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Abstract—Convolutional block codes, which are commonly
used as constituent codes in turbo code configurations, accept
a block of information bits as input rather than a continuous
stream of bits. In this paper, we propose a technique for the
calculation of the transfer function of convolutional block codes,
both punctured and nonpunctured. The novelty of our approach
lies in the augmentation of the conventional state diagram,
which allows the enumeration of all codeword sequences of a
convolutional block code. In the case of a turbo code, we can
readily calculate an upper bound to its bit error rate performance
if the transfer function of each constituent convolutional block
code has been obtained. The bound gives an accurate estimate of
the error floor of the turbo code and, consequently, our method
provides a useful analytical tool for determining constituent codes
or identifying puncturing patterns that improve the bit error rate
performance of a turbo code, at high signal-to-noise ratios.

Index Terms—Turbo codes, convolutional codes, puncturing,
transfer function, state diagram

I. INTRODUCTION

TURBO codes, originally conceived by Berrou et al. [1],
[2] are widely known for their astonishing performance

on the additive white Gaussian noise (AWGN) channel. A tight
upper bound on the bit error probability of a turbo code can be
easily computed, if the distance properties of the code, con-
veyed by its transfer function, are known. Calculation of the
transfer function of a turbo code is computational infeasible for
long deterministic interleavers but the assumption of a uniform
interleaver, a concept introduced by Benedetto and Montorsi
[3], drastically simplifies the calculations and reduces the com-
putational burden. Methods to evaluate the transfer function
of a parallel concatenated convolutional coding scheme have
been proposed by Divsalar et al. [4] as well as Benedetto and
Montorsi [3]. In addition, guidelines for the optimal design of
the constituent convolutional codes were presented in [5].
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When bandwidth efficiency is of critical importance, the use
of high-rate codes is imperative. High-rate turbo codes can be
easily obtained by puncturing selected bits from the output of a
turbo encoder. Based on the research carried out by Hagenauer
[6] on rate-compatible punctured convolutional codes and the
work of Haccoun and Bégin [7] on punctured convolutional
codes, design criteria for punctured turbo codes were proposed
by Barbulescu and Pietrobon [8], Fan Mo et al. [9], Açikel and
Ryan [10], and Babich et al. [11]. Simulation-based analyses
to identify a relationship between the structure of a puncturing
pattern and the performance of the corresponding punctured
turbo code were also carried out by Land and Hoeher [12],
Blazek et al. [13] and Crozier et al. [14]. In turn, an analytic
approach to evaluate the performance of punctured turbo codes
was developed by Kousa and Mugaibel [15]. The approach
is based on a modification of Divsalar’s technique that takes
the puncturing pattern into account. Although elegant, the
proposed approach is only applicable to turbo codes using
short interleavers. Furthermore, the authors draw conclusions
on rate-1/2 turbo codes assuming that only the parity check
outputs of the turbo encoders are punctured.

Inspired by Benedetto and Montorsi’s technique, this paper
proposes an alternative method based on the concept of the
“augmented” state diagram, for the evaluation of the transfer
function of punctured and nonpunctured turbo codes. The
augmented state diagram for nonpunctured constituent con-
volutional codes and its counterpart for punctured constituent
convolutional codes are considered in Sections II and III,
respectively. The transfer function of a constituent code can be
readily obtained using our approach, however as the length of
the input sequence or, equivalently, the size of the interleaver
increases, computation becomes intensive. Thus, Section IV
proposes a modification of the augmented state diagram that
results in a less computationally intensive process. Section V
considers the application of the proposed technique to identify
puncturing patterns that lead to high-rate turbo codes yielding
low error floors. Finally, the main conclusions of this work
are summarized in Section VI.

II. NONPUNCTURED CONVOLUTIONAL BLOCK CODES

A. Preliminaries

A codeword sequence generated by a convolutional encoder
is often described by a monomial of the form WwUuZzL`,
where W , U and Z are indeterminate variables that corre-
spond to the input, systematic output and parity check output
sequences, respectively, whilst L corresponds to the associated
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path of the codeword sequence in the trellis diagram. The
exponent of either W , U or Z, namely w, u or z respectively,
denotes the Hamming weight of the corresponding sequence,
i.e., its Hamming distance from the all-zero sequence. Finally,
the exponent of L corresponds to the length of the generated
trellis path.

Due to the linear properties of convolutional codes, it is
common practice to assume that the all-zero sequence is input
to the convolutional encoder and, consequently, the all-zero
codeword sequence is generated and transmitted. Conceptu-
ally, both the input and the output sequences are of infinite
length. In addition, it is assumed that the encoder is initialized
to the zero memory state. The transfer function T (W,U,Z, L)
of a convolutional code enumerates all codeword sequences
of the form WwUuZzL`, represented by paths in the trellis
diagram that start from the zero state and remerge with it only
once, after ` trellis steps.

The transfer function of a convolutional code can be ob-
tained from its state diagram, after labeling each branch
according to the input, systematic and parity check weights
it conveys and splitting the zero state into two separate
states, namely the start state XS and the end state XE .
As an example, the weight-labeled state diagram of a rate-
1/2 recursive systematic convolutional (RSC) encoder, with
memory size ν = 2, feedback generator polynomial 78 and
feedforward generator polynomial 58 is shown in Fig. 1. For
brevity, we use the notation RSC(1,5/7) to describe the afore-
mentioned code. Note that both polynomials are expressed in
octal form. Using the weight-labeled state diagram, we can
express each memory state as a function of the other states
and, hence, obtain the so-called state equations. Upon solving
these equations for the ratio XE/XS , we obtain the transfer
function T (W,U,Z, L).

When the input information sequence has finite length, the
corresponding convolutional code can be seen as a block
code. Throughout this paper we assume that the trellis of
a convolutional block code (CBC) is terminated, i.e., the
information sequence contains bits that force the trellis path
of fixed length N to return to the zero state [16]. In contrast
to T (W,U,Z, L), the transfer function B(W,U,Z) of a CBC
enumerates all codeword sequences that correspond to paths
of length N ; hence, paths that remerge with the zero state
more than once and stay at it for a consecutive number of
trellis steps are also considered. In the subsequent section, we
introduce the concept of the augmented state diagram, which
can be used to derive the transfer function of a CBC.

B. The Augmented State Diagram: a Novel Approach

For consistency, we consider the case of the binary
RSC(1,5/7) code to demonstrate the method for obtaining the
augmented state diagram of a CBC from the weight-labeled
state diagram of the original convolutional code. In order to
allow a path to revisit the zero state, we have inserted a
node X0, which is different from the states XS and XE ,
as illustrated in Fig. 2. States which are connected to XS

or XE , have also been connected to this “intermediate” zero
state X0 in a similar manner. The self-loop has been appended,
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Fig. 1. Weight-labeled state diagram of the rate-1/2 RSC(1,5/7) code.
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Fig. 2. Augmented state diagram of the nonpunctured rate-1/2 RSC(1,5/7)
block code.

since a path can remain at X0 for an indefinite period of time.
Furthermore, two branches, both with zero input and output
weight, are added to connect XS with X0 and X0 with XE ,
so as to permit paths to diverge from the all-zero sequence at
a time step other than the very first, or to remerge with the
all-zero sequence at a time step other than the very last. The
resultant augmented state diagram of the RSC(1,5/7) block
code, depicted in Fig. 2, is used to derive the system of state
equations.

Upon solving the state equations for the ratio XE/XS , we
obtain

XE

XS
= fzero(L) + f(W,U,Z, L). (1)

The first term, fzero(L), is the sum of all paths that correspond
to all-zero sequences of various lengths. These paths start from
state XS , stay at state X0 for an indefinite number of steps by
circulating around the self-loop and finally terminate at state
XE . Since the transfer function, B(W,U,Z), enumerates all
codeword sequences other than the transmitted sequence, and
since we have assumed that the all-zero sequence has been
transmitted, term fzero(L) is not of interest, hence it is ignored.

The second term on the right hand side of (1) enumerates
all paths of various lengths that start from the zero state,
end at the zero state and are different from the all-zero path.
Essentially, these paths represent all single-error and multiple-
error events. Term f(W,U,Z, L), which we call the extended
transfer function of a CBC, can be expressed as

f(W,U,Z, L) =
∞∑

`=1

f`(W,U,Z)L`, (2)

where the conditional extended transfer function, f`(W,U,Z),
enumerates all codeword sequences having specific path length
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`. More specifically, f`(W,U,Z) is defined as

f`(W,U,Z) ,
∑

w,u,z

Bw,u,z,`W
wUuZz (3)

where Bw,u,z,` denotes the number of codeword sequences of
particular path length `, having input, systematic and parity
check weights w, u and z, respectively. Consequently, for an
input information sequence of length N , the transfer function
B(W,U,Z) of a binary CBC is, by definition, equivalent to
f`(W,U,Z) for ` = N , that is

B(W,U,Z) , fN (W,U,Z). (4)

For example, let us assume that we want to compute the
transfer function of the RSC(1,5/7) block code for an input
block length of N = 4. Using the augmented state diagram
depicted in Fig. 2, we obtain the extended transfer function

f(W,U,Z, L)

= f3(W,U,Z)L3 + f4(W,U,Z)L4 + f5(W,U,Z)L5 + . . .

= W 3U3Z2L3 + (W 2U2Z4 + 2W 3U3Z2)L4

+(2W 2U2Z4+3W 3U3Z2+W 3U3Z4+W 4U4Z2)L5

+ . . . (5)

For an input information sequence of length N =4, the desired
transfer function B(W,U,Z) coincides with the conditional
extended transfer function f4(W,U,Z), hence

B(W,U,Z) , f4(W,U,Z)

= W 2U2Z4 + 2W 3U3Z2.
(6)

In practice, fN (W,U,Z) can be directly derived from the
ratio XE/XS while avoiding the calculation of unnecessary
terms [17]. In particular, we can use the properties of binomial
series to express the ratio XE/XS as a sum of products of
polynomials; consequently, only those products that generate
monomials containing LN need to be calculated. These prod-
ucts can be identified and computed using the multinomial
theorem. A detailed description of the derivation process is
given in the Appendix1.

The technique we propose can be seen as a refinement of
Benedetto’s and Montorsi’s approach [3]; they both have sim-
ilar complexity, whilst they are less complex than Divsalar’s
method [4]. However, our technique can be implemented in a
straightforward manner since it is based on the conventional
state diagram of convolutional codes and, more importantly, it
can be easily extended to punctured convolutional codes, as it
will become evident in the following section.

1One could argue that B(W, U, Z) can also be generated by enumerating
all linear combinations of the terms contained in T (W, U, Z, L) that produce
paths of length N . Although this combinatorial approach is a possible
alternative, it is more computational expensive than our method. As it will
become evident in the Appendix, for a given CBC, our method uses a fixed
number of equations that contain a constant number of terms. As N increases,
only the number of solutions returned by the equations increases. On the
contrary, the combinatorial approach tries to solve a problem, both the terms
and solutions of which grow with N .

III. PUNCTURED CONVOLUTIONAL BLOCK CODES

A. Preliminaries

In certain applications, such as satellite communications,
link reliability is of prime importance and, consequently,
low rate codes are used to achieve it. However, bandwidth
occupancy is of much greater importance in wireless com-
munications and so high-rate codes are preferred. A high-rate
convolutional code can be obtained by periodic elimination,
known as puncturing, of particular codeword bits from the
output of a parent low rate convolutional encoder. If the
parent convolutional encoder generates n0 output sequences,
we define which output bits are eliminated at each time-
step by means of a puncturing pattern P. The puncturing
pattern, which is repeated periodically every M time steps,
is represented by a n0 ×M matrix

P =




p1,1 . . . p1,M

... pi,j

...
pn0,1 . . . pn0,M


 (7)

where pi,j ∈ {0, 1}, with i = 1, . . . , n0 and j = 1, . . . ,M . For
pi,j = 0 the corresponding output bit is punctured otherwise
it is transmitted. Note that puncturing does not compromise
the computational complexity of the decoder, whilst a variety
of code rates can be achieved by using different puncturing
patterns.

The puncturing pattern P can either be seen as a matrix
of row vectors [Pr

1 . . . Pr
n0

]T or as a matrix of column
vectors [Pc

1 . . . Pc
M ]; in the former representation Pr

i is the
row puncturing vector (RPV) of the i-th output of the parent
convolutional encoder, whilst in the latter representation Pc

j

is the column puncturing vector (CPV) of the j-th puncturing
step. We use the latter representation throughout the following
subsection, where we introduce the modified augmented state
diagram for punctured CBCs.

B. Revisiting the Augmented State Diagram

In this section, we extend the technique based on the
augmented state diagram to the case of punctured CBCs. For
consistency, we consider the rate-1/2 RSC(1,5/7) code, having
a memory size of ν =2 and, consequently, 4 available states.
In order to construct the augmented state diagram of the
punctured RSC(1,5/7) block code, we need to introduce the
CPV into the labeling procedure of each branch. Recall that
in the case of the augmented state diagram of nonpunctured
convolutional codes, a branch connecting two states, e.g., Xk1

and Xk2 with k1,k2 ∈ [0, 2ν−1], is labeled using the notation
WwUuZzL. Let us concentrate on the same transition from
Xk1 to Xk2 when puncturing occurs. If Pc

j = [p1,j p2,j ]T is
the active CPV at a specific step, the label of the branch will
change to WwUu′Zz′L, where u′ and z′ are the weights of
the punctured output codewords given by

u′ = u · p1,j , z′ = z · p2,j . (8)

We observe that the values of u′ and z′ depend on the value
of the active CPV, hence the label of the branch that connects
Xk1 with Xk2 cannot be constant.
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To overcome this problem we introduce M sets of states,
namely Y1, . . . ,YM . Each set Yj contains all possible states
of the convolutional encoder, i.e., Yj = {X(j)

0 , . . . , X
(j)
2ν−1},

where the index j next to a state Xk denotes the set
which state Xk belongs to. When Pc

j is the active CPV,
a transition from state Xk1 to state Xk2 in the conven-
tional state diagram corresponds to a transition from state
X

(j−1)
k1

to state X
(j)
k2

in the modified augmented state dia-
gram. As time progresses CPVs are repeated periodically, i.e.,
Pc

1,Pc
2,. . . ,Pc

M ,Pc
1,. . . , resulting in transitions to states that

belong to sets Y1,Y2,. . . ,YM ,Y1,. . . , respectively. Therefore,
the problem of having M labels assigned to a single branch
that connects states Xk1 and Xk2 is overcome by having M
branches each one of which pairs state Xk1 of a set with state
Xk2 of the subsequent set.

So as to better understand the concept of the augmented
state diagram of a punctured CBC, we give an example for a
puncturing period of M =2. In order to increase the code rate
of RSC(1,5/7) from 1/2 to 2/3, we use the puncturing pattern

P =
[
1 1
1 0

]
(9)

which can be decomposed into two CPVs, namely Pc
1 =

[1 1]T and Pc
2 = [1 0]T. The augmented state diagram of

the rate-2/3 RSC(1,5/7) block code is presented in Fig. 3. Solid
branches originating from states in set Y2 and terminating
at states in set Y1, represent transitions during which Pc

1 is
the active CPV. Since both elements of Pc

1 are equal to 1,
the outputs of the encoder are not punctured therefore the
labels of those branches are identical to the labels of the
corresponding branches of the augmented diagram in Fig.
2. Dashed branches, originating from states in set Y1 and
terminating at states in set Y2, represent transitions during
which Pc

2 is the active CPV. In this case, the parity check
output of the encoder is punctured, therefore term Z does not
appear in any of the branch labels. To complete the augmented
diagram, states XS and XE have to be included. Since the
encoder starts from state XS , Pc

1 is the active CPV during the
transition from XS to a state in set Y1 at the first time-step.
At the last time-step, the encoder returns to the zero state, i.e.,
a transition to state XE occurs. In order to terminate the code,
those states of each set which are connected to state X0 of a
different set, must also be connected to state XE .

In the general case of a binary CBC which is punctured
using a pattern of period M , we obtain (M × 2ν + 1) state
equations which we solve for the ratio XE/XS . Similarly to
the case of nonpunctured convolutional codes presented in
Section II, the transfer function B(W,U,Z) of a punctured
CBC for a particular input block size N can be derived from
the extended transfer function f(W,U,Z, L) by isolating the
conditional extended transfer function fN (W,U,Z).

Although the augmented state diagram in this form can
be used to derive the transfer function of a punctured CBC
for any input block size, computational complexity becomes
more intensive as the puncturing period M increases, since the
number of branches terminating at XE or, equivalently, the
number of terms in the state equation for XE is proportional
to M . However, if we are interested in computing the transfer
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Fig. 3. Augmented state diagram of the punctured rate-2/3 RSC(1,5/7) block
code.

function for a specific input block length N , we can work out
the active CPV when the paths of length N terminate at state
XE , retain only the associated branches ending at that state
and remove all others. For example, let us assume that we only
consider odd-length input sequences to the punctured rate-2/3
RSC(1,5/7) block code, whose augmented state diagram is
depicted in Fig. 3. We observe that odd-length paths terminate
at XE when Pc

1 is active, either through the branch connecting
X

(2)
0 to XE or the branch connecting X

(2)
1 to XE . Hence, we

can remove the branches connecting X
(1)
0 and X

(1)
1 to XE ,

before deriving the state equations. As a result, the terms in
the state equation for XE have been reduced from 4 to 2 in
our example, or from 2M to 2 in the case of a binary CBC
using a puncturing pattern of period M .

In the special case where the length of the input sequence
N is an integer multiple of the puncturing period M , i.e.,
N = κM , the augmented state diagram of (M × 2ν + 2)
states can collapse into a state diagram of (2ν + 2) states.
In particular, only the states in set YM of the original
augmented state diagram as well as the start state XS and
the end state XE need to be considered; each sequence of
M consecutive branches originating from a state X

(M)
k or

terminating at a state X
(M)
k can be replaced by a single

composite branch. Effectively, the original augmented state
diagram of a punctured binary CBC collapses to an augmented
state diagram of only (2ν + 2) states, where 2M composite
branches originate from each state. Each composite branch
is labeled using a monomial, which is the product of the
monomials associated with the constituent branches. If two or
more composite branches of the same direction connect two
states, a single branch can be used to replace them; in that
case, the monomials of all removed composite branches are
added together to give a polynomial, which is used to label
the new branch. The collapsed augmented state diagram of
the rate-2/3 punctured RSC(1,5/7) block code for M =2 and
even N is presented in Fig. 4. As an example, the transition
sequence X

(2)
3 → X

(1)
1 → X

(2)
2 in the original augmented
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state diagram (Fig. 3) has been replaced by a single transition
X3 → X2 in the collapsed augmented state diagram (Fig. 4),
conveying a codeword given by the product ZL · L=ZL2.

By analogy, a collapsed trellis diagram can be derived
from the collapsed augmented state diagram. A path of length
` in the conventional trellis diagram is represented by a
path of length `/M in the collapsed trellis diagram, since
M successive branches in the conventional trellis diagram
compose a composite branch in the collapsed trellis diagram.
We will refer to the collapsed trellis diagram again in the
following section, which discusses complexity reduction tech-
niques when long input sequences are considered.

IV. COMPLEXITY CONSIDERATIONS FOR
LONG INPUT BLOCKS

Enumeration of all codeword sequences generated by a
convolutional block encoder, and thus derivation of its transfer
function B(W,U,Z) based on the augmented state diagram,
becomes computational intensive as the length of the input
sequence, or equivalently the length of all possible trellis
paths, increases. Nevertheless, we can adopt the approach
introduced by Benedetto and Montorsi [3], [18] to compute
an intermediate transfer function, defined as

T (W,U,Z, L, Ω) =
∑

w,u,z,`,n

Tw,u,z,`,nWwUuZzL`Ωn. (10)

Contrary to the transfer function B(W,U,Z), the intermediate
transfer function T (W,U,Z, L,Ω) of a CBC for input blocks
of length N , only enumerates those paths having length ` ≤
N , that leave the zero state at step one, re-visit the zero state n
times but never stay at it, and terminate at the zero state; note
that Tw,u,z,`,n in (10) denotes the multiplicity of a path having
particular weights w, u and z, trellis length ` and n remergings
with the all-zero sequence. Due to these restrictions, the
intermediate transfer function T (W,U,Z, L,Ω) enumerates a
smaller number of codeword sequences compared to the trans-
fer function B(W,U,Z) and hence it is less computational
demanding. However, the additional information stored in the
indeterminate variables L and Ω of T (W,U,Z, L, Ω) can be
used to fully acquire B(W,U,Z).

Both the augmented state diagram of a nonpunctured CBC
and the collapsed augmented state diagram of a punctured
CBC can be easily modified to give the less computational in-
tensive intermediate transfer function T (W,U,Z, L, Ω). First,
we need to remove the branch that connects XS to X0 since
all paths must leave the zero state at step one. The self-loop
at X0, as well as the branch that connects X0 to XE , need
also to be removed in order to force paths that re-visit the
zero state to leave it at the following time step. Finally, the
labels of those branches that lead to a remerging into the zero
state, either X0 or XE , should be updated to include variable
Ω, as well. The simplified version of the collapsed augmented
state diagram presented in Fig. 4 is depicted in Fig. 5. Upon
solving the state equations for the ratio XE/XS we obtain

XE

XS
= T (W,U,Z, L,Ω). (11)
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Fig. 4. Collapsed augmented state diagram of the punctured rate-2/3
RSC(1,5/7) block code for even-length input blocks.
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Fig. 5. Simplification of the collapsed augmented state diagram of Fig. 4.

A codeword sequence WwUuZzL`Ωn conveyed by
T (W,U,Z, L, Ω) corresponds to a trellis path that remerges
n successive times with the path of the transmitted all-
zero codeword sequence; hence, the total number K[`, n] of
codeword sequences having path length N with zeroes before,
after or between the n remergings can be obtained from a
single codeword sequence of path length ` ≤ N associated
with n successive remergings, as follows [3]

K[`, n] =
(

N − ` + n

n

)
=

(N − ` + n)!
(N − `)!n!

. (12)

The above expression can be directly used when the in-
termediate transfer function of a nonpunctured CBC has
been obtained from the simplified augmented state diagram.
However, it can be modified to also encompass punctured
CBCs, provided that the path length of the generated codeword
sequences is an integer multiple of the puncturing period, that
is N = κM ; in that case the simplified collapsed augmented
state diagram can be used to derive the intermediate transfer
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function T (W,U,Z, L, Ω) of the punctured CBC. Let us
assume that WwUuZzL`Ωn is now a codeword sequence
generated by the punctured CBC in question. Here, n refers
to the number of successive remergings of the corresponding
path with the all-zero sequence in the collapsed trellis diagram.
Moreover, ` represents the length of the path in the conven-
tional trellis diagram, where ` ≤ N ; the equivalent length
in the collapsed trellis diagram is `/M . Having depicted the
sequence WwUuZzL`Ωn as a path in the collapsed trellis
diagram, we can now use (12) to obtain the number of
codeword sequences having path length N/M also in the
collapsed trellis diagram. In particular, we obtain

K[`, n] =
(N−`

M + n

n

)
=

(
N−`
M + n

)
!(

N−`
M

)
!n!

(13)

which is a variant of (12) for punctured CBCs.
If T (W,U,Z, L, Ω) has revealed that there are Tw,u,z,`,n

codeword sequences of length ` ≤ N , then the total number of
codeword sequences of length exactly equal to N with zeroes
before, after or between the n remergings is given by the
product K[`, n] · Tw,u,z,`,n. Therefore, the transfer function
B(W,U,Z) of a CBC can be computed by substituting the
total number of codeword sequences Bw,u,z , obtained by [3]

Bw,u,z =
∑

`,n

K[`, n]Tw,u,z,`,n (14)

into
B(W,U,Z) =

∑
w,u,z

Bw,u,zW
wUuZz (15)

where each codeword sequence WwUuZz has overall path
length N .

In this section we used the approach presented in [3], [18]
to accelerate computation of the transfer function B(W,U,Z)
by simplifying the augmented state diagram of a CBC, both
punctured and nonpunctured. In the case of punctured CBCs,
simplification can only take place when the length of the
input information sequence N is an integer multiple of the
puncturing period M ; in that case, we can reduce the original
augmented state diagram to its collapsed version and then
simplify it so as to obtain the desired intermediate transfer
function. Finally, we must emphasize that (14) is applicable
only when no loops of zero output weight remain in the sim-
plified augmented state diagram. If such loops do exist, (14)
will only compute a fraction of the total number of codeword
sequences having path length N . Nevertheless, note that state
diagrams having loops of zero output weight correspond to
catastrophic codes; such codes should be avoided since a finite
number of transmission errors can cause an infinite number of
errors in the decoded information sequence [19].

V. APPLICATION TO TURBO CODES OVER
AWGN CHANNELS

A. Turbo Codes

A turbo code P is the parallel concatenation of con-
volutional codes (PCCC) separated by random interleavers.
However, the most common configuration uses two RSC codes
of memory size ν each, separated by a random interleaver of

size N [1]. An information sequence of length N is input to
both the first constituent systematic encoder C1 of rate 1/2 and
the random interleaver. The interleaved information sequence
is then input to the second convolutional encoder C2 of rate
1. The output of the rate 1/3 turbo encoder consists of the
systematic and parity check sequences of C1 and the parity
check sequence of C2. Rates higher than 1/3 can be obtained by
puncturing the three outputs of a parent rate-1/3 turbo encoder
using a 3×M pattern of the form

P =



Pr

1

Pr
2

Pr
3


 =




p1,1 . . . p1,M

p2,1 . . . p2,M

p3,1 . . . p3,M


 . (16)

Note that punctured turbo codes are classified as systematic,
partially systematic or nonsystematic depending on whether
all, some or none of their systematic bits are transmitted
[12]. It was shown in [3] and [4] that the transfer function
BP(W,U,Z) of a turbo code, punctured or nonpunctured,
can be obtained using the transfer functions of its constituent
codes, namely BC1(W,U,Z) and BC2(W,U,Z). Below, we
briefly describe the steps required to obtain BP(W,U,Z).

Let us use C to refer to one of the constituent codes, either
C1 or C2; the transfer function BC(W,U,Z) of the constituent
code, which can be obtained using our method based on the
concept of the augmented state diagram, assumes the form
given in (15). However, (15) can be rewritten as

BC(W,U,Z) =
∑
w

BC
w(U,Z)Ww (17)

where
BC

w(U,Z) =
∑
u,z

BC
w,u,zU

uZz (18)

is the so-called conditional weight enumerating function
(CWEF) and provides all codeword sequences of specific input
weight w. A relationship between the CWEF of a turbo code
and the CWEFs of the constituent codes can be easily derived
only if we assume the use of a uniform interleaver of size
N , an abstract probabilistic concept introduced in [3]. More
specifically, if BC1

w (U,Z) and BC2
w (U,Z) are the CWEFs of

the constituent terminated RSC block codes, the CWEF of the
terminated turbo code, BP

w (U,Z), is given by [3], [5]

BP
w (U,Z) =

BC1
w (U,Z) ·BC2

w (U = 1, Z)(
N

w

) (19)

under the assumption of uniform interleaving. Recall that
the systematic output sequence of the second constituent
encoder is not transmitted, hence it is eliminated by setting
U=1 in BC2

w (U,Z). The transfer function of the turbo code
BP(W,U,Z) can be computed from the CWEF, BP

w (U,Z),
in a manner identical to (17). Therefore, first we can use our
proposed technique to derive the transfer function of each
constituent terminated CBC for input sequences of length N
and then compute the transfer function of the corresponding
terminated turbo code for a uniform interleaver of size N .

Using the union bound argument [20], the bit error prob-
ability (BEP), denoted as Pb, of a turbo code for maximum
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TABLE I
COEFFICIENTS Dd FOR THE CALCULATION OF THE UNION BOUND ON THE BEP OF TWO PUNCTURED RATE-1/2 PCCCS. THREE INTERLEAVER SIZES

ARE CONSIDERED.

Rate-1/2 systematic PCCC(1,5/7,5/7) Rate-1/2 systematic PCCC(1,17/15,17/15)

d N =100 N =1, 000 N =10, 000 N =100 N =1, 000 N =10, 000

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 4.45 · 10−4 4.49 · 10−6 4.49 · 10−8 0 0 0

4 2.35 · 10−5 2.39 · 10−8 2.39 · 10−11 9.20 · 10−5 9.56 · 10−8 9.59 · 10−11

5 1.11 · 10−2 1.16 · 10−4 1.16 · 10−6 0 0 0

6 8.54 · 10−2 8.93 · 10−3 8.99 · 10−4 1.13 · 10−2 9.91 · 10−4 9.98 · 10−5

7 9.23 · 10−2 1.00 · 10−3 1.01 · 10−5 4.84 · 10−2 5.38 · 10−4 5.43 · 10−6

8 0.257 2.38 · 10−2 2.39 · 10−3 6.18 · 10−2 3.98 · 10−3 3.99 · 10−4

9 0.394 3.99 · 10−3 4.00 · 10−5 0.143 1.55 · 10−3 1.58 · 10−5

10 0.995 4.36 · 10−2 4.03 · 10−3 0.259 8.43 · 10−3 8.02 · 10−4

11 2.303 1.92 · 10−2 1.89 · 10−4 0.606 4.58 · 10−3 4.52 · 10−5

12 6.178 0.199 1.795 · 10−2 1.247 1.68 · 10−2 1.37 · 10−3

13 15.471 0.121 1.198 · 10−3 3.134 1.44 · 10−2 1.34 · 10−4

14 37.189 0.820 7.280 · 10−2 7.591 4.31 · 10−2 2.91 · 10−3

15 91.838 0.582 5.653 · 10−3 18.195 5.37 · 10−2 4.85 · 10−4

likelihood (ML) soft decoding on an AWGN channel can be
upper bounded as follows

Pb ≤ Pu
b =

∑

w,d

w

N
BP

w,dQ

(√
2EbRP

N0
d

)
(20)

where Pu
b is the union bound on the BEP, Eb is the energy

per information bit, N0 is the noise power spectral density
and RP is the code rate. The sum runs over all valid values
of input weight w and overall output weight u + z = d. The
coefficients BP

w,d can be obtained from the coefficients BP
w,u,z

of the transfer function BP(W,U,Z) using

BP
w,d =

∑
u,z

u+z=d

BP
w,u,z. (21)

The Q(·) function is defined as

Q(ξ) =
1√
2π

∫ ∞

ξ

e−r2/2dr. (22)

A comprehensive overview of bounding techniques for
block and turbo codes has been presented in [21]. In this
monograph, the authors explain that union bounds are accurate
only at high signal-to-noise ratio (SNR) values but their
weakness is pronounced at the low SNR regime. Improved
upper bounds, which are derived by properly defining the
region around the transmitted codewords, are considerably
tighter than the union bound at low SNR values. However,
computation of both the standard union bound and the im-
proved upper bounds relies on the transfer function of the
examined code. For our work, we elected to use the union
bound argument because of its simplicity; nevertheless, once
the transfer function of the examined code has been obtained
using our proposed approach, expressions that provide more
tight upper bounds could be used.

In the following two subsections, we concentrate on termi-
nated punctured turbo codes and we demonstrate that we can

use our method to obtain union bounds on their BEP as well
as to identify puncturing patterns that lead to high-rate turbo
codes yielding low error floors.

B. Evaluation of Performance Upper Bounds

Having obtained the transfer function BP(W,U,Z) of a
terminated turbo code P , we can compute the coefficients
BP

w,d and hence an upper bound on the BEP for ML soft
decoding, using (21) and (20), respectively, as we have pre-
viously explained. However, it is not always convenient to
provide the two-dimensional coefficients BP

w,d of turbo codes
for a range of w and d values; instead, we use an alternative
but equivalent single dimensional representation, which only
depends on the output weight d. More specifically, we define
a single-dimensional coefficient Dd as [3]

Dd =
∑
w

w

N
BP

w,d (23)

consequently, (20) assumes the form

Pb ≤ Pu
b =

∑

d

DdQ

(√
2EbRP

N0
d

)
. (24)

The first 15 coefficients Dd, which were derived based on
our proposed method for various rate-1/2 systematic turbo
codes, are shown in Table I. Two parent rate-1/3 turbo codes
are considered; the first PCCC consists of two RSC(1,5/7)
encoders and, using the notation of RSC codes, it is denoted
as PCCC(1,5/7,5/7) for brevity; the second turbo code is fully
described by the generator polynomials PCCC(1,17/15,17/15).
Coefficients for three interleaver sizes have been computed,
namely 100, 1,000 and 10,000 bits. In all cases, the RPVs
of the puncturing pattern are Pr

1 = [1 1], Pr
2 = [1 0] and

Pr
3 = [0 1]; this particular pattern is often used [1], [22] to

generate rate-1/2 systematic turbo codes from parent rate-1/3
codes.
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Fig. 6. Comparison between bounds and simulation results of rate-1/2
systematic PCCC(1,5/7,5/7) configurations after 8 iterations.

Theoretical upper bounds on the average ML decoding
performance and simulation results for the rate-1/2 systematic
PCCCs of Table I, are presented in Fig. 6 and Fig. 7. The
performance of suboptimal iterative decoders employing the
exact-log maximum a-posteriori (MAP) decoding algorithm
[23] after 8 iterations is compared with the corresponding
union bounds. As expected, the performance of systematic
punctured turbo codes quickly converges to the error floor
region [1], [22], identified by the union bound on the average
ML decoding performance of the corresponding turbo code for
high Eb/N0 values [3], provided that puncturing is distributed
equally between parity check bits and is well scattered [15],
as in our case.

We have thus demonstrated that our technique can be used
to derive the transfer function of a terminated turbo code
and hence obtain a tight upper bound on its BEP for ML
decoding, which coincides with the error floor of the code.
Note that the error floor of a turbo code can be lowered if
the operation mode of the constituent encoders switches from
terminated coding to continuous coding [24]; in continuous
coding, both constituent CBCs maintain the states they are in
when encoding of an input sequence is completed and start
from those states when encoding of the next input sequence
begins. The transfer function of a turbo code operating in
continuous mode can only be obtained by using the notion
of the hyper-trellis, as described in [3], [24]. Our method
can be used to derive the labels of the hyper-trellis branches,
provided that the start states and end states of the augmented
state diagrams of both constituent codes correspond to the
hyper-states of each branch.

In this paper we have not considered continuous coding be-
cause its performance is almost identical to that of terminated
coding when constituent CBCs of small memory size (ν = 2
or 3 in our simulations) and interleavers of size larger than ten
times that of the memory size are studied [3]. The performance
advantage of continuous over terminated coding only becomes
significant when the memory size of the constituent codes
is ν = 5 or higher [24]. Nevertheless, future work could
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Fig. 7. Comparison between bounds and simulation results of rate-1/2
systematic PCCC(1,17/15,17/15) configurations after 8 iterations.

investigate the effect of continuous coding on the performance
of punctured turbo codes that use constituent codes of large
memory size.

C. Identification of Good Puncturing Patterns

A different application of our technique is the identification
of “good” puncturing patterns, i.e., patterns that generate
punctured turbo codes exhibiting low error floors. In particular,
we study the evolution of the coefficients Bw,d, obtained using
our method, as the interleaver size of a turbo code gradually
increases. We then extrapolate our conclusions to turbo codes
using long interleavers.

Let us assume that our objective is to identify good patterns
of period M that increase the rate of a parent turbo code from
1/3 to RP . Initially, we set the size of the interleaver to a small
value (N <100) and we compute the transfer function of the
punctured turbo code of rate RP for all valid patterns of period
M . Next, we use (20) to derive the required Eb/N0 ratio for
a targeted Pu

b , for each possible pattern configuration. We
also evaluate the free effective distance, deff, which conveys
the minimum output weight of a codeword sequence for an
input sequence of weight two; thus, the smallest value of d
for which a coefficient B2,d is non-zero corresponds to deff.
As was demonstrated in [5], [25] and [26], the free effective
distance has a major impact on the performance of a turbo
code, when long interleavers are employed.

When all valid patterns are exhausted, we group them
according to the free effective distance that the corresponding
turbo codes have achieved; each group contains patterns that
lead to punctured turbo codes yielding the same deff, arranged
in ascending order of Eb/N0 for a particular Pu

b . We then
increase the size of the interleaver by a small value and we
repeat the same computations, grouping and ordering. If a
subsequent increase in the interleaver size does not change the
ordering of the puncturing patterns, we conclude our search
and we use that ordering to draw conclusions for punctured
turbo codes using long interleavers.
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In Table II, we have listed seven puncturing patterns,
which we have selected among all possible patterns of period
M =4. A punctured PCCC obtained by any of these patterns
achieves the maximum free effective distance and requires
the lowest Eb/N0 value for Pu

b = 10−6, among all PCCCs
using patterns of the same puncturing distribution between
systematic and parity check bits, when an interleaver size of
36 bits is considered. Four of the patterns lead to rate-1/2
turbo codes, whilst the remaining three give rate-2/3 turbo
codes. Furthermore, two of the resultant punctured PCCCs are
systematic (Sys) while the other five are partially systematic
(PS) with a decreasing number of transmitted systematic bits.
We observe that for N =36, the union bound on the BEP of
the PS turbo codes reaches a value of 10−6 for a lower Eb/N0

ratio than that of the systematic turbo codes. We also observe
that PS turbo codes with a reduced number of transmitted
systematic bits achieve a high free effective distance. Hence,
we would expect that PS turbo codes using long interleavers
achieve a lower error floor than that of systematic turbo codes
of the same rate, especially those codes with few transmitted
systematic bits.

Indeed, we observe in Fig. 8 that the conclusions drawn
from Table II concur with simulation results of punctured turbo
codes using interleavers of size N =1, 000. As expected, PS
turbo codes achieve a lower error floor than systematic turbo
codes of the same rate; in particular, as the number of transmit-
ted systematic bits is reduced, the error floor of a suboptimal
iterative decoder is lowered at the expense of an expanded non-
convergence region. Hence, in accordance with the findings
of Land and Hoeher [12], it can be more advantageous to put
more puncturing to the systematic sequence than to the parity
check sequences; however, our results have also confirmed the
observations by Blazek et al. [13] and Crozier et al. [14], who
claimed that the performance benefits of PS turbo codes are
mainly for higher Eb/N0 values and number of iterations.

We thus demonstrated that our proposed method can be used
to quickly identify puncturing patterns that lead to high-rate
turbo codes exhibiting low error floors. Nevertheless, punc-
turing affects the convergence behavior of iterative decoding
[27]; hence, convergence towards the error floor region should
also be investigated using techniques such as the extrinsic
information transfer (EXIT) chart analysis, proposed by ten
Brink in [28].

VI. CONCLUSION

In this paper, we have introduced the augmented state
diagram based on which the transfer function of a CBC, either
punctured or nonpunctured, can be evaluated. We have also
addressed the complexity of the approach by showing that a
simplification process can take place allowing us to compute
the transfer function of a CBC for long input sequences.
A tight upper bound on the average ML performance of a
turbo code, which uses CBCs as constituent codes, can be
then computed to accurately predict the error floor of the
suboptimal iterative decoder.

Our analysis validated the observations of existing litera-
ture, which studied the relationship between the suboptimal

TABLE II
RATE-1/2 AND 2/3 CONFIGURATIONS FOR PCCC(1,5/7,5/7). THE

INTERLEAVER SIZE N IS 36 BITS.

Configuration Pr
1 Pr

2 Pr
3 deff Eb/N0

(P u
b =10−6)

Rate-1/2 Sys. [1 1 1 1] [1 0 1 0] [0 1 0 1] 6 6.438 dB

Rate-1/2 PS(3) [1 1 1 0] [1 0 1 1] [0 1 1 0] 6 6.243 dB

Rate-1/2 PS(2) [0 1 0 1] [1 1 1 0] [1 1 0 1] 7 6.291 dB

Rate-1/2 PS(1) [0 0 1 0] [1 1 0 1] [1 1 1 1] 7 5.959 dB

Rate-2/3 Sys. [1 1 1 1] [1 0 0 0] [0 0 1 0] 2 7.313 dB

Rate-2/3 PS(3) [1 0 1 1] [0 1 0 0] [0 1 1 0] 4 7.168 dB

Rate-2/3 PS(2) [1 1 0 0] [0 0 1 1] [0 1 1 0] 4 6.786 dB
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Fig. 8. Simulation results after 10 iterations for various punctured rate-1/2
and rate-2/3 PCCC configurations. An interleaver size of 1,000 bits is used.

performance of iterative decoding and the error floor region of
punctured turbo codes. More specifically, partially systematic
turbo codes achieve a lower error floor than systematic turbo
codes of the same rate, at the expense of a decelerated
convergence of their performance towards the ML bound.
Recent results [27], [29] have shown that partially systematic
turbo codes that yield error floors even lower than those of
their parent rate-1/3 turbo codes can be identified using our
proposed method.
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APPENDIX
ENUMERATION OF MONOMIALS CONTAINING LN

The extended transfer function f(W,U,Z, L) can be ex-
pressed as [19]

f(W,U,Z, L) =
Y(W,U,Z, L)

1−X (W,U,Z, L)
(25)
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owing to the inherent loops of the augmented state diagram of
a CBC, where Y(W,U,Z, L) and X (W,U,Z, L) are polyno-
mials of W , U , Z and L. If we group together all monomials
containing the indeterminate variable L raised to the same
power, we can write Y(W,U,Z, L) and X (W,U,Z, L) as

Y(W,U,Z, L) =
`ψ∑

`=`1

y`(W,U,Z)L` (26)

and

X (W,U,Z, L) =
`′χ∑

`=`′1

x`(W,U,Z)L` (27)

where y`(W,U,Z) and x`(W,U,Z) are polynomials of W ,
U , Z whilst ` is a nonnegative integer that takes values from
sets {`1, . . . , `ψ} and {`′1, . . . , `′χ}, respectively; note that the
elements of each set are arranged in increasing order. For the
sake of clarity, we drop the indeterminate variables W , U
and Z, since they are not of importance for the remainder of
this section. For example, we adopt the notation Y(L) and y`

instead of Y(W,U,Z, L) and y`(W,U,Z), respectively.
Exploiting the property of binomial series, we can rewrite

(25) as

f(L) = Y(L) ·
∞∑

k=0

X k(L)

=
(
y`1L

`1 + . . . + y`ψ
L`ψ

) ·
∞∑

k=0

X k(L).

(28)

The terms of X k(L) for an arbitrary power k can be computed
using the multinomial formula

X k(L)

=




`′χ∑

`=`′1

x`L
`




k

=
∑

k1,...,kχ

k1+...+kχ=k

[
k!

k1! . . . kχ!

(
x`′1L

`′1
)k1

. . .
(
x`′χL`′χ

)kχ
]

=
∑

k1,...,kχ

k1+...+kχ=k

[
k!

k1! . . . kχ!

(
xk1

`′1
. . . x

kχ

`′χ

)
L(`′1k1+...+`′χkχ)

]
(29)

where the sum is taken over all nonnegative integers k1,. . .,kχ

for which k1 + . . . + kχ = k.
If we are only interested in enumerating paths of length

N , represented by monomials in f(L) containing the term
LN , a process based on (28) and (29) could be followed. In
particular:

1) We select a value for ` from the ordered set {`1, . . . , `ψ}
provided that it is ` ≤ N . Initially we set ` = `1,
therefore we only consider the product y`1L

`1 in Y(L).
2) We focus on X k(L) in (28), where k takes such values

that X k(L) contains monomials having L raised to the
power of (N − `1). Consequently, the product in (28)
will result in monomials containing LN .

3) Based on (29), we derive the desired values of k by
solving the Diophantine equation [30]

`′1k1 + `′2k2 + . . . + `′χkχ = N − `1 (30)

for k1, k2, . . ., kχ. We then add the elements of each
set {k1, k2, . . . , kχ} of nonnegative solutions in order to
obtain the desired values of k, that is

k = k1 + k2 + . . . + kχ (31)

for each set of solutions.
4) We substitute each set of solutions {k1, k2, . . . , kχ} as

well as the corresponding sum k into (29) so as to obtain
only those monomials that contain L raised to the power
of (N − `1).

5) We complete the process by multiplying the sum of
monomials in X (L) with y`1L

`1 .
The same process is repeated until all values which are less

than or equal to N from {`1, . . . , `ψ} are assigned to `.
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