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Abstract 

In this paper, we investigate the performance-complexity tradeoff of convolutional codes 

for broadband fixed wireless access systems by considering the effects of quantization and 

path metric memory in practical Viterbi decoding implementations. We show that in systems 

with limited antenna diversity, low memory codes achieve a better error-rate performance 

compared to that of high memory codes. Only in systems with considerable antenna diversity, 

can the performance of a convolutional code be improved by increasing its memory size. 

Nevertheless, we demonstrate that the coding advantage offered by the high memory codes is 

not large enough to justify the significant increase in implementation complexity. In 

particular, memory-2 convolutional codes achieve a coding gain of up to 1.2 dB over their 

memory-8 counterparts in single-input single-output fixed wireless access systems. The 

situation is reversed when multiple antennas are used, but the decoder of memory-8 codes 

occupies at least 130 times more silicon area than that of memory-2 codes. 

Index Terms – Fixed wireless access, complexity, convolutional codes, Viterbi decoding, performance. 
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1 Introduction 

Broadband fixed wireless access (FWA) systems enable high data-rate communications where 

traditional landlines are either unavailable or too costly to be installed. These systems also enable 

operators in a competitive environment to rollout broadband services in a rapid and cost effective 

manner [1]. In this context, broadband FWA standardization activities have been performed under the 

auspices of the IEEE 802.16 and the ETSI HIPERMAN working groups. In particular, the IEEE 

802.16a standard proposes a number of transmission techniques to combat multipath fading in 

broadband FWA systems, for example orthogonal frequency-division multiplexing (OFDM). This 

standard also proposes a number of coding techniques to further improve performance in broadband 

FWA systems, including the concatenation of Reed-Solomon and convolutional codes, block turbo 

codes and convolutional turbo codes [2]. 

Broadband FWA systems are characterized by low mobility/multipath propagation conditions, 

and hence by low time and frequency diversity. This lack of diversity significantly compromises the 

performance of coding techniques, since occasional deep fades cause severe error bursts that cannot be 

counteracted by interleaving/deinterleaving operations due to delay and latency considerations [3]. In 

a previous paper [4] we demonstrated that the use of powerful coding techniques provides only limited 

performance gains in broadband FWA systems. In particular, we have compared the performance of 

various coding schemes under the condition of identical decoding complexity which is measured in 

terms of the total number of computational operations. 

Although the total number of operations gives an indication of the overall computational 

complexity of a decoding algorithm, it does not provide an appreciation of its hardware requirements.  

In contrast to [4] in which ideal decoding of non-quantized receive sequences is assumed, in this paper 

we consider convolutional coding and a practical implementation of the Viterbi algorithm; decoding 

parameters such as the quantization precision of the receive bits, the size of the memory allocated for 

the path metrics and the size of the sliding window are taken into account. We then characterize the 

hardware complexity of the Viterbi decoder based on the number of digital gates required for its 

implementation and we investigate the performance-complexity tradeoff of convolutional-coded FWA 

systems, both with and without antenna diversity, while exploring the effects of the decoding 

parameters on performance and complexity. 
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2 System Description 

This section briefly describes the system model under consideration. In particular, we consider 

systems based on OFDM transmission, which lies at the heart of current broadband FWA standards 

[2]. We also consider single antenna FWA systems, which do not exploit space diversity, as well as 

multiple antenna FWA systems, which do exploit space diversity. Figure 1 depicts the system block 

diagram, where NT and NR represent the number of transmit and receive antennas, respectively. 

At the transmitter, the information bits are convolutionally encoded and block interleaved. The 

mapper converts groups of log2M bits into one of M complex symbols from a unit power M-phase shift 

keyed (M-PSK) or M-quadrature amplitude modulation (M-QAM) constellation. In single antenna 

systems (NT = 1), the space-time processing block does not further process the modulation symbols; 

instead, the modulation symbols are passed directly to the OFDM block. However, in multiple 

transmit antenna systems (NT > 1), the space-time processing block will further process the modulation 

symbols before passing them to the OFDM block [5]. In particular, the space-time processor generates 

for each particular OFDM sub-carrier, a space-time block code (STBC) according to the generator 

matrices G2, G3 or G4 given by [6], [7]1. Essentially, a total of K × NT symbols obtained from the 

original K′ modulation symbols are transmitted during K separate time slots by NT transmit antennas 

by each particular OFDM sub-carrier. Note that G2, G3 and G4 are appropriate for two, three and four 

transmit antennas, respectively, and for an arbitrary number of receive antennas. Note also that G2 is 

rate K′/K = 1, whereas G3 and G4 are rate K′/K = 1/2. Finally, at each transmit antenna chain, N 

complex symbols corresponding to the elements for a particular time slot for the N different STBCs 

are imposed onto N orthogonal sub-carriers by means of a serial-to-parallel (S/P) conversion and an 

inverse fast Fourier transform (FFT). A parallel-to-serial (P/S) converter multiplexes the N parallel 

signals, a cyclic prefix is inserted with duration longer than the impulse response of the channel to 

combat intersymbol and intercarrier interference and the OFDM signal is then digital-to-analogue 

converted.  

                                                      

1 We consider space-time coded OFDM systems where redundancy spans space and time domains, rather than 

space-frequency coded OFDM systems where redundancy spans space and frequency domains. 
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The OFDM signal is distorted by a broadband FWA channel as well as additive white Gaussian 

noise (AWGN). The broadband FWA channel is time-dispersive but not significantly time-varying. 

Hence, we assume that the channel is constant during the transmission of a frame of data. 

At the receiver, which we implicitly assume maintains perfect channel state information, the 

signal is analogue-to-digital converted at each receive antenna chain, the cyclic prefix is removed and 

the N complex symbols corresponding to the elements for a particular time slot for the N different 

STBC are removed from the N orthogonal sub-carriers by means of an FFT, as is depicted in Figure 1. 

A soft demapper converts the complex symbols into soft bits or log-likelihood ratios (LLR)2, which 

are then block de-interleaved and Viterbi decoded. In our work, we consider an implementation of the 

Viterbi algorithm that takes into account various practical aspects influencing performance and 

complexity, including soft bit quantization, path metric memory and sliding window size, as described 

in [8]. 

3 Performance-Complexity Tradeoff 

This section studies the tradeoff between the performance of various convolutional codes and the 

complexity of the corresponding Viterbi decoders, both in single antenna and multiple antenna 

broadband FWA systems. In the study, we consider terminated non-recursive non-systematic 

convolutional (NRNSC) encoders with rate 1/2, generator polynomials (5,7), (53,75), (133,171) and 

(561,753) in octal form, which correspond to memory sizes 2, 5, 6 and 8 respectively, and an output 

frame size of 2048 bits. Note that the selected polynomials correspond to maximum free distance 

convolutional codes [9], [10]. We consider both ideal and practical Viterbi decoders; the practical 

decoders have a quantization precision of 1, 2 or 3 bits and employ best-state decoding with a finite 

sliding window of size equal to four times the code constraint length. Note that the coding gain 

achieved by a quantization precision of 3 bits is comparable to that of infinitely fine quantization [8]; 

additional quantization bits yield little performance improvement.  

In this paper, we also consider quadrature phase shift keying (QPSK) and OFDM with N = 256 

sub-carriers; the OFDM signals are characterized by a symbol duration of T = 12.8 µs and a cyclic 

                                                      

2 Note that the channel state information is embodied in the LLR expressions [4]. 
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prefix duration of TCP = 3.2 µs. Consequently, the data-rate is 16Mb/s for both single antenna systems 

and multiple antenna systems using the STBC specified by G2, whilst the rate drops to 8 Mb/s when 

multiple antenna systems using the STBC specified by G3 or G4 are considered. Six interim broadband 

FWA channel models have been adopted by the IEEE 802.16a standard [11]. We use the SUI3 model, 

which corresponds to average suburban conditions. This model includes three fading taps with delays 

0 µs, 0.5 µs and 1.0 µs, with relative powers 0 dB, −5 dB and −10 dB, and with K-factors 1, 0 and 0, 

respectively. The SUI3 channel model specifies an antenna correlation coefficient of value 0.4. Note 

that in our simulations the channel is considered constant during the transmission of a data frame 

owing to the extremely low Doppler spread value of 0.4 Hz. 

3.1 Description of a practical implementation of the Viterbi decoding algorithm 

We use uniform quantization [8] with µQ-bit precision, Q2µ quantization levels and optimum 

normalized step size3. The optimum normalized step sizes obtained for the single antenna and the 

multiple antenna broadband FWA scenarios approximately correspond to the optimum ones for the 

AWGN scenario; performance is essentially constant over a range of normalized step values centered 

on 1 for 2-bit precision and 0.5 for 3-bit precision [8]. We have also observed that the optimum 

normalized step size is approximately independent of the convolutional code and the ratio of the 

energy per bit, Eb, to the spectral noise density N0, denoted as Eb/N0. 

The convolutional decoder uses the Viterbi algorithm, initially proposed in [12]. The Viterbi 

algorithm is suitable for the high data-rate applications targeted in our paper because it provides 

maximum-likelihood solutions, whilst the delay introduced by the decoding process is independent of 

the channel conditions. In contrast, algorithms based on sequential decoding essentially follow a trial-

and-error approach, which makes them unsuitable for high data-rate applications since their decoding 

complexity increases as the channel quality degrades [13]. Furthermore, Viterbi decoding is the 

dominant technique employed for the constraint lengths considered in our paper [10], [14]; Viterbi 

decoders for convolutional codes having a similar range of constraint lengths have already been 

developed by Qualcomm (e.g., Q1900) [15] and other telecoms chipset manufacturers. 

                                                      

3  The soft bits are scaled prior to quantization in order to normalize the average noise power to one. 
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The Viterbi algorithm computes and stores a metric for each branch of the trellis diagram. If µQ 

quantization bits are used to represent a symbol, which is input to the Viterbi decoder of a rate 1/2 

code, it can be shown that no more than µQ+1 bits are required to store a branch metric [16]. The 

decoder has been configured in such a way that a small branch metric represents a highly probable 

event, while larger metrics represent less likely events. When all branch metrics at a particular trellis 

step have been computed, an add-compare-select process identifies the path having the lowest metric, 

at each memory state. This metric is stored in the path metric memory, the size of which depends on 

the constraint length of the code as well as the quantization precision [16]. The optimal size of the path 

metric memory, denoted as µPM, for various code configurations when the quantization precision is set 

to 1, 2 or 3, is presented in Table I. The value for µPM was determined by monitoring the usage of a 

memory pool, which was allocated for storing the path metric at a memory state for each trellis step. A 

path metric memory of size higher than µPM would not yield any performance improvement; however, 

a lower memory size would degrade the performance of the Viterbi decoder. Note that path metric 

renormalization has been implemented, according to which the minimum path metric is subtracted 

from all path metrics, at each trellis step. Path metric renormalization avoids memory overflow and 

results in a limited range of path metric values [17]; hence, only a small memory size for path metric 

storage is required. However, approaches based on modulo arithmetic [17], [18] could also be used.  

Practical implementations of the Viterbi decoding algorithm store a fixed length of past trellis 

transitions and output the oldest decoded bit, before making a step deeper into the trellis [8]. It has 

been found that this method, known as sliding window, approaches optimal decoding performance 

when the size of the window is 4 or 5 times the code constraint length, provided that best-state 

decoding is used. In best-state decoding [19], the metrics of all paths are compared at each trellis step 

and the path having the lowest metric is traced back. However, taking into account that any survival 

path will usually merge with the correct path within a few braches, we can trace back a path starting 

from any arbitrary fixed state [16]. Contrary to best-state decoding, fixed-state decoding requires a 

longer sliding window of size at least 7 or 8 times the code constraint length but performs no path 

metric comparisons, therefore it exhibits lower complexity than best-state decoding [16]. Nevertheless, 

best-state decoding is the most suitable candidate when path metric renormalization is used, since the 

best state is readily identified by the renormalization circuit. In general, when the size restrictions of 
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the end product are flexible, such as in broadband FWA systems, the designer can combine modulo-

arithmetic with fixed-state decoding to minimize hardware complexity requirements for the path 

elimination process or path metric renormalization with best-state decoding to minimize memory 

requirements for storing the history of the winning path metrics. In our implementation we use best-

state decoding in conjunction with a sliding window of size four times the code constraint length. 

For comparison purposes, we have also considered ideal Viterbi decoders, which use infinitely 

fine quantization, no path renormalization, best-state decoding and a sliding window of size equal to 

the length of the input information sequence. 

3.2 Complexity characterization 

The functional block diagram of a practical Viterbi decoder employing best-state decoding is 

shown in Figure 2 [20]. The decoder consists of the following blocks: branch metric computer (BMC), 

the add-compare-select (ACS), storage survivor memory (SSM), and output decision (OD). The BMC 

block performs a correlation operation in order to compute the branch metrics using a suitable distance 

function, the ACS block performs addition, maximum or minimum selection, path elimination and 

path metric storage, the SSM block keeps track of the decisions made in the ACS block in a 

hypothesized digital representation, and the OD block outputs the decoded bits corresponding to the 

best-state information. Since the ACS block requires the highest computational processing, its 

hardware complexity dictates the Viterbi decoder complexity [20]-[23]. The complexity of the BMC 

block is negligible compared to that of the ACS and SSM blocks. For a given code memory size, 

denoted as ν, the complexity of the SSM block is fixed, irrespective of the number of bits used for the 

path metric memory; the SSM block essentially consists of L⋅(ν+1)⋅2ν single-bit memory units where 

L⋅(ν+1) is the size of the sliding window expressed in multiples of the code constraint length, which is 

given by ν+1. However, the complexity of the ACS block does depend on the number of bits used for 

the path metric memory. We base the complexity characterization on the number of digital gates (each 

equivalent to the complexity of a 4-transistor NAND gate) required for the implementation of the ACS 

and SSM blocks. 

The operations performed by the ACS block are better understood by breaking the trellis up into a 

number of identical “butterfly” modules as shown in Figure 3(a) for a binary convolutional code; 

observe that we have used a radix-2 implementation, which is sufficient for the data-rate requirements 
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of our system. Since the entire trellis is constructed from replicas of this “butterfly” module, the 

computational unit in Figure 3(b), which is referred to as the add-compare-select unit (ACSU) can be 

used recursively to implement the ACS block. Assuming the minimum path metric is selected, the 

ACSU computes the following recursive relationship: 

    ( )tjitjjti ,,1, min λ+Γ=Γ + ,  for vi 2,,2,1 =  and vj 2,,2,1 = , (1) 

where Γj, t is the survivor path metric for memory state j at time t and λji, t is the branch metric of the 

transition from memory state j at time t to memory state i at time t + 1. 

The maximum operating speed of the ACSU is limited by the propagation delay around the local 

feedback loop (i.e., ACS loop). Thus, for high-speed Viterbi decoding that is required in FWA 

applications, a state-parallel architecture [16], [21] is adopted where the number of ACSUs in the ACS 

block is equal to the number of memory states, i.e., 2ν. For example, the memory-2 (5,7) code has 4 

memory states and requires 4 ACSUs, while the memory-8 (561,753) code has 256 memory states and 

requires 256 ACSUs. The implementation of the ACSU in Figure 3(b), requires two adders, a 

comparator, a 2-to-1 line multiplexer, two registers and a subtractor for path metric renormalization. 

Furthermore, the ACS block requires (2ν – 1) additional comparators, for selecting the minimum path 

metric for renormalization purposes. Since the renormalization circuit readily identifies the best state, 

no extra circuitry is required to perform best-state decoding in the SSM block. Note that each 

component of the ACS block is µPM-bit wide, where µPM is the precision of the path metric memory. 

The SSM block using the register exchange method requires L⋅(ν+1)⋅2ν D-type flip-flops and 

L⋅(ν+1)⋅2ν single-bit 2-to-1 line multiplexers [20]. If Gadd, Gcomp, Gmux, Gsub, Greg, GFF and Gmux-1bit 

denote the equivalent number of gates for a multi-bit adder, multi-bit comparator, multi-bit 2-to-1 line 

multiplexer, multi-bit subtractor, multi-bit register, D-type flip-flop and single-bit 2-to-1 line 

multiplexer, respectively, we can compute the total number of gates Gtotal composing the ACS and 

SMM blocks, using 

 ( ) ( ) ( ) ( )
    

block SSM

1bitmuxFF

block ACS

compregsubmuxcompaddtotal 2112222 −
νν +⋅+ν⋅+⋅−+++++= GGLGGGGGGG v . (2) 

The values of Gadd, Gcomp, Gmux, Gsub and Greg, when the path metric memory µPM is in the range 

between 2 and 7 bits, are presented in Table II. The equivalent number of gates for GFF and Gmux-1bit is 

fixed and equal to 6 and 3, respectively, since the complexity of the SSM block does depend on µPM, 
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as previously mentioned. It is important to note that that the target data-rate of our system does not 

dictate the use of parallelism techniques, which are often introduced in very high data-rate schemes 

[18], [23]. For this reason, the equivalent number of gates for each component of an ACS block shown 

in Table II, was determined by using standard cells from the digital library of the 0.35-µm 

austriamicrosystems CMOS process technology [24]. These standard digital cells have worst case 

propagation delay of less than 5 ns, allowing the implementation of radix-2 ACSUs for state-parallel 

architecture that can be clocked at about 50 MHz (worst case, as we established from back annotating 

the layout parasitic capacitances into the circuit schematic). The selected operating frequency is 

sufficient for our target data rate of 16 Mb/s. The complexity information is summarized in Table I. 

Similarly, we can calculate the silicon area occupation of the ACS and SSM blocks using the 

following expression: 

 ( ) ( ) ( ) ( )













+⋅+ν⋅+⋅−+++++= −

νν

    
block SSM

1bitmuxFF

block ACS

compregsubmuxcompaddtotal 2112222 AALAAAAAAaA v , (3) 

where Aadd, Acomp, Amux, Asub, Areg, AFF and Amux-1bit denote the area of a multi-bit adder, multi-bit 

comparator, multi-bit 2-to-1 line multiplexer, multi-bit subtractor, multi-bit register, D-type flip-flop 

and single-bit 2-to-1 line multiplexer, respectively, and the factor a is included to take into account the 

area of the chip interconnections. For the targeted 0.35-µm CMOS process technology, Table III 

presents the breakdown of the silicon area for each of the ACSU sub-blocks for µPM values between 2 

and 7 bits (note that a Verilog code was written and linked to the process technology in order to 

extract this information in the Cadence tool environment). The silicon area for GFF and Gmux-1bit is 

279.3 µm2 and 111.7 µm2, respectively. The total area, Atotal, was calculated assuming a = 1.5. The 

resulting Atotal values for the various decoder scenarios considered in our study are listed in Table I. 

3.3 Results 

Figures 4 and 5 depict the bit error rate (BER) performance of various convolutional codes in 

broadband FWA systems with and without antenna diversity for the cases of ideal and practical 

Viterbi decoding, respectively. It is interesting to note that, in contrast to the situation in the AWGN 

channel, lower memory convolutional codes can outperform a higher memory one in broadband FWA 

systems. In particular, in systems without antenna diversity (i.e., single transmit-single receive antenna 

systems) a lower memory convolutional code outperforms a higher memory code from low to high 
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Eb/N0 values. On the other hand, in systems with significant antenna diversity higher memory 

convolutional codes outperform lower memory ones. We attribute these trends to the fact that high 

memory convolutional codes exhibit worse BER in the low Eb/N0 regime than low memory ones on an 

AWGN channel (see Figures 4 and 5). Note that in a wireless channel the BER performance for a 

specific average Eb/N0 value is obtained by averaging the BER performance for various instantaneous 

Eb/N0 values. In systems with no antenna diversity low instantaneous Eb/N0 values occur with 

relatively high probability, thus the decoders are being swamped by errors. However, low memory 

codes are at an advantage since they are able to rejoin the true trellis path more quickly than high 

memory codes [25]. Increasing the memory size at low instantaneous Eb/N0 values also increases the 

length of the path that deviates from the true trellis path and causes more decoding errors [25]. In 

contrast, in systems with significant antenna diversity low instantaneous Eb/N0 values occur with much 

lower probability, so that a high memory convolutional code outperforms a low memory one. These 

trends are observed not only in systems using ideal Viterbi decoding but also in systems using 

practical implementations of the Viterbi algorithm. 

The relative benefit of convolutional coding for broadband FWA systems can be quantified by 

studying the performance-complexity tradeoff of convolutional codes of various memory sizes. Table 

I compares the performance of various convolutional codes (in terms of Eb/N0 at a target BER of 10−4) 

and the complexity of the corresponding Viterbi decoders (in terms of number of digital gates required 

to implement the ACS process) in various broadband FWA scenarios. The silicon area requirement for 

the implementation of the ACS block is also listed. As noted from the results in Table I, for single 

transmit-single receive antenna systems the advantage in coding gain of the (5,7) code increases from 

0.2 dB to 1.2 dB compared to the (561,753) code, as the quantization precision increases from 1 bit to 

3 bits, whilst the memory-2 code is about 130 to 180 times less complex than the memory-8 code with 

corresponding reduction in silicon area occupation. For two transmit-two receive antenna systems, the 

(53,75) code has a loss that varies between 0.1 dB and 0.3 dB compared to the (561,753) code, 

depending on the quantization precision, but it is 11 times less complex on average. For systems 

employing four antennas at the transmitter and an equal number of antennas at the receiver, the 

(561,753) code outperforms the (5,7) code by about 1 dB, when 3-bit soft-decision decoding is used. 

Nevertheless, the (561,753) code achieves better performance at the expense of about 130 times the 
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complexity of the (5,7) code. As expected, a 3-bit soft-decision decoder has an advantage in coding 

gain over a 1-bit hard-decision decoder, which varies between 1.8 dB and 3.3 dB, depending on the 

number of antennas and the quantization precision.  

In general, our study shows that for multiple antenna systems the coding advantage offered by the 

high memory codes is not large enough to justify the exponential increase in complexity and silicon 

area occupation. 

4 Conclusion 

In this paper we compare the error rate performance of broadband FWA systems using 

convolutional codes of various memory sizes. In particular, we consider practical implementations of 

the conventional Viterbi decoder, we analyze their complexity and we investigate their performance in 

systems both with and without antenna diversity. Our results demonstrate that the selection of high 

memory convolutional codes in broadband FWA systems that do not exploit antenna diversity 

increases the decoding complexity without offering an advantage in performance. Less complex low 

memory convolutional codes can actually achieve a better performance, for bit error rates up to 10-4. 

Only when antenna diversity is exploited, do high memory convolutionally coded systems outperform 

systems using low memory convolutional codes. Nevertheless, the advantage offered by the high 

memory codes is not large enough to justify the exponential increase in hardware complexity. These 

results are of practical interest for the deployment and design of broadband FWA systems. Future 

work will consider the study of the performance-complexity tradeoff for other coding techniques, 

including turbo codes and low density parity check (LDPC) codes, in broadband FWA systems. 
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Tables 

Table I: Complexity and performance (Eb/N0 at BER = 10−4) of practical Viterbi decoding using 

bit quantization, best-state decoding and a sliding window of size equal to L=4 times the code 

constraint length. The SUI3 channel model has been considered. 

NRNSC 
Generator 

Polynomials 

Quant.  
Precision µQ 

(bits) 

Path 
Memory µPM 

(bits) 

Complexity 
Gtotal 

(gates) 

Silicon Area 
Atotal 

(mm2 ) 

Eb / N0 
(dB)  

NT = NR = 1 

Eb / N0 
(dB) 

NT = NR = 2 

Eb / N0 
(dB)  

NT = NR = 4 

(5,7) 1 2 655 0.046 21.4 11.4 9.0 

(53,75) 1 3 9817 0.692 21.5 10.9 8.3 

(133,171) 1 4 24438 1.732 21.5 10.8 8.2 

(561,753) 1 4 116214 8.130 21.6 10.6 7.8 

(5,7) 2 4 942 0.070 19.4 10.1 7.4 

(53,75) 2 5 11987 0.868 19.9 10.0 6.8 

(133,171) 2 5 26291 1.887 20.1 9.9 6.7 

(561,753) 2 6 132337 9.471 20.2 9.8 6.4 

(5,7) 3 5 1055 0.079 18.1 9.1 7.0 

(53,75) 3 6 13073 0.958 18.6 8.8 6.4 

(133,171) 3 6 28465 2.067 18.8 8.7 6.2 

(561,753) 3 7 141805 10.247 19.3 8.7 6.0 

 

 

 

 

 

 

Table II: Equivalent number of gates for each µPM-bit wide component of an ACS block. 

Path Memory 
(µPM) 

Adder 
(Gadd) 

Comparator 
(Gcomp) 

Mutliplexer 
(Gmux) 

Subtractor 
(Gsub) 

Register 
(Greg) 

2 7 5 4 7 11 

3 11 7 6 15 17 

4 16 10 8 24 23 

5 21 13 10 25 28 

6 26 15 12 31 34 

7 31 19 14 36 40 
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Table III: Breakdown of ACSU area in 0.35-µm CMOS for various µPM values. Area values are 

in µm2. 

Path Memory 
(µPM) 

Adder 
(Aadd) 

Comparator 
(Acomp) 

Mutliplexer 
(Amux) 

Subtractor 
(Asub) 

Register 
(Areg) 

2 382.2 254.8 218.4 364.0 618.8 

3 618.8 400.4 327.6 819.0 928.2 

4 891.8 546.0 436.8 1310.4 1237.6 

5 1164.8 691.6 546.0 1365.0 1547.0 

6 1437.8 837.2 655.2 1674.4 1856.4 

7 1710.8 1055.6 764.4 1983.8 2165.8 
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Figures 

 

Figure 1: Communications system model. 
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Figure 2: Simplified block diagram of a best-state Viterbi decoder. 

 

 

(a) 

 

(b) 

Figure 3: (a) Basic trellis module for a rate 1/n convolutional code. (b) Block diagram of the 

ACSU used for the same code (for state i) for a best-state implementation using path metric 

renormalization. The ‘+’ block is a binary adder and the ‘-’ block is a binary subtractor. 
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Figure 4: BER performance of convolutional codes in broadband FWA systems with and 

without antenna diversity. Case of ideal Viterbi decoding. 

 

 

Figure 5: BER performance of convolutional codes in broadband FWA systems with and 

without antenna diversity. Case of practical Viterbi decoding with 3-bit quantization precision, 

best-state decoding and sliding window of size equal to 4 times the code constraint length. 
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