate

Yet again a single-electron transistor

Hybrid single-electron pump (SINIS)

One electron is transferred during each cycle of the control frequency: I = ef

Stability diagrams

Qualitative difference: stability diagrams overlap in the hybrid SET, but not in the normal-metal SET

Thermal error rates

Probability (per cycle) of tunnelling in wrong direction is approximately

$$\exp\left(-\frac{eV}{k_BT_N}\right)$$

Probability (per cycle) of tunnelling an extra electron in forward direction is approximately

$$\exp(-\frac{2\Delta - eV}{k_B T_N})$$

Optimum operation point is therefore at $eV = \Delta$, where the error rate is

$$\sim \exp(-\frac{\Delta}{k_B T_N})$$

At 100 mK for aluminium as the superconductor ($k_{\rm B}T_N/\Delta = 0.04$), this error is << 10⁻⁸

(Possibility of self-cooling, see S. Kafanov et al. PRL (2009))

Higher order processes

Electron cotunneling in SINIS structures is strongly suppressed

Andreev reflection and CP-SE cotunneling

D. Averin and J.P. Pekola, PRL 101, 066801 (2008)

A. Kemppinen et al., APL 94, 172108 (2009)

Pump with high charging energy ($E_c/\Delta \sim 10$)

Environment-assisted tunneling (EAT)

Tunneling rate depends not only on the junction parameters, but also on the EM environment.

P(E)-theory: tunneling rate through the junction taking into account energy exchange between electrons and EM environment.

Effect of EM environment is the same as the effect of the Dynes density of states

J.P. Pekola et al., arXiv1001:3853 PRL **105**, 026803 (2010)

Excellent agreement of exp. data with the model taking into account EM environment with weak dissipation and finite temperature

$$n_S^{\gamma}(E) = |\operatorname{Re}\frac{\gamma - i\gamma}{\sqrt{(E/\Delta + i\gamma)^2 - 1}}$$

SIN junctions with different EM environment

Subgap leakage in NIS junctions and SINIS pumps

first experiments $\gamma = R_{\rm n}/R_{\rm sg} > 10^{-4}$ 1 0.1 current (pA) 0.8 Current (nA) 0.4 voltage (mV) 0 Ν -0.4 eV_r -0.8 -1 -0.5 0 0.5 -1 1 Voltage (mV)

Scheme for parallel pumping of electrons

Parallel electron pumping

Summary

• current level ~ 1 nA seems feasible

- parallel operation of 10 - 20 electron pumps

• reaching accuracy of 10⁻⁶

- $E_{\rm c}/\Delta \approx 2$ - 4

- shunting devices with large capacitance
- square-wave control signal
- thermalization of quasiparticles
- optimization of the control signal

- well-calibrated, stable instruments needed
- temperature control

Coherent Cooper pair pumping using nonadiabatic voltage pulses

F. Hoehne et al., arXiv:1109.5543 (2011) PRB 85, 140504(R) (2012)

Nonadiabatic qubit manipulation with probe readout

Superconducting quantum pump

Superconducting quantum pump

