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Motivation

Whilst any company transporting goods is looking to
make a profit, it is only ethical that the risk of
transporting their goods is considered.

In order to best fulfil this responsibility companies must
consider a model that minimises risk but also minimises
the time and cost of material transportation.

Routes are modelled as networks to facilitate this.

Modelling Risk

The most commonly used model is Traditional Risk 1:

TR =
n∑

i=1

pici

Here pi is the probability of an accident on a link i and ci is the consequence of this accident. An example of a
two link network is shown below:
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Selecting the Consequence Vectors

Selecting the consequence values requires the impact radius for a hazard and the density of the population within
this radius:

Hazard Impact Radius (Miles)
Fire 0.071
Explosion 0.186
Nuclear 0.772

Table 1: Three common hazards and their impact radius

In order to cover the area accurately we propose the use of a rectangular area with semi-circles modelling the
population coverage at the nodes, hence:

ci = ρ(i)
(
2rl + πr2

)
This, however, leads to double counting or over estimation, as seen in the shaded area below:

It is possible, however, to remove this error using the exact error expression:
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2
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360
+ r2π

]
where ρ(i) is the population density, r is the radius and α the joining angle.

Perceived Risk

Population Density is not the only measure of a severe
accident.

How it will be perceived can also be considered.

For this there is the Perceived Risk model2:

TR =
n∑

i=1

pic
qi
i

The image to the right illustrates the difference
between these two risk models.

Modelling Profitability

It is also possible to model the profitability, P, of a network 3. Taking the parameters:

ps Probability of successful delivery of goods
pf Probability of successful delivery of goods but sale is not as profitable
pc Probability of a catastrophe occurring on the route
∆G Profit from a good sale
∆B Profit / loss from a non-viable sale
∆C Loss resulting from a catastrophe

and applying the CLT gives P ∼ N(µ, σ2) with parameters:

µ = ps∆G + pf ∆B + pc∆C

σ2 = pspf (∆G −∆B)2 + pc

[
ps (∆G + ∆C )2 + pf (∆G −∆)2

]
From this it is possible to calculate the expected profit from a route.

Optimal Solutions

One widely used optimisation method is policy iteration1.
This allows for both risk and route time, τi , to be minimized together.

ν(k) = minu∈P

{
n∑

i=1

τi + Jµ(u)

}
where u is the path in the set, P of all paths. To find a minimizer we follow these steps:

1 Find a minimum path using Djikstra’s Algorithm
2 Evaluate the policy given by ν(k)
3 For each edge i ∈ P\U see if altering the path reduces the value of ν(k).
4 Once the new edges have been added see if ν(1) = ν(2). If so, then the optimal policy has been found. If

not, repeat the process for ν(2).

We can display a network using the ordered triple (pi , ci , τi):
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Accident Locations

It is possible to model the location of the accident by linking the travel time to a Poisson Process with rate λ.
We can derive the probabiity of an accident after time t as:

P(N = 0) = e−λt

P(N > t) = P(no accident up until point t)

= e−λt

We are able to write this as an Exponential CDF:

FX (t) =

{
1− e−λt t > 0

0 otherwise

Convolution then enables the accident probability on an entire route to be modelled as Tn ∼ Gamma (n, λ) where
n is the number of links.
It is also possible to fit a Generalized Poisson Distribution to the process4.

Pt(θ, λ) =
λ (λ + tθ)t−1 e−λ−tθ

t!

Confidence intervals can then be generated for θ and λ
using accident data and a χ2

2 test.

The figure on the right shows asymptotic confidence
interval behaviour, using accident data from the USA
for 1990 to 2016.

Comparing the Fit of the Processes

Two tests can be used to assess the quality of the fit of the Poisson Process:

Likelihood Ratio Test

c =
L(θ̂1)

L(θ̂0)
with test statistic − 2 log(c) ∼ χ2

k

Kuiper Test5

zi = F (xi) with F a distribution

D+ = max

(
i

n
− zi

)
D− = max

(
zi −

i − 1

n

)
V = D+ + D−

Here the Likelihood Ratio Test declares which process fits the data better and the Kuiper Test verifies which
distribution better represents the data.

For the USA data both tests conclude that the GPD is the more appropriate model.

Moving Towards a New Risk Model

Several issues with the Traditional Risk model exist:

The consequence value may not be solely linked to the population density.

The risk model may overstate the risk through the assumption that an accident will be severe.

The accident probability fails to then account for particular accident blackspots.

From this we argue that the Traditional model can be too inflexible.

Figure 1: Plot showing proportion of accidents resulting in injury in the USA between 1990 and 2016, Source: phmsa.dot.gov/hazmat

The Modern Risk Model

In order to create a more flexible risk model we introduce three new parameters:

qi The perceived risk value of an accident on a link
si The probability of an accident being severe on the link
li An adjustment parameter for blackspots or other circumstances

This allows for the proposal of the new model:

MR =
n∑

i=1

pic
qi
i s

li
i
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