
Performance Assessment of
Fountain-coded Schemes for
Progressive Packet Recovery

Andrew Jones
School of Computing and Communications

Lancaster University

This dissertation is submitted for the degree of
Master of Science by Research

November 2014

I dedicate this thesis to:
My father, Colin Jones

My mother, Sarah Jones
And my considerably better half, Alex Earley

Declaration

I hereby declare that except where specific reference is made to the work of others,
the contents of this dissertation are original and have not been submitted in whole
or in part for consideration for any other degree or qualification in this, or any other
University. This dissertation is the result of my own work and includes nothing
which is the outcome of work done in collaboration, except where specifically
indicated in the text. This dissertation contains less than 35, 000 words including
appendices, footnotes, tables and equations.

Andrew Jones
November 2014

Acknowledgements

Firstly, I would like to thank my supervisor Dr. Ioannis Chatzigeorgiou for his
constant support and encouragement throughout this project. I cannot thank
him enough for putting up with my perpetual pestering and my “short” meetings,
which usually ended up taking a couple of hours. Once more, I offer my sincere
apologies for accidentally omitting this acknowledgement page in my third year
project report!

I would also like to extend my thanks to the Engineering and Physical Sciences
Research Council who, via the funding of the R2D2: Network error control for
Rapid and Reliable Data Delivery research project, allowed me to experience my
first academic conference.

My wholehearted thanks to those in Room B38, in particular Dr. Andrea Tassi
and Klen Ĉopiĉ Pucihar, who not only provided an enjoyable and friendly working
environment, but also served to remind me that there is more to life than constant
academic research with fruitful discussions during our regular café sessions.

Finally, my heartfelt thanks to my parents, Colin and Sarah, and my better
half Alex, for their love and support over the years and also their trust in my
decisions - “What! You want to do another Masters?!”.

Abstract
Fountain Codes are a more efficient method of broadcasting identical messages to
multiple recipients when compared with more conventional multicast schemes such
as Automatic-Repeat-reQuest. This is because Fountain Codes transmit random
combinations of the source packets, and hence, do away with the requirement of
a costly feedback channel. This feedback channel is used by recipients to request
that the transmitter resends the specific source packets that they have not yet
recovered.

Usually, Fountain Coded schemes focus on the recovery of the entire source
message with minimal overhead. This, of course, requires a recipient to receive a
number of coded packets that it is at least equal to the number of original source
packets. However, if a multimedia file was being broadcast using a fountain code,
what if it could be guaranteed that the recipient would receive an ordered portion,
for example the first half, of the source message before receiving the full amount
of coded packets needed to recover the entire source message. The user could then
start playing the media earlier, so long as the rest of the message is recovered
without incurring an unrealistic delay. It is this proposition that has motivated
this work and has also culminated in a published conference paper [1].

During this thesis four schemes are contrasted, three exhibiting fountain coding
and a benchmark scheme. Theoretical expressions for the first metric, the proba-
bility of recovering every source packet, are derived for the majority of the schemes.
A second metric is then introduced, the probability of recovering a portion of the
source message, and additional theoretical expressions are derived to take this
into account. In the preparation of the MATLAB platform used to obtain simula-
tion results, three different branches of decoding algorithm are examined and then
adapted, in order to find the most suitable candidate. Simulation results for each
of the encoding schemes are then presented and discussed.

Lastly, the concept of a layered source message is introduced, where some
source packets are more important than others, and some of the schemes present in
literature that attempt to tailor generic fountain codes for use with scalable video
encoders. To examine the progressive and overall performance of these “layered”
schemes, and to see if their progressive performance can be enhanced at all, the
original encoding schemes are modified and simulation results are presented and
discussed.

Contents

Contents v

List of Figures viii

List of Tables x

Code Listings xi

1 Introduction 1
1.1 Objectives . 3

2 Fundamentals of Fountain Coding 5
2.1 Encoding Process of a RLFC . 5
2.2 Decoding Process of a RLFC . 6
2.3 Theoretical Performance of a RLFC 9

2.3.1 Including the possibility of a null coded packet 10
2.3.2 Without the possibility of a null encoded packet 13
2.3.3 Implementation of the Expression 13
2.3.4 End-to-end probability of packet recovery 15

2.4 Luby Transform Codes . 15
2.4.1 Iterative Belief Propagation 16
2.4.2 Sparsity Optimisation . 17

2.5 Summary . 18

3 Introduction to the Encoding Schemes 20
3.1 Conventional Fountain Codes . 20
3.2 Systematic Fountain Codes . 21

3.2.1 Theoretical probability of recovering every source packet . . 21
3.2.2 Probability of linear independence of each case 24
3.2.3 Probability of recovering at least M packets 25

Contents

3.3 Sliding-Window Fountain Codes . 27
3.3.1 Optimising the window’s parameters 28

3.4 Ordered Uncoded Scheme . 31
3.4.1 Theoretical Probability of Recovering Every Source Packet . 31
3.4.2 Probability of recovering exactly m source packets 33
3.4.3 Probability of Recovering At Least M Packets 35

3.5 Summary . 35

4 Decoding Schemes for Progressive Recovery 37
4.1 On-the-fly Gaussian Elimination . 37

4.1.1 Original Algorithm . 38
4.1.2 Adapted Algorithm . 41

4.2 Gaussian Elimination . 42
4.3 Comparison of Decoding Schemes 44
4.4 Summary . 45

5 Performance Assessment of Layerless Schemes 46
5.1 Metric Framework . 46
5.2 Layerless Scheme Comparison . 47
5.3 Summary . 49

6 Performance Assessment of Layered Schemes 51
6.1 Introduction to NOW and EW Strategies 52

6.1.1 Non-Overlapping Window 53
6.1.2 Expanding Window . 53

6.2 Encapsulation of layerless encoding schemes 54
6.2.1 Conventional Fountain Code 54
6.2.2 Systematic Fountain Code 55
6.2.3 Sliding Window Fountain Code 55
6.2.4 Ordered Uncoded . 56

6.3 Layered Scheme Comparison . 57
6.3.1 Progressive Layer Recovery using NOW 57
6.3.2 Progressive Layer Recovery using EW 57
6.3.3 Entire Layer Recovery using NOW 60
6.3.4 Entire Layer Recovery using EW 61
6.3.5 Entire Source Message Recovery using Both Schemes 62

6.4 Summary . 62

7 Conclusion 63
7.1 Individual Contribution . 64

vi

Contents

7.2 Areas for Future Work . 64

Appendix A Conference Paper: Performance Assessment of Foun-
tain-coded Schemes for Progressive Packet Recovery 66

Appendix B Conference Paper: Binary Systematic Network Coding
for Progressive Packet Decoding 73

References 80

vii

List of Figures

1.1 A toy example of an ARQ-style broadcast of a three packet source
message. The dashed circle represents the area within which trans-
missions from S can be heard. 2

2.1 The interconnects between each source packet and each coded pac-
ket (a), given a specific encoding matrix (b). 6

2.2 The construction and transmission of the coded packets over the
PEC. 6

2.3 An example showing the Gaussian Elimination algorithm presented
in Listing 2.1 when applied to the received coding matrix in Figure
2.2. 9

2.4 Plot showing the accuracy of the three theoretical expressions for
PrLIN with no possibility of a null coded packet. 14

2.5 An example of the Iterative Belief Propagation algorithm when ap-
plied to the coded packets from Figure 2.2. 16

3.1 Performance validation of SFC transmission for K = 40, different
values of p and (a) partial message recovery (M = 20) or (b) full
message recovery (M = 40). 26

3.2 SWFC scheme as proposed in [2], [3]. In this case, w = 4 and
δ = 2, this means that every window is encoded over for w = 4
transmissions [1]. 27

3.3 Performance of the SWFC scheme for K = 20, different values of
δ with a fixed w and (a) 0.1% packet erasure and (b) 10% packet
erasure. 29

3.4 Performance of the SWFC scheme for K = 20, different values of
w with a fixed δ and (a) 0.1% packet erasure and (b) 10% packet
erasure. 30

viii

List of Figures

3.5 An example showing K = 5 source packets, three of which (β = 3)
have been transmitted twice and are considered “privileged”. If
exactly m = 3 packets are received and hmin started from 0, this
would imply that there are 3 “unprivileged” packets. Hence, hmin

must start from 1. 34
3.6 Performance validation of OU transmission for K = 40, different

values of p and (a) partial message recovery (M = 20) or (b) full
message recovery (M = 40). 36

4.1 An example showing the combinations that would be checked during
each iteration of the OFGE XORing stage after g4 has been received. 42

4.2 Shows the difference in computational time for the decoding strate-
gies (a) and the difference in performance when decoding rank-
deficient coding matrices (b). 45

5.1 Shows the values that N̂ and ∆N would take for the OU scheme
with K = 20, p = 0.1 and P̂ = 0.7. 47

5.2 Packet recovery probabilities as a function of N for K = 20. 48
5.3 Packet recovery probabilities as a function of N for K = 40. 50

6.1 An example of Non-Overlapping Window assignment. 53
6.2 An example of Expanding Window assignment. 54
6.3 A generic layered source message with two importance layers. . . . 55
6.4 Performance of the NOW and EW schemes with different encoding

strategies within the windows for K = {15, 25}, p = 0.05. Layerless
SFC has also been included in each plot. 58

6.5 Performance of the NOW and EW schemes with different encoding
strategies within the windows for K = {15, 25}, p = 0.1. Layerless
SFC has also been included in each plot. 59

6.6 The probability of recovering every packet in the source message for
each of the NOW and EW schemes with different encoding strategies
within the windows. K = {15, 25} and p = {0.05, 0.1}. Layerless
SFC has also been included in each plot. 60

ix

List of Tables

2.1 Possible combinations of the i = 4 received coded packets that
allows the recovery of the K = 3 source packets. 11

2.2 Possible combinations of the i = 5 received packets that allows the
recovery of the K = 3 source packets. 12

3.1 Possible combinations of i = 4 received packets that allows the
recovery of the K = 3 source packets. The first received packet is
guaranteed to be systematic (h = 1). 24

5.1 Values of N̂ and ∆N for different erasure probabilities and the var-
ious schemes under investigation. 49

x

Code Listings

2.1 Simple example of Binary Gaussian Elimination algorithm used to
obtain the row-echelon form of the received encoding matrix. 7

2.2 MATLAB implementation of the simple back-substitution phase
that would accompany the GE process in Listing 2.1. 8

4.1 MATLAB example of the original OFGE algorithm presented in [4]. 39
4.2 Simple example of Binary Gaussian Elimination algorithm used to

obtain the row-echelon form of the received encoding matrix. 43

xi

Chapter 1
Introduction

The broadcast of identical messages to multiple recipients within a wireless medium
was, historically, an extremely inefficient process. Ubiquitous repeating protocols
such as Automatic-Repeat-reQuest (ARQ) led to intolerably large delays and re-
dundant transmissions. In an ARQ scheme, the source message is initially broad-
cast by the transmitter in an ordered fashion, and once this has been accomplished,
receivers then request the retransmission of the specific source packets that they
have not yet recovered because of the lossy nature of the wireless channel [5].

Figure 1.1 shows an ARQ-style broadcast of a three packet source message
from transmitter S to receivers R1, R2 and R3. R1 has successfully recovered s1

and s2, R2 has successfully recovered s2 and s3 and R3 has only recovered s2. In
the next stage of the ARQ strategy, R1 would request that S retransmits s3, R2

would request the retransmission of s1 and R3 would request the transmission of
both s1 and s3. From the redundant retransmission requests of R3, it is evident,
from this example, that this phase of the ARQ scheme is inefficient when utilised
for multicast.

The wireless medium exhibits a broadcast effect, without which wireless multi-
cast could not occur, that means that anything transmitted by S can also be heard
by R1, R2 and R3, and at this point in the ARQ scheme, this means that these
two recipients might receive redundant packets that they have already recovered
[6].

To mitigate the inefficiencies of conventional ARQ schemes when used in wire-
less multicast scenarios, in 1998 Byers et al. [7] introduced the concept of fountain
coding. When fountain codes are employed, source packets are not transmitted in
an ordered fashion, as they were in ARQ, but coded packets are transmitted in-
stead. These coded packets are linear combinations (XORs) of a randomly selected
amount of source packets.

So, instead of a receiver looking to recover specific packets, such as s1, s2 and

1

S R1

R2

R3

s1

s2

✚✚s3

✚✚s1
s2

s3

✚✚s1 s2 ✚✚s3

Fig. 1.1 A toy example of an ARQ-style broadcast of a three packet source message.
The dashed circle represents the area within which transmissions from S can be
heard.

s3, the receiver only wishes to recover at least three coded packets. Each of these
coded packets can be considered as a simultaneous equation, with each equation
having three unknowns. From elementary algebra, it can be concluded that at
least three coded packets must be recovered to have any chance of recovering the
three source packets.

Fountain codes as they were initially proposed, now known as Random Linear
Fountain Codes, had a high encoding and decoding complexity because of the sheer
amount of XOR row operations that were required to produce and then decode
each coded packet. This stemmed from the fact that there were no restrictions on
the number of source packets that could be included in each coded packet.

To reduce the computational complexity of these original codes, Luby proposed
a modification in 2002 [8] called Luby-Transform codes, where the number of
packets that are included in each coded packet is not uniformly random, but is
based on a probability distribution known as a degree distribution. In his paper,
Luby also proposed a methodology for defining an efficient degree distribution,
that can be tailored to different system requirements, known as the Robust Soliton
Distribution. Random Linear Fountain Codes and Luby-Transform codes will be
further investigated in Chapter 2.

Luby-Transform codes succeeded in lowering the complexity of Random Linear
Fountain Codes, but they still exhibited an encoding and decoding complexity
that scales with loge(K), where K is the number of source packets in the message.
However, this issue was quickly remedied with Shokrollahi’s introduction of Raptor
codes in 2006 [9], which exhibit linear time encoding and decoding.

Because of their low complexity and overhead, when compared to other codes
used for multimedia multicast, Raptor codes have found application within recent

2

1.1 Objectives

standards such as 3GPP [10] and DVB-H [11].
In every fountain coded scheme mentioned above, the focus has always been

the recovery of the entire source message with minimal overhead. That, of course,
requires a recipient to have received at least K coded packets. However, if a
multimedia file was being broadcast using a fountain code what if it could be
guaranteed that the recipient would receive an ordered portion, for example the
first half, of the source message. The user could then start playing the media, as
long as the rest of the message is recovered without incurring an unrealistic delay,
before receiving the full K coded packets. It is this proposition that has motivated
this work and has also culminated in a published conference paper [1], which can
be seen in Appendix A, and a second conference paper [12] that is currently under
review, which can be seen in Appendix B.

1.1 Objectives

The objectives of this work can be summarised as follows.

• Perform a literature review into known fountain coding and decoding tech-
niques.

• Become familiar with stochastic methods for evaluating the probability of
successful decoding at a receiving end.

• Produce an efficient simulation platform in MATLAB and validate its accu-
racy using known results.

• Develop or adapt existing decoding mechanisms to progressively (on-the-fly)
recover information as more packets are recovered at a receiver.

• Derive theoretical expressions for the progressive and overall performance of
these mechanisms.

• Compare theoretical results and simulation results for on-the-fly packet re-
covery.

• Introduce the concept of a layered source message and the adapted fountain
coding schemes that are employed to broadcast such messages.

• Adapt the simulation platform to allow simulations for layered source infor-
mation and examine and discuss simulation results for layered scenarios.

The thesis is structured as follows to first provide background knowledge, and
then to build upon and extend fundamental encoding schemes, in order to achieve

3

1.1 Objectives

the project objectives mentioned above. In Chapter 3 the four encoding schemes
are introduced, three exhibiting fountain coding and a benchmark scheme. The-
oretical expressions for the first metric, the probability of recovering every source
packet, are then derived for the majority of the schemes. A second metric, the
probability of recovering a portion of the source message, is then introduced and
additional theoretical expressions are derived.

As mentioned above, fountain coded packets can be viewed as simultaneous
equations so it is not particularly surprising that many fountain decoding tech-
niques are built around the Gaussian Elimination process. In Chapter 4, three
different branches of decoding algorithm are examined and adapted, in order to
find the most suitable candidate for use in the MATLAB simulation platform.

Chapter 5 then presents and discusses simulation results for each of the encod-
ing schemes mentioned in Chapter 3.

Recently, the Joint Video Team of the ITU-T VCEG and the ISO/IEC MPEG
standardised a Scalable Video Coding (SVC) extension of the H.264/AVC standard
[13]. In previous chapters, the performance of layerless encoding schemes has been
examined, where every source packet has identical importance, to see how well
receivers can progressively recover the media message. However, a video encoder
that utilises the SVC extension produces multiple layers, each with a different level
of importance.

In Chapter 6, the concept of a layered source message is introduced, as well
as some of the schemes already present in literature that attempt to tailor generic
fountain codes for use with scalable video encoders. To examine the progressive
and overall performance of these “layered” schemes, and to see if their progressive
performance can be enhanced at all, modifications to Chapter 3’s encoding schemes
are introduced. Simulation results for the modified encoding schemes are then
presented and discussed.

This thesis is then summarised in Chapter 7, and the main contributions of
this work are listed. Possible areas for future research are also highlighted.

4

Chapter 2
Fundamentals of Fountain Coding

In this chapter, the theoretical performance of the Random Linear Fountain Code
(RLFC) is examined. A RLFC is a method of disseminating identical source
messages to multiple users, that was initially presented by Byers et al. [7]. The
analysis will first allow and then remove the possibility of a null coded packet.
Finally, the encoding and decoding process for the first practical implementation
of the Fountain Code technique, the Luby Transform code [8] will be touched on.

This introduction to generic Fountain Coding principles, and the method of
their investigation, will be built upon in later chapters.

2.1 Encoding Process of a RLFC

If a Random Linear Fountain Code was to encode N packets over a message
comprised of K source packets {s1, s2, . . . , sK}, the encoder would construct a
coded packet tn at time step n, where {n = 1, . . . , N}, from the linear combination
or, in other words, the bitwise sum of source packets as follows [14]

tn =
K∑

i=1
gn,i si (2.1)

where gn,i is a binary coding coefficient selected uniformly at random.
Figure 2.1 displays the construction of each coded packet in a scenario with

K = 3 source packets. To give a specific example, coded packet t2, which has been
generated with random coding vector G2 = [1 1 0], would contain the bitwise sum
of s1 and s2 (t2 = s1 ⊕ s2).

Once the coded packets have been generated, they are transmitted to a receiver
over a potentially lossy channel. This channel is modelled as a packet erasure
channel (PEC), where the probability of not recovering a particular transmitted
packet is p. This behaviour can be seen in Figure 2.2 for a similar scenario to that

5

2.2 Decoding Process of a RLFC

s1 s2 sK

t1 t2 tN−1 tN

(a)

s1 s2 sK

G1 1 0 0
G2 1 1 0

...
GN−1 1 1 1

GN 1 0 1

(b)

Fig. 2.1 The interconnects between each source packet and each coded packet (a),
given a specific encoding matrix (b).

Encoder K = 3, N = 4

s1

s2

s3

t1

t2

t3

t4

r1

r2

r3

p

1 − p

1 − p

1 − p

N
oi

se

PEC

Fig. 2.2 The construction and transmission of the coded packets over the PEC.

in Figure 2.1 but with N = 4 transmitted coded packets. Packets r1, r2 and r3

represent the i = 3 transmitted coded packets that have actually been successfully
recovered from the lossy channel by the receiver.

2.2 Decoding Process of a RLFC

In order to successfully recover all of the K source packets, at least K linearly
independent coded packets must be recovered. Another way of phrasing this re-
quirement, is that the coding vectors of the received packets must form a matrix
of rank K.

The row-echelon form of the received encoding matrix can be found by applying
Gaussian Elimination [15], the original matrix’s rank can then be obtained by
inspecting the number of non-zero rows within the echelon form.

6

2.2 Decoding Process of a RLFC

function [cod_matrix] = GaussElim (cod_matrix)

[num_coded , num_source] = size(cod_matrix);

% For each position on the diagonal
for arg_count = 1 : num_source

% As a row - echelon form matrix needs to be formed
% check if the current diagonal element
% is equal to 0
if(cod_matrix (arg_count , arg_count) == 0)

% As this element needs to be 1, check the other
% encoding vectors down the diagonal , and swap if
% they have a 1 in the element that is currently
% being examined
for row_count = arg_count : num_coded

if(cod_matrix (row_count , arg_count) ~= 0)
temp = cod_matrix (arg_count , :);
cod_matrix (arg_count , :) = ...

cod_matrix (row_count ,:);
cod_matrix (row_count ,:) = temp;

end
end

end

% Now that there is a 1 in the correct position on the
% diagonal , XOR the current encoding vector with every
% other encoding vector to make sure that the current
% vector is the only one with this element on the
% diagonal
for row_count = 1 : num_coded

if(row_count ~= arg_count)
if(cod_matrix (row_count , arg_count))

cod_matrix (row_count ,:) = ...
xor(cod_matrix (row_count ,:) , ...
cod_matrix (arg_count ,:));

end
end

end

end

Listing 2.1 Simple example of Binary Gaussian Elimination algorithm used to
obtain the row-echelon form of the received encoding matrix.

7

2.2 Decoding Process of a RLFC

function [recoverable_packets] = Back_Sub (cod_matrix)

% Initially , no source packets have been recovered
recoverable_packets = zeros (1, num_source);

% Counting upwards from the furthest element down
% the diagonal , as the encoding matrix has been
% ordered by the GE process
for i = num_source : -1 : 1

% If there is a single non -null element in
% the current coding vector , then this element
% can be recovered
if sum(cod_matrix (i ,:)) == 1

% Note that it has been recovered
recoverable_packets (cod_matrix (i ,:) == 1) = 1;
% And remove the recovered element from
% any other coding vectors
cod_matrix (:, cod_matrix (i ,:) == 1) = 0;

end
end

end

Listing 2.2 MATLAB implementation of the simple back-substitution phase that
would accompany the GE process in Listing 2.1.

For example, to obtain the row-echelon form of the encoding matrix received
in the scenario given in Figure 2.2, follow the algorithm presented in Listing 2.1.
The resultant matrix transformations would be those in Figure 2.3.

Towards the end of Figure 2.3, the row-echelon matrix has K = 3 non-zero
rows. This implies that the received encoded matrix is not rank-deficient and that
all of the source packets can be recovered immediately. In this case there is no
need to wait for any further innovative packets to arrive. The phrase “innovative
packet” is used to define a coded packet that is linearly independent of the received
coded packets or, in other words, is not a bitwise sum of the binary coded packets
that have already been received.

To pick out which source packets are recoverable from a rank-deficient matrix
of received coding vectors, instead of simply checking an encoding matrix for full
rank, a simple secondary back-substitution stage could be appended to Listing 2.1.
This back-substitution stage would take the resulting row-echelon form matrix,
once the GE process had completed, and would attempt to transform it into a
reduced row-echelon form.

A MATLAB implementation of this process can be seen in Listing 2.2.

8

2.3 Theoretical Performance of a RLFC

1 0 0
0 1 0
0 0 1

1 0 1
0 1 1
0 0 1

1 1 0
0 0 1
0 1 1

1 1 0
0 1 1
0 0 1

1 1 0
1 1 1
1 0 1

 XOR

Swap
XOR

XOR

arg_count = 1

arg_count = 2

arg_count = 3

Fig. 2.3 An example showing the Gaussian Elimination algorithm presented in
Listing 2.1 when applied to the received coding matrix in Figure 2.2.

2.3 Theoretical Performance of a RLFC

As random combinations of source packets are being transmitted, the theoretical
performance of Random Linear Fountain Codes is not all-encompassed by the
probability of simply receiving K transmitted packets. The probability that the
received “simultaneous equations” are solvable needs to be taken into account. In
other words, is the matrix of the received encoding vectors invertible? Are the
N ≥ K received encoding vectors linearly independent?

This probability of the received packets being linearly independent will now
be investigated. The possibility of randomly generating a coded packet that is
not linked with any source packets, known as a null coded packet, will be initially
included in the probability analysis for simplicity but then it will be removed.

Once expressions have been obtained for the probability that K of the i received
packets are linearly independent, this investigation will be concluded by including
the probability of actually receiving the i packets in the first place.

9

2.3 Theoretical Performance of a RLFC

2.3.1 Including the possibility of a null coded packet

A toy example, of a RLFC encoder generating coded packets over K = 3 source
packets, will initially be considered. It is assumed that the receiver has managed
to obtain i = 3 fountain coded packets from the lossy channel.

Afterwards, generic expressions for any value of i = K and then for any value
of i ≥ K will be found. However, at this point, the next step is to investigate the
probability that the i = 3 received packets are linearly independent.

To obtain this probability of the linear independence of i = 3 received fountain
coded packets, that were encoded over K = 3 source packets, the first step is to
consider all of the possible combinations of source packets that could be present
in a coded packet. These combinations are shown as columns in the matrix below:

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

As the null coded packet does not contain any information, it should not be

selected when choosing the initial packet. The probability of initially not selecting
the null coded packet is 1 − 1

2K = 1 − 1
8 = 7

8 .
Now that a non-null packet has been selected, the second received coded packet

should also be different to the null packet but also to the first coded packet that
has been selected. The probability of not selecting the null packet or the initial
packet again is 1 − 2

2K = 1 − 2
8 = 6

8 .
Two of the three coded packets have now been considered. The third packet

must be linearly independent to the previous two packets. This probability of
linear independence is 1 − 4

2K = 1 − 4
8 = 4

8 .
The combined probability of receiving three linearly independent coded packets

is 7
8 · 6

8 · 4
8 = 21

64 .
This process can be generalised as follows for i = K:

PrLIN(K, i = K) =
K−1∏
a=0

(
1 − 2a

2K

)
. (2.2)

If 2a

2K is simplified, 2a

2K = 2a · 2−K = 2a−K = 1
2K−a , the expression supplied by

MacKay in [14] is found.

PrLIN(K, i = K) =
K−1∏
a=0

(
1 − 1

2K−a

)
. (2.3)

If more than K coded packets are received (i ≥ K), K of the received coded

10

2.3 Theoretical Performance of a RLFC

Packet 1 Packet 2 Packet 3 Packet 4
Combination 1 1

8
7
8

6
8

4
8

2 7
8

2
8

6
8

4
8

3 7
8

6
8

4
8

4
8

4 7
8

6
8

4
8

8
8

Table 2.1 Possible combinations of the i = 4 received coded packets that allows
the recovery of the K = 3 source packets.

packets must be linearly independent, while i − K of the received packets will be
linearly dependent.

For example, if K = 3 source packets were encoded over and the receiver ob-
tained i = 4 coded packets, there are

(
i

i−K

)
=
(

4
1

)
= 4 different combinations of

received packets that allow the recovery of the K source packets. These combina-
tions can be visualised as in Table 2.1.

The dark grey fractions indicate packets which are linearly dependent. For
example, the third row’s packet combination implies that the first packet was not
the null packet and that the second was linearly independent to the first. However,
the third received packet was linearly dependent to the first and second, this event
occurs with a probability of 4

2K which is the complement of the probability of
the third packet being linearly independent. After receiving a linearly dependent
packet, the probability of the final packet being linearly independent to the first
and second is still 1 − 4

2K .
The set of light grey probabilities within each case are repeated throughout

each row and can be defined by (2.2). If only the differences between each row are
considered, the following set is obtained

{
1
8 , 2

8 , 4
8 , 8

8

}
. This set can be described for

i = K + 1 by ∑K
d1=0

2d1
2K .

Hence, the probability of the linear independence of i = K + 1 received coded
packets can be described as:

PrLIN(K, i = K + 1) =
K−1∏
a=0

(
1 − 1

2K−a

)
·

K∑
d1=0

2d1

2K
. (2.4)

To obtain a generic expression for any value of i ≥ K, a scenario where i = 5
coded packets have been received, which have been encoded over K = 3 source
packets, is considered. Following identical logic to the investigation of the previous
case, the K = 3 source packets can be recovered if K = 3 of the i = 5 received
coded packets are linearly independent, the (i − K) = 2 remaining received coded
packets will be linearly dependent.

11

2.3 Theoretical Performance of a RLFC

Packet 1 Packet 2 Packet 3 Packet 4 Packet 5
1
8

1
8

7
8

6
8

4
8

1
8

7
8

2
8

6
8

4
8

1
8

7
8

6
8

4
8

4
8

1
8

7
8

6
8

4
8

8
8

7
8

2
8

2
8

6
8

4
8

7
8

2
8

6
8

4
8

4
8

7
8

2
8

6
8

4
8

8
8

7
8

6
8

4
8

4
8

4
8

7
8

6
8

4
8

4
8

8
8

7
8

6
8

4
8

8
8

8
8

Table 2.2 Possible combinations of the i = 5 received packets that allows the
recovery of the K = 3 source packets.

These
(

5
2

)
= 10 combinations can be visualised as in Table 2.2, where the grey

fractions now indicate one of the linearly dependent packets:
As with the previous example, there are repeating sets of probabilities defined

by (2.2) within each row. It is now straightforward, by fixing the position of one
of the dependent packets and iterating the position of the other, to extend (2.4)
to take into account the probabilities introduced by an extra linearly dependent
packet:

PrLIN(K, i = K + 2) =
K−1∏
a=0

(
1 − 1

2K−a

)
·

K∑
d1=0

2d1

2K

K∑
d2=d1

2d2

2K
. (2.5)

By following the same reasoning for any value of i ≥ K, in concurrence with [16],
it is evident that:

PrLIN(K, i) =
K−1∏
a=0

(
1 − 1

2K−a

)
·

K∑
d1=0

2d1

2K

K∑
d2=d1

2d2

2K
· · ·

K∑
d(i−K)=d(i−K)−1

2d(i−K)

2K
. (2.6)

12

2.3 Theoretical Performance of a RLFC

2.3.2 Without the possibility of a null encoded packet

In practice, as it contains no information, the possibility of a null encoded packet
is removed. To revise the expression of PrLIN to accommodate this, in a similar
vein to the prior investigation, the first step is to consider all of the possible
combinations of K = 3 source packets that could be present in a coded packet.
These combinations are shown, as columns, in the matrix below:

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

As the possibility of an all-zero encoded packet has been removed, the total

number of combinations is now (2K − 1) = 7.
Initially, if any packet from the options above was selected, the probability of

the second packet being linearly independent is 1 − 1
7 = 1 − 1

2K−1 = 6
7 . In other

words, the probability of not selecting the first packet again.
The probability that the third packet is linearly independent to the first two

packets is 1 − 3
7 = 4

7 . The combined probability is 4
7 · 6

7 = 24
49 .

Again, this process can be generalised as follows for i = K:

PrLIN(K, i = K) =
K−1∏
a=1

(
1 − 2a − 1

2K − 1

)
. (2.7)

Following the same process that resulted in (2.6), but starting with (2.7) instead
of (2.2), PrLIN can be redefined as:

PrLIN(K, i) =
K−1∏
a=1

(
1 − 2a − 1

2K − 1

)
·

·
K∑

d1=0

2d1 − 1
2K − 1

K∑
d2=d1

2d2 − 1
2K − 1 · · ·

K∑
d(i−K)=d(i−K)−1

2d(i−K) − 1
2K − 1 . (2.8)

2.3.3 Implementation of the Expression

Although (2.8) provides an exact expression for the probability that the i received
packets are linearly independent, unfortunately, the multiplication of the nested
sums does not lend itself to timely computation for K ≥ 20. To overcome this
issue, an approximation was introduced.

If (2.7) is revisited, an incomplete way of extending the expression for any

13

2.3 Theoretical Performance of a RLFC

2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N

P
C
F
C
(N

)

PK(N) CFC Simulation
PK(N) MacKay Theory
PK(N) Approx. Theory
PK(N) Exact Theory

(a) K = 3

4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
P
C
F
C
(N

)

(b) K = 5

5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N

P
C
F
C
(N

)

(c) K = 10

Fig. 2.4 Plot showing the accuracy of the three theoretical expressions for PrLIN
with no possibility of a null coded packet.

number of received packets would be:

PrLIN(K, i) ≈
K−1∏
a=1

(
1 − 2a − 1

2i − 1

)
. (2.9)

Equation (2.9) is the result of simply acknowledging that if a matrix has K

linearly independent rows it must have K linearly independent columns [17]. The
approximation is not exact because even though there is no possibility of an all-zero
column, there is still a possibility of an all-zero row.

In [14], MacKay applies this row/column switch logic to produce an exact
expression for the probability of i received coded packets being linearly indepen-
dent. However, as the possibility of an all-zero coded packet is always considered,
MacKay’s theory is only exact for larger values of K, when the probability of
generating a null coded packet gets very small.

PrLIN(K, i) ≈
K−1∏
a=0

(
1 − 1

2i−a

)
. (2.10)

Figure 2.4 compares a simulation of a non-systematic conventional fountain
code against the theoretical results given by (2.8), (2.9) and (2.10). It is evident
that, although not strictly exact for K < 10, the proposed approach provides an
acceptable approximation to the simulation results, considering the reduction in
computational complexity.

14

2.4 Luby Transform Codes

2.3.4 End-to-end probability of packet recovery

Sections 2.3.1 and 2.3.2 examined the probability of overall packet recovery given
that i coded packets have been received. This concluding section takes into account
the lossy channel’s erasure probability p, and the fact that if N ≥ K coded packets
are transmitted, there are multiple values of N ≥ i ≥ K that will allow the recovery
of the K source packets.

If, as in the system model in Figure 2.2, p represents the probability of not
receiving a particular packet, then (1 − p) becomes the probability of successfully
recovering a particular packet. It follows that the probability of receiving three
packets is (1 − p)3.

The probability of one instance of recovering exactly i of the N coded packets
transmitted using RLFC is (1 − p)ipN−i. There are

(
N
i

)
possible ways of choosing

the i received packets from the N transmitted packets, where
(

N
i

)
denotes the

binomial coefficient [18] (
N

i

)
≡ N !

(N − i)! i! (2.11)

where z! denotes a factorial.
It follows that the complete probability of recovering exactly i of the N source

packets transmitted is the binomial distribution(
N

i

)
(1 − p)ipN−i. (2.12)

Next, (2.12) is summed over all of the possible valid values of i that allows the
recovery of at least K coded packets:

N∑
i=K

(
N

i

)
(1 − p)ipN−i (2.13)

Of course, to actually recover each of the source packets, the probability that
there are K linearly independent packets within the i received packets needs to be
included:

PK(N) =
N∑

i=K

(
N

i

)
(1 − p)ipN−i PrLIN(K, i) (2.14)

where the definition of PrLIN(K, i) can either be (2.6) or (2.8).

2.4 Luby Transform Codes

Luby Transform (LT) [8] codes were the first practical implementation of the foun-
tain coding principles introduced in the previous section. They attempted to

15

2.4 Luby Transform Codes

s1

s2

s3

r1 = 1

r2 = 1

r3 = 0

r4 = 0

1

s2

s3

r1 = 1

r2 = 0

r3 = 1

r4 = 1

1

0

s3

r1 = 1

r2 = 0

r3 = 1

r4 = 1

Fig. 2.5 An example of the Iterative Belief Propagation algorithm when applied
to the coded packets from Figure 2.2.

reduce the encoding and decoding complexity encountered when utilising the orig-
inal RLFC, by optimising the sparsity of the coding vector associated with each
transmitted packet. This sparsity optimisation meant that an extremely simple
decoding algorithm, named message passing or iterative belief propagation (IBP),
could be applied.

2.4.1 Iterative Belief Propagation

The IBP decoding process can be said to resemble the simple back substitution
algorithm that would be the next phase of the Gaussian Elimination algorithm
mentioned in Section 2.2. This is because IBP simply checks the received coding
vectors for a degree of one and, if such a vector is found, marks the packet within
the vector as recovered. This process then removes (XORs) the newly recovered
packet from every other coding vector.

Figure 2.5 shows the IBP algorithm when applied to a toy example such as a
scenario where the user has successfully recovered every coded packet generated
in Figure 2.2. Packets s1, s2 and s3 are assigned the values of 1, 0, 1 respectively.

The algorithm initially checks whether any of the coding vectors are systematic,
in other words if they have a degree of one. It finds that r1 has a degree of one
and immediately marks s1 as recovered. The fact that the value of s1 is 1 is now
known, so s1 can be removed (XORed) from every coded packet which still includes
s1 (packets r2, r3, r4).

When the removal of any s1 elements in the remaining coding vectors is com-
plete, the IBP algorithm checks again for coded packets of degree one. This time
it finds that r2 is now systematic so, in a similar fashion to the previous step, s2

is now known to have a value of 0 which is then XORed with the other coding
vectors. Two coded packets are then left r3, r4 that both claim to contain the value
of s3, and luckily they agree so the algorithm is complete.

However, if the user had not received the 4 coded packets that were generated

16

2.4 Luby Transform Codes

in Figure 2.2, for instance it had not been able to recover r1, the IBP algorithm
would have not been able to recover any of the source packets, as there would
not have been any degree one packets, even though it is evident from Figure 2.3
that all of the source packets are in fact recoverable. It is this limitation of the
low computational complexity IBP decoder that the sparsity optimisation schemes
described in the next section attempt to mitigate.

2.4.2 Sparsity Optimisation

As mentioned in the previous section, these sparsity optimisation schemes, known
as degree distributions, effectively limit the amount of source packets that can
be included in each coded packet at each time step. The method adopted in
the literature is to employ a probabilistic distribution, where the distribution is
designed to meet certain constraints. Formally, the degree distribution must:

• Include every source packet at least once in a coded packet, which means
that some packets need to have a large degree.

• Produce enough low-degree packets to keep the IBP process running.

• Keep the average degree low, to minimise the number of encoder and decoder
operations needed.

• Keep the average number of coded packets needed to recover the entire source
message as low as possible.

Ideal Soliton Degree Distribution

A straightforward way of designing a degree distribution that meets the above
constraints would be to engineer a degree distribution where it is expected that
there will only be one degree-one packet during every iteration of the algorithm.
This distribution is called the Ideal Soliton Distribution [8]:

ρ(1) = 1/K

ρ(d) = 1
d(d − 1) for d = 2, 3, · · · , K

(2.15)

where K is the number of source packets.
In practice, the Ideal Soliton Distribution performs poorly. This is because,

as the decoding algorithm is waiting for the release of a single degree-one coded
packet at every iteration of the algorithm, any variance in the expected packet
degree will halt the recovery process. And, as the degree selection is probabilistic,
deviation occurs frequently. It is likely that there will be no degree-one coded

17

2.5 Summary

packets when expected and it is also likely that some of the K source packets will
not be included in any coded packets.

This reliance on the release of a degree-one coded packet at every iteration was
fixed with the introduction of the Robust Soliton Distribution.

Robust Soliton Degree Distribution

The Robust Soliton Distribution builds on the framework introduced by the Ideal
Soliton Distribution by adding two extra parameters, δ and c. Where δ is the
bound on the probability that the decoding will eventually fail, known as the
failure probability, and c is a constant.

The two new parameters are then optimised to ensure that the expected number
of degree-one coded packets at every iteration of the decoding algorithm is not 1,
but

S ≡ c loge(K/δ)
√

K. (2.16)

Function τ is then defined, in [14], as

τ(d) =

S
K

1
d

for d = 1, 2, · · · , ⌊K/S⌋ − 1
S
K

loge(S/δ) for d = ⌊K/S⌋

0 for d > ⌊K/S⌋.

(2.17)

The Robust Soliton Distribution is obtained by adding ρ (2.15) to the newly
defined τ (2.17) and normalising the result with Z = ∑K

i=1(ρ(i) + τ(i)). Hence,
the Robust Soliton Distribution (µ) is given as

µ(d) = ρ(d) + τ(d)
Z

. (2.18)

In conclusion, the addition of the τ component to the original soliton distribu-
tion increases the expected number of degree-one coded packets at each iteration
from the impractical value of 1 to S (2.16). Function τ also introduces a spike of
coded packets with a larger degree of ⌊K/S⌋ so that there is a much more robust
chance of every source packet being included in at least one coded packet.

2.5 Summary

In this chapter, the theoretical performance of the Random Linear Fountain Code
was examined, with and without the possibility of transmitting a null coded packet.
The encoding and decoding process for Luby Transform codes was also looked at.

The next chapter will focus on the introduction of each of the encoding schemes,

18

2.5 Summary

methods of governing which source packets a RLFC can encode over, and the
extension of the theoretical derivation provided in this Chapter to provide exact
expressions for some of these encoding schemes. A new metric will be introduced to
allow the encoding schemes to be contrasted based on how well they allow receivers
to progressively recover source packets, in situations when they have received less
than K coded packets.

19

Chapter 3
Introduction to the Encoding Schemes

In this chapter, each of the encoding schemes that were compared will be intro-
duced. Encoding schemes are methods of governing which source packets a RLFC
encoder can combine when generating coded packets. More specifically, the main
benefits of systematic fountain codes when compared with non-systematic fountain
codes will be looked at.

Utilising a similar rationale to that adopted in Chapter 2, expressions for the
theoretical overall performance of both systematic fountain codes and the bench-
mark scheme, the transmission of ordered uncoded source packets, will be derived.

A new metric will then be introduced, PK,M(N), that allows the encoding
schemes to be contrasted based on how well they allow receivers to progressively
recover source packets when they have received less than K coded packets. Where
1 ≤ M ≤ K is the length of the portion of the source message that should be
recovered before K coded packets have been received. And finally, expressions for
PK,M(N) for both systematic fountain codes and the benchmark scheme will be
developed.

3.1 Conventional Fountain Codes

The first encoding scheme that was utilised was the Random Linear Fountain Code
or Conventional Fountain Code (CFC) that has already been touched on in Chap-
ter 2. To reiterate, at every time-step, the CFC encoder produces a coded packet,
over the entire source message, that is the bitwise sum (XOR) of a uniformly
random number of source packets (2.1).

20

3.2 Systematic Fountain Codes

3.2 Systematic Fountain Codes

If the maximum packet erasure probability of the lossy channel between the trans-
mitter and receiver is relatively low, using a systematic fountain code (SFC) instead
of a conventional fountain code can provide a myriad of benefits.

Benefits such as a greatly reduced decoding complexity and a smaller amount
of coded packets that need to be received. Also, if enough source packets are
received in chronological order, the receiver may be able to start utilising the
recovered data, e.g. start playing a multimedia message, before the obligatory K

coded packets have been received.
More formally, the SFC that is considered here sequentially transmits each of

the K source packets systematically. As soon as every source packet has been
transmitted once, the scheme behaves like a CFC. Borrowing from (2.1), the SFC
encoder produces a stream of systematic/coded packets where the n-th transmitted
packet can be defined as follows

tn =

sn if n ≤ K
K∑

i=1
gn,i si otherwise.

(3.1)

The theoretical performance of systematic fountain codes will now be investi-
gated by building on the analysis presented in Section 2.3, initially including the
possibility of a null-coded packet and subsequently, more practically, removing the
possibility of a null-coded packet.

A metric for contrasting the ability of each encoding scheme to progressively
recover source packets, in other words the ability to recover and use source packets
before K coded packets have been received, will then be introduced. A theoretical
expression for the new metric, in the case of SFC, is then introduced.

3.2.1 Theoretical probability of recovering every source
packet

For N = K, in order to recover each of the K source packets, every transmitted
packet must be received. As each of the transmitted packets are systematic, the
probability of each received packet being linearly independent does not need to
be considered. In a similar manner to the process that produced (2.13), this
probability is found to be PK(N = K) = (1 − p)K .

When N is larger than K there is a possibility of fountain coded packets being
received. To take this into account, the probability that the i received packets are
linearly independent now needs to be computed. This is accomplished with the

21

3.2 Systematic Fountain Codes

weighted sum of probabilities described in the next section.

Sum of the weighted probability of linear independence of each case

Below is the (i + 1, 2) matrix of all the two integer permutations which sum to i

for the scenario where i = 3, K = 3 and N = 4

h c
0 3
1 2
2 1
3 0

.

The values in the left column signify the number of systematic packets (h)
within the i received. The right column signifies the number of fountain coded
packets (c).

As the maximum number of systematic packets is K and the maximum number
of coded packets is (N − K), some of the configurations above are obviously not
valid. In the example, N = 4 and K = 3 so h ≤ 3 and c ≤ 1.

If the rows in the above matrix, that either contain a systematic packet value
larger than K or contain a coded packet value larger than N − K, are removed,

h c 2 1
3 0

is obtained.

The rows of the above matrix now contain valid cases. For example, the first
row indicates that there is a possibility of receiving h = 2 systematic packets and
c = 1 coded packet.

Let PrS
LIN(K, i, h) denote the probability of the linear independence of the i

received packets, of which h are guaranteed to be systematic, which have been
encoded over K source packets.

Before summing the individual values of PrS
LIN(K, i, h) for each case, each case’s

probability needs to be weighted by the number of combinations which fit each
case. To give an example for the previous scenario, where i = 3, K = 3 and N = 4,

22

3.2 Systematic Fountain Codes

there are
(

4
3

)
= 4 possible combinations:

0 1 1
1 0 1
1 1 0
1 1 1︸ ︷︷ ︸

K sys. packets

N−K cod. packets︷︸︸︷
1
1
1
0

It is evident that only 1 of the combinations fits the
[

3 0
]

case, whereas 3 of
the combinations fit the

[
2 1

]
case. The weighted sum of probabilities for this

scenario can now be written as

(1 · PrS
LIN(3, 3, 3)) + (3 · PrS

LIN(3, 3, 2)).

A generalised expression for the number of combinations that fit a certain case is(
K

h

)(
N − K

c

)
.

If this expression is summed over every possible value of h, 0 ≤ h ≤ K, and
take into account that c is simply i − h it can be confirmed by Vandermonde’s
convolution [19] that

K∑
h=0

(
K

h

)(
N − K

i − h

)
=
(

N

i

)
.

By introducing the probability of the linear independence of each case, a gen-
eralised expression can now be defined for the weighted sum:

K∑
h=0

(
K

h

)(
N − K

i − h

)
PrS

LIN(K, i, h)

Of course, with the above h limits, some of the cases produced are not valid. As an
example, there are scenarios where (i − h) > (N − K) such as when K = 3, N = 4
and i = 3. In other words, 3 systematic packets have been transmitted and only
N − K = 1 coded packet so, to make up the number of received packets to i = 3,
h ≥ 2. To account for this, hmin = max(0, i − N + K).

PrS
LIN(K, i) =

K∑
h=hmin

(
K

h

)(
N − K

i − h

)
PrS

LIN(K, i, h) (3.2)

23

3.2 Systematic Fountain Codes

Packet 1 Packet 2 Packet 3 Packet 4
Combination 1 0

8
8
8

6
8

4
8

2 8
8

2
8

6
8

4
8

3 8
8

6
8

4
8

4
8

4 8
8

6
8

4
8

8
8

Table 3.1 Possible combinations of i = 4 received packets that allows the recovery of
the K = 3 source packets. The first received packet is guaranteed to be systematic
(h = 1).

3.2.2 Probability of linear independence of each case

Possibility of a Null coded Packet Included

As (h ≥ 0) packets are systematic, and hence already linear independent, certain
terms in the expression for a CFC in Section 2.3 (2.6) can be omitted.

For example if, in the i = 4, K = 3 scenario, the first packet was guaranteed
to be linearly independent (h = 1) the probability of the first packet’s linear
independence can be set to 1. The four combinations would then become Table
3.1. Again, the darker shaded cells indicate the probability of a linearly dependent
packet.

Following this train of thought to its conclusion allows the alteration of (2.6)
to take into account the possibility of h systematic packets:

PrS
LIN(K, i, h) =

K−1∏
a=h

(
1 − 1

2K−a

)
·

K∑
d1=h

2d1

2K

K∑
d2=r1

2d2

2K
· · ·

K∑
d(i−K)=d(i−K)−1

2d(i−K)

2K
.

(3.3)

Possibility of a Null coded Packet Removed

Following the same process that produced (3.3), but starting with (2.7) instead of
(2.2) PrS

LIN can be redefined as:

PrS
LIN(K, i, h) =

K−1∏
a=h

(
1 − 2a − 1

2K − 1

)
·

·
K∑

d1=h

2d1 − 1
2K − 1

K∑
d2=d1

2d2 − 1
2K − 1 · · ·

K∑
d(i−K)=d(i−K)−1

2d(i−K) − 1
2K − 1 . (3.4)

where, as there is no possibility of a null coded packet, h ≥ 1.

24

3.2 Systematic Fountain Codes

By taking 1
(2K−1)i−K as a common factor, (3.4) can be simplified to:

PrS
LIN(K, i, h) = 1

(2K − 1)i−K

K−1∏
a=h

(
1 − 2a − 1

2K − 1

)
·

·
K∑

d1=h

2d1 − 1
K∑

d2=d1

2d2 − 1 · · ·
K∑

d(i−K)=d(i−K)−1

2d(i−K) − 1. (3.5)

If PrS
LIN(K, i, h) is substituted into (3.2), the complete expression for the weight-

ed sum of the probability of linear independence of each case is found:

PrS
LIN(K, i) =

K∑
h=hmin

(
K

h

)(
N − K

i − h

)
· 1

(2K − 1)i−K

K−1∏
a=h

(
1 − 2a − 1

2K − 1

)
·

·
K∑

d1=h

2d1 − 1
K∑

d2=d1

2d2 − 1 · · ·
K∑

d(i−K)=d(i−K)−1

2d(i−K) − 1. (3.6)

If the probability of actually receiving i packets is then introduced, over every
possible value of i, into (3.6) the full expression for the probability of recovering K

source packets after transmitting N coded packets over a packet erasure channel
with erasure probability p is:

PK(N) =
N∑

i=K

(1 − p)ipN−i PrS
LIN(K, i)

=
N∑

i=K

(1 − p)ipN−i
K∑

h=hmin

(
K

h

)(
N − K

i − h

)
· 1

(2K − 1)i−K

K−1∏
a=h

(
1 − 2a − 1

2K − 1

)
·

·
K∑

d1=h

2d1 − 1
K∑

d2=d1

2d2 − 1 · · ·
K∑

d(i−K)=d(i−K)−1

2d(i−K) − 1. (3.7)

3.2.3 Probability of recovering at least M packets

Up to this point the investigation has been focussing on scenarios where N ≥ K

where the receiver has been attempting to recover every source packet.
From this point onwards, any value of N and the possibility of recovering at

least M source packets out of K will be considered. This is accomplished by
introducing a metric that allows the comparison of the ability of each encoding
scheme to recover and possibly utilise an amount of source packets larger or equal
to M , before K coded packets have been received.

Probability PK,M(N) is defined as the probability that at least M source pack-
ets from subset {s1, . . . , sm} have been recovered, given that packets t1, t2, . . . , tN

have been transmitted, where M ≤ m ≤ min(K, N). For example, if a message is
comprised of source packets s1, . . . , s10 and the encoder transmits packets t1, . . . , t6

25

3.2 Systematic Fountain Codes

20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N

P
K
,M

(N
)

SFC Theory (p = 0.1)
SFC Simulations (p = 0.1)
SFC Theory (p = 0.15)
SFC Simulations (p = 0.15)
SFC Theory (p = 0.3)
SFC Simulations (p = 0.3)

(a) M = 20

40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N

P
K
(N

)

(b) M = 40

Fig. 3.1 Performance validation of SFC transmission for K = 40, different values
of p and (a) partial message recovery (M = 20) or (b) full message recovery
(M = 40).

in six time steps. Probability PK=10,M(N = 6) would focus on the recovery of M

or more source packets from subset {s1, . . . , s6}, even if source packets that come
after s6 in chronological order have been recovered at the destination. From this
point on, PK,M(N) is referred to as the “progressive” performance of an encoding
scheme.

The probability of recovering at least M packets in the range of {s1, . . . , sN}
is simplified with the adoption of SFC, as the first K transmitted packets are all
systematic.

PK,M(N) ≈
Nmin∑
i=M

(
Nmin

i

)
(1 − p)ipNmin−i (3.8)

where Nmin = min(K, N).
This expression is always exact for cases where M < (1 − p) · K and exact for

other cases up to N = K, where it becomes a lower bound.
Figure 3.1 compares analytical results with simulation results for the SFC

scheme with differing channel erasure probabilities. It is observed that the the-
oretical expressions presented, accurately match the simulated results for both
progressive and overall packet recovery.

26

3.3 Sliding-Window Fountain Codes

s1 s2 sK. . .

Window

s1 s2 sK. . .

w

δ w

s3 s4 s5 s6

s3 s4

Fig. 3.2 SWFC scheme as proposed in [2], [3]. In this case, w = 4 and δ = 2, this
means that every window is encoded over for w = 4 transmissions [1].

3.3 Sliding-Window Fountain Codes

The Sliding-Window fountain code (SWFC) scheme was initially presented by
Bogino et al. in [2] and then expanded in [3]. It attempts to address the intrinsic
weaknesses of a CFC when employed to stream multimedia content, in that packets
are not necessarily received in chronological order, by introducing a windowed
element.

This new window is governed by two additional system parameters; the size of
the window w, in terms of source packets, and the number of packets δ that the
window traverses when it slides after w transmissions. When the window has been
finalised, a CFC is applied over the selected portion of the source message only.

For example, in the scenario presented in Figure 3.2, where w = 4 and δ = 2,
the first w = 4 transmitted packets {tn}4

n=1 will be encoded over s1, s2, s3 and s4,
that is tn = gn,1 s1 + gn,2 s2 + gn,3 s3 + gn,4 s4 for n = 1, . . . , 4. Coefficients gn,i

are binary numbers selected from set {0, 1} uniformly at random, as mentioned
in Section 2.1. The next w = 4 transmitted packets {tn}8

n=5 will be encoded over
s3, s4, s5 and s6 in a similar fashion.

More formally, let sℓ and sr be the leftmost and rightmost source packets
included in the window, the coded packet tn, produced at time step n, can then
be defined as

tn =
r∑

i=ℓ

gn,i si . (3.9)

where
ℓ = δ

⌊
n − 1

w

⌋
+ 1 (3.10)

and r = ℓ + w − 1.
However, as the original SWFC scheme was engineered for stream-based mul-

timedia content delivery, this scheme’s behaviour after the end of a multimedia

27

3.3 Sliding-Window Fountain Codes

stream has not been defined. This is because the scheme’s authors assume that
a new source message block would be presented before/at the end of the current
block’s transmission.

This investigation is interested in the performance of each of the encoding
schemes over a single source message block, so the SWFC scheme defaults to the
CFC described in Chapter 2 after the right edge of the window encompasses the
Kth source packet. In other words, for r = K the SWFC scheme becomes (2.1).
This is to maximise the probability of recovery of the source packets that were not
successfully received in the Sliding-Window phase.

3.3.1 Optimising the window’s parameters

In the implementation of the SWFC scheme, in order to maximise the progressive
performance, w = M and δ = M/2 as this configuration allows the scheme to
initially resemble a “miniature” CFC over the first M source packets. This provides
enhanced progressive performance while minimising the delay in recovering every
source packet, a trade-off that will be explored next.

Fixed window size w

Figure 3.3 shows, for a constant window size, the effect that altering the value
of δ has on both the progressive and full recovery of the K = 20 source packets.
Although every scheme’s progressive performance is identical at N = 10, once the
different δ values start to influence each scheme’s performance, it is possible to see
the trade-off between progressive and overall performance when choosing w and δ

values.
It is apparent that a low value of δ = 1 leads to excellent progressive perfor-

mance as there is a 9 packet overlap between consecutive windows that results in
the first 10 source packets being included in numerous coded packets. However,
this δ value means that it takes the scheme over 100 coded packets, or 10 win-
dow iterations, to traverse the entire source message which results in unacceptable
overall performance.

For a larger value of δ = 10 the scheme exhibits reduced progressive perfor-
mance and increased overall performance when compared to δ = 1. This is because,
after the first 10 coded packets have been encoded over the first 10 source packets,
the scheme switches straight to a CFC that encodes over the entire source message.
Because the progressive metric attempts to find the probability of recovering at
least M < K source packets in the range of {s1, . . . , sN}, where N > M , instead
of the probability of recovering at least any M, the progressive performance then
remains constant.

28

3.3 Sliding-Window Fountain Codes

0 5 10 15 20 25 30 35 40
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Pr
ob

ab
ili

ty
 o

f
re

co
ve

ry

N

w = 10, δ = 1,M = 10

w = 10, δ = 1,M = 20

w = 10, δ = 5,M = 10

w = 10, δ = 5,M = 20

w = 10, δ = 10,M = 10

w = 10, δ = 10,M = 20

(a) p = 0.001

0 5 10 15 20 25 30 35 40
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Pr
ob

ab
ili

ty
 o

f
re

co
ve

ry

N

w = 10, δ = 1,M = 10

w = 10, δ = 1,M = 20

w = 10, δ = 5,M = 10

w = 10, δ = 5,M = 20

w = 10, δ = 10,M = 10

w = 10, δ = 10,M = 20

(b) p = 0.1

Fig. 3.3 Performance of the SWFC scheme for K = 20, different values of δ with
a fixed w and (a) 0.1% packet erasure and (b) 10% packet erasure.

As an example, for N = 11, w = 10 and δ = 10, the progressive metric is
concerned with the probability of recovering at least M source packets in the range
of {s1, . . . , s11}. The progressive performance does not increase as the probability
of successfully recovering s11 from a CFC coded packet, encoded over the entire
source message, is very low as there are too many unknown elements in the coding
vector. This reasoning continues until enough new coded packets, that have been
encoded over the entire source message, have been received from N = 18 onwards.
The switch to a CFC after the 10th transmitted coded packet means that every
source packet has a chance of being included in a coded packet sooner, when
compared to the δ = 1 scenario. This results in better overall performance.

29

3.3 Sliding-Window Fountain Codes

0 5 10 15 20 25 30 35 40
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Pr
ob

ab
ili

ty
 o

f
re

co
ve

ry

N

w = 5, δ = 5,M = 10

w = 5, δ = 5,M = 20

w = 10, δ = 5,M = 10

w = 10, δ = 5,M = 20

w = 15, δ = 5,M = 10

w = 15, δ = 5,M = 20

(a) p = 0.001

0 5 10 15 20 25 30 35 40
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Pr
ob

ab
ili

ty
 o

f
re

co
ve

ry

N

w = 5, δ = 5,M = 10

w = 5, δ = 5,M = 20

w = 10, δ = 5,M = 10

w = 10, δ = 5,M = 20

w = 15, δ = 5,M = 10

w = 15, δ = 5,M = 20

(b) p = 0.1

Fig. 3.4 Performance of the SWFC scheme for K = 20, different values of w with
a fixed δ and (a) 0.1% packet erasure and (b) 10% packet erasure.

Fixed δ value

In contrast to Figure 3.3, Figure 3.4 shows the different behaviours exhibited by
the SWFC scheme for different values of window size, while δ is kept constant.

If the case with a smaller value of w = 5 and δ = 5 is examined, at N = 10
poorer progressive performance is observed than that of the w = 10 and δ = 5 case.
This is because the progressive performance at that point depends on receiving
every coded packet produced by two CFC codes, applied to smaller sets of 5 source
packets each, and each set of the coded packets produced by the two smaller codes
being linearly independent of each other.

Whereas the w = 10 and δ = 5 case also needs to recover every coded packet,
but these coded packets have been encoded over a window that is twice the size,
(K = 10), which increases the probability of the 10 packets being linearly inde-
pendent.

30

3.4 Ordered Uncoded Scheme

If the case where w = 10 is considered, it is observed that there is a delay
in overall performance when compared to the other two configurations. This is
a result of the switch to a CFC being after N = 20, because the last δ packets
have not had a chance of being included in any coded packets at this point. As
there are now δ = 5 new variables (source packets) to consider, the receiver needs
at least δ = 5 innovative simultaneous equations (coded packets) to even stand a
chance of recovering them.

The w = 15 and δ = 5 case’s performance is the closest in this set to a
conventional fountain code’s response. The overall performance is better than
the other two configurations as it has been encoding over a larger source packet
pool for longer, which results in each coded packet having a larger probability of
linear independence. However, encoding over this larger packet pool means that
it is harder to pick out the first half of the source message, so the progressive
performance suffers.

To conclude, the w = 10, δ = 5 was opted for or, in general, the w = M, δ =
M/2 configuration, as it offered the best progressive performance whilst minimising
delay in overall performance.

3.4 Ordered Uncoded Scheme

The Ordered Uncoded (OU) scheme will be used as a benchmark throughout the
investigation. Its main aim is to assess whether there is actually any benefit, from
a progressive performance viewpoint, to adding coding complexity to both the
encoder and the decoder.

As the name of this strategy implies, this scheme simply transmits each of the
K source packets systemically, in chronological order, and then repeats itself. In
similarity to the SFC analysis above, theoretical expressions will now be developed
for this benchmark scheme for both progressive and overall packet recovery.

3.4.1 Theoretical Probability of Recovering Every Source
Packet

If a source message consists of K packets that are transmitted N times under the
Ordered Uncoded scheme, N could be written as N = αK + β where α = ⌊N/K⌋
and β = (N mod K). In other words the sender has transmitted:

• (α + 1) copies of packets s1, . . . , sβ

• α copies of packets sβ+1, . . . , sK

31

3.4 Ordered Uncoded Scheme

If the previous chapter’s definition of the probability of packet erasure p is
utilised, then again the probability of recovering a single packet that has been
transmitted once is (1 − p). If this single packet was transmitted twice, there are
22 − 1 possible situations that would result in the recovery of the packet.

• The first transmission is recovered but not the second with a probability of
(1 − p)p.

• The second transmission is recovered but not the first with a probability of
p(1 − p).

• Both transmissions are recovered with a probability of (1 − p)(1 − p).

As each of these scenarios occur with an equal probability, they are simply
summed to obtain the full probability of recovering a single source packet trans-
mitted twice:

= (1 − p)p + p(1 − p) + (1 − p)(1 − p)
= p − p2 − p2 + p + 1 − p − p + p2

= 2p − 2p − p2 − p2 + p2 + 1
= ��2p − ��2p − p2 − ✓✓p

2 + ✓✓p
2 + 1

= 1 − p2

It follows that the probability of recovering a single packet that has been trans-
mitted three times is 1 − p3 and n times is 1 − pn.

The probability of recovering three different packets that have each been trans-
mitted three times, that is N = 3K, can now be written as (1 − p3)3. In general,
the probability of recovering the K source packets from the N received packets
can be written as follows:

For N = K, the probability of recovering all the source packets is

PK(K) = (1 − p)K . (3.11)

For N = K + 1,

PK(K + 1) =
(
1 − p2

)
(1 − p)K−1 . (3.12)

For N = K + β where 0 ≤ β < K,

PK(K + β) =
(
1 − p2

)β
(1 − p)K−β . (3.13)

32

3.4 Ordered Uncoded Scheme

For N = αK + β,

PK(N) =
(
1 − pα+1

)β
(1 − pα)K−β . (3.14)

3.4.2 Probability of recovering exactly m source packets

The initial step in finding a theoretical expression for the probability of recovering
at least M source packets is to find an expression for the probability of recover-
ing exactly m source packets. Once this is accomplished, this expression can be
extended for a specific instance of m for a more general case where M ≤ m ≤ K.

It follows from (3.14) that, if 0 ≤ h ≤ m is defined as the number of “privileged”
source packets that have been transmitted α + 1 times, the starting point for the
probability of recovering exactly m packets is

f(m, h) =
(

1 − pα+1
)h (

1 − pα
)m−h

.

The probability of not recovering the other K − m source packets now needs
to be taken into account. Some of these packets have been transmitted (α + 1)
times and others just α times.

h “privileged” packets have already been accounted for, so there still remain
β − h source packets with α + 1 copies that need to be addressed.

The K − β − (m − h) “unprivileged” source packets with α copies also need
to be addressed. The total number of packets that have not been recovered with
probability p is given by:

Privileged︷ ︸︸ ︷
(β − h)(α + 1) +

Unprivileged︷ ︸︸ ︷
(K − β − (m − h))(α)

= βα + β − hα − h + Kα − βα − mα + hα

= ✚
✚βα + β − ✟✟hα − h + Kα − ✚

✚βα − mα + ✟✟hα

= β − h + α(K − m)

An expression for a specific instance of the probability of recovering m source
packets can now be written:

f(m, h) =
(

1 − pα+1
)h (

1 − pα
)m−h

pβ−h+α(K−m). (3.15)

However, (3.15) is not complete, as the fact that within the first β and the last
K − β there are a multitude of ways that h and m − h packets can be organised
needs to be taken into account.

33

3.4 Ordered Uncoded Scheme

s1 s2 s3

s1 s2 s3 s4 s5

β = 3

K = 5

Fig. 3.5 An example showing K = 5 source packets, three of which (β = 3)
have been transmitted twice and are considered “privileged”. If exactly m = 3
packets are received and hmin started from 0, this would imply that there are 3
“unprivileged” packets. Hence, hmin must start from 1.

In fact, there are (
β

h

)

ways of selecting h different privileged packets from β possible choices.
And there are (

K − β

m − h

)

ways of selecting m−h different unprivileged packets from K −β possible choices.
In conclusion, for a set of valid m and h values there are(

β

h

)(
K − β

m − h

)

possible combinations.
Hence, the probability of recovering exactly m source packets, of which h pack-

ets are privileged, is

PK,m,h(N) =
(

β

h

)(
K − β

m − h

)(
1 − pα+1

)h (
1 − pα

)m−h

pβ−h+α(K−m). (3.16)

To find the complete probability of recovering exactly m source packets then,
as there are multiple valid values for h, PK,m,h(N) must be summed over every
valid value of h:

PK,m(N) =
hmax∑

h=hmin

(
β

h

)(
K − β

m − h

)(
1 − pα+1

)h (
1 − pα

)m−h

pβ−h+α(K−m). (3.17)

Obviously, hmax = min(β, m). This is because h, the number of privileged
packets, cannot be larger than the actual number of privileged packets or the
number of packets this iteration is interested in.

34

3.5 Summary

On the other hand, hmin = max(0, m − K + β). For example, after examining
Figure 3.5 with K = 5 and β = 3, and assuming that N = K + β = 8 packets
have been transmitted and m = 3 packets have been received, it is apparent that
the number of received privileged packets h must start from 1 as, in this specific
scenario, if it started from 0 that would imply that there are m = 3 unprivileged
received packets. This would be an incorrect assumption as only K − β = 2
unprivileged packets actually exist.

3.4.3 Probability of Recovering At Least M Packets

During the previous section, an expression for the probability of recovering exactly
m packets was introduced. In order to obtain the probability of recovering at
least M packets, PK,m(N) must be summed over all the valid values of m. e.g.
M ≤ m ≤ K

PK,M(N) =
K∑

m=M

PK,m(N). (3.18)

By substituting (3.17) into (3.18):

PK,M(N) =
K∑

m=M

hmax∑
h=hmin

(
β

h

)(
K − β

m − h

)(
1−pα+1

)h(
1−pα

)m−h

pβ−h+α(K−m) (3.19)

Figure 3.6 compares analytical results with simulation results for the OU
scheme with differing channel erasure probabilities. It is observed that the theo-
retical expressions presented accurately match the simulated results for both pro-
gressive and overall packet recovery. These theoretical expressions will be utilised
as a benchmark in later chapters to assess the performance of the three encoding
schemes under consideration, that is CFC, SFC and SWFC.

3.5 Summary

In this chapter, each of the encoding schemes were introduced and theoretical ex-
pressions for the overall performance of certain schemes were developed. A metric
that was used to assess the progressive capability of each scheme was introduced,
and again theoretical expressions for certain schemes were provided.

The next chapter is concerned with the decoding algorithm that was adopted
to provide quality simulation results in a timely manner. Fountain code decoding
algorithms that were already present in literature are compared, and the enhance-
ments that made a particular scheme, known as Adapted Gaussian Elimination,
the most suitable are discussed.

35

3.5 Summary

20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N

P
K
,M

(N
)

OU Theory (p = 0.1)
OU Sim. (p = 0.1)
OU Theory (p = 0.15)
OU Sim. (p = 0.15)
OU Theory (p = 0.3)
OU Sim. (p = 0.3)

(a) M = 20

40 80 120 160 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N

P
K
(N

)

OU Theory (p = 0.1)
OU Sim. (p = 0.1)
OU Theory (p = 0.15)
OU Sim. (p = 0.15)
OU Theory (p = 0.3)
OU Sim. (p = 0.3)

(b) M = 40

Fig. 3.6 Performance validation of OU transmission for K = 40, different values of
p and (a) partial message recovery (M = 20) or (b) full message recovery (M = 40).

36

Chapter 4
Decoding Schemes for Progressive
Recovery

In this chapter, the performance of both Iterative Belief Propagation and the
Gaussian Elimination algorithm mentioned in Chapter 2 are compared, whilst
examining the suitability of a new decoding strategy called On-the-fly Gaussian
Elimination.

4.1 On-the-fly Gaussian Elimination

In addition to the Gaussian Elimination (GE) and Iterative Belief Propagation
(IBP) decoding techniques described in Chapter 2, numerous other fountain code
decoding algorithms have been proposed.

Iterative Gaussian Elimination (IGE) [20] attempts to reduce the computa-
tional expense of GE by only performing a costly “full” triangulation step once,
at the point when K coded packets have been received. Each subsequent received
packet is then incorporated into a partially decoded coding matrix.

Concatenated schemes such as Joint Belief Propagation and Gaussian Elimina-
tion (JBPGE) [21] try to trade-off the decoding speed of IBP against the reduction
in the number of coded packets needed to successfully decode a source message
provided by GE. This, of course, does lead to an increase in algorithmic complexity.

On-the-fly Gaussian Elimination (OFGE) [4] continues to mitigate the decoding
delay and computation complexity of GE by invoking an optimised triangulation
process every time a coded packet is received.

The OFGE algorithm was chosen for inclusion in the simulation model as it
offered multiple advantages over its competitors. For example, when compared to
IGE, it is evident that the OFGE decoder spreads its computation out over each
packet arrival, while IGE has a large spike in computation when K packets are

37

4.1 On-the-fly Gaussian Elimination

received. This more efficient “spacing out” of computation also means that when
K packets have been received, OFGE already has a partially triangular decoding
matrix, this reduces the delay in recovering each of the source packets as fewer
row operations are required.

The main reason for this choice of decoding algorithm over IBP, apart from
the reduction in overhead for the relatively small K values that this investigation
is considering, was the fact that IBP usually relies on a degree distribution to
function. The decision to examine the worst case performance of fountain codes
by using a random degree distribution meant that it would be very unlikely, as K

grows, that there would be enough degree-one coded packets for IBP to perform.
The original OFGE algorithm presented in [4] will now be described, and sub-

sequently the adapted version that was actually utilised to obtain the simulation
results presented in [1]. In the late stages of the project, in order to obtain exact
simulation results, the suitability of the original GE process mentioned in Chapter
2 was reconsidered. The modifications made to ensure the exact GE process was
as efficient as possible are then discussed.

4.1.1 Original Algorithm

Listing 4.1, provides a MATLAB implementation of the original OFGE algorithm
proposed in [4]. In the implementation, the states of G and degree_of_G are
preserved over each iteration of the algorithm, in other words, between each coded
packet arrival.

The algorithm is now worked through with a toy example, during this process
the limitations of the original algorithm when used to decode rank-deficient coding
matrices will be encountered. These limitations are to be expected, as the original
algorithm was not engineered to produce an exact result before K coded packets
had been received. Instead, it was produced to reduce the delay in decoding a
full-rank decoding matrix by spreading the computation over each packet arrival,
as opposed to waiting until K coded packets have been received before attempting
to decode the coding matrix from scratch.

An example of how the original OFGE algorithm performs when provided with
rank-deficient coding vectors is now presented, assuming that the encoder is using
a Random Linear Fountain Code, as described in Chapter 2, to generate the coded
packets. The source is comprised of K = 5 source packets. It is plausible that
the first two coded packets that the receiver encounters are characterised by the
coding vectors g1 = [1, 1, 0, 0, 1] and g2 = [1, 1, 1, 1, 0]. The decoding variable G
initially denotes a K by K matrix of zeros, and G[t] signifies the t-th row of G.

When g1 is received, it is immediately placed into the first row of G (G[1]) as

38

4.1 On-the-fly Gaussian Elimination

% New packet arrives
NewEq = new_encoded_packet ;

% What is the position of the leftmost 1 in the new packet ?
s = find(NewEq ,1);

% What is the degree of the new packet ?
EqOnes = nnz(NewEq);

% While NewEq has not been xored into nothing and there is
% already a coded packet in row s
while (EqOnes > 0) && (G(s,s) == 1)

% if degree of new packet is same or larger than row s
if EqOnes >= degree_of_G (s)

% xor with the current occupant of row s
NewEq = xor(NewEq , G(s ,:));

else
% if the new packet ’s degree is less than the packet
% currently in row s then swap them and start
% comparing with the old row (currently G(s ,:))
temp = G(s ,:);
G(s ,:) = NewEq;
NewEq = temp;
degree_of_G (s) = EqOnes ;

end

% and refresh s and EqOnes to continue comparing with
% other rows , and move on to the next iteration
s = find(NewEq ,1);
EqOnes = nnz(NewEq);

end

% this is triggered when there are currently no encoded
% packets in row s - the newEq is placed straight into
% G matrix at the correct row
if(EqOnes > 0)

G(s ,:) = NewEq;
end

Listing 4.1 MATLAB example of the original OFGE algorithm presented in [4].

39

4.1 On-the-fly Gaussian Elimination

it is the first coding vector to be received that has s1 as its leftmost non-zero
element. With the introduction of g2 a slightly more complex operation must be
carried out. This is because g1 and g2 share s1 as their leftmost non-zero element.
As G is being transformed into a row-echelon form matrix, two coding vectors with
identical leftmost non-zero elements cannot exist in G .

This situation is mitigated by either XORing the two competing vectors to-
gether and then attempting to place the resultant vector elsewhere in G, or by
swapping the two competing vectors and then XORing them together. The deci-
sion to swap the two competing vectors before the XORing takes place is governed
by whether the more recent vector has a lower degree, or total number of non-zero
elements, than the competing vector. This addition to the algorithm results in a
much sparser matrix by the time that K coded packets have been received, which
eventually results in fewer XOR operations being required to recover each of the
source packets.

In this case, no swapping takes place as g2 does not have a lesser degree than
the vector already present in G[1]. g2 is replaced by G[1] ⊕ g2 = [1, 1, 0, 0, 1] ⊕
[1, 1, 1, 1, 0] = [0, 0, 1, 1, 1] and is immediately placed in the third row of G as the
first non-zero element of the redefined vector g2 is s3 and G[3] was previously empty.
At this point G would look like the left hand side of the following relationship

1 1 0 0 1
0 0 0 0 0
0 0 1 1 1
0 0 0 0 0
0 0 0 0 0

Recv. g3−−−−→

1 1 0 0 1
0 1 1 1 0
0 0 1 1 1
0 0 0 0 0
0 0 0 0 0

. (4.1)

If coding vector g3 = [1, 0, 1, 1, 1] is then received, it will be replaced with
G[1] ⊕ g3 = [1, 1, 0, 0, 1] ⊕ [1, 0, 1, 1, 1] = [0, 1, 1, 1, 0] as it has a larger degree than
the vector currently in G[1]. The new value for g3 is then placed in the second row
of G as G[2] was previously empty, namely, the right hand side of (4.1).

At this point, g4 = [0, 1, 1, 0, 1] is recovered. Once again, new vector g4 does
not have a lesser degree than the vector currently occupying G[2], and is replaced
with G[2] ⊕ g4 = [0, 1, 1, 1, 0] ⊕ [0, 1, 1, 0, 1] = [0, 0, 0, 1, 1]. This new value for g4 is
placed directly into G[4]. G would now look like the left hand side of the following
relationship

1 1 0 0 1
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1
0 0 0 0 0

Recv. g5−−−−→

1 1 0 0 1
0 1 1 1 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

. (4.2)

40

4.1 On-the-fly Gaussian Elimination

Finally, g5 = [1, 1, 1, 1, 1] is recovered. g5 has a larger degree than the vector
currently in G[1], so it is replaced by G[1] ⊕ g5 = [1, 1, 0, 0, 1] ⊕ [1, 1, 1, 1, 1] =
[0, 0, 1, 1, 0]. The new value of g5 is now compared against the vector currently in
G[3], and is found to have a lesser degree. The vectors g5 and G[3] are now swapped
in order to increase the sparsity of G.

The new value of g5 = [0, 0, 1, 1, 1] means that it has a larger degree than that
of the vector in G[3] so it is replaced by G[3] ⊕ g5 = [0, 0, 1, 1, 0] ⊕ [0, 0, 1, 1, 1] =
[0, 0, 0, 0, 1]. This new value for g5 is then placed directly into G[5]. At this point,
G would look like the right hand side of (4.2).

Now that G is full-rank it is straightforward to recover the individual source
packets via a simple back-substitution stage, such as the process mentioned in
Chapter 2. For example, s5 is known so remove it from the other coding vectors,
which leaves s4 and so on.

However, if the simple back-substitution stage was applied to G at any point
other than when 5 coded packets had been received, no source packets would have
been recovered, as there were no degree one coding vectors.

In order for the progressive packet recovery metric to function, it requires
knowledge of which packets can be recovered before K coded packets have been
received. It is this requirement that the customised OFGE implementation de-
scribed in the next section attempts to satisfy.

4.1.2 Adapted Algorithm

As mentioned in the above section, the original OFGE algorithm encounters ac-
curacy issues when utilised to extract which source packets are recoverable from
a rank-deficient coding matrix. For example, after g3 has been received, the right
hand side of (4.1), it is possible to recover s1 by XORing rows 1, 2 and 3 together.
In addition, after g4 has been received, the left hand side of (4.2), s3 can also be
recovered by XORing rows 3 and 4 together.

In order to uncover which source packets can be recovered from a rank-deficient
coding matrix, the original OFGE algorithm was adapted to include an XORing
stage that examines the output of the original algorithm after each coded packet
arrival. Initially, the algorithm was recursive and exact, in that it checked every
possible combination of coding vectors, however, this was extremely computation-
ally expensive.

In an attempt to reduce the amount of time that the simulations took to run,
a trade-off was made regarding the accuracy of the adapted algorithm and, hence,
a limit of 1 was imposed on the recursive depth.

Figure 4.1 shows an example of the combinations that would be checked during

41

4.2 Gaussian Elimination

1 1 0 0 1
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1

1 1 0 0 1
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1

1 1 0 0 1
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1

Iteration 1

Iteration 2

Iteration 3

G[4] ⊕ G[3]

G[4] ⊕ G[3] ⊕ G[2]

G[4] ⊕ G[3] ⊕ G[1]

G[4] ⊕ G[1]

G[4] ⊕ G[2]

G[4] ⊕ G[2] ⊕ G[1]

G[3] ⊕ G[2]

G[3] ⊕ G[2] ⊕ G[1]

G[3] ⊕ G[1]

G[2] ⊕ G[1]

Fig. 4.1 An example showing the combinations that would be checked during each
iteration of the OFGE XORing stage after g4 has been received.

each iteration of the XORing stage after g4 has been received. The algorithm
starts from the furthest row down and ignores empty rows. The light grey dashed
combinations do not result in a source packet recovery. The recursion depth limit
is evident when examining the G[4] ⊕ G[3] ⊕ G[2] combination as if a limit of 1 was
not in use, the algorithm would go on to compare G[4] ⊕ G[3] ⊕ G[2] ⊕ G[1].

4.2 Gaussian Elimination

As a limit was imposed on the computational complexity of the adapted OFGE
algorithm, and as a result its accuracy, the investigation then proceeded to adapt
the Gaussian Elimination algorithm that was mentioned in Chapter 2 to obtain
exact simulation results more efficiently.

To adapt the original GE process mentioned in Listing 2.1 to make it more
efficient, a series of optimisations were introduced, the main components of which
are listed below:

• The OFGE concept of performing a GE process every time a new packet is
received was amalgamated by keeping the state of variables cod_matrix and
recoverable_packets constant between new packets being received. This
meant that the adapted algorithm is not carrying out a complete GE process

42

4.2 Gaussian Elimination

% Remove the already known packets from the new coded packet
new_packet(recoverable_packets) = 0;

% If each of the packets included in the new coded packet were known then there is no point
% in continuing. Also, if the decoding matrix is already full rank there is no need to
% perform any more GE
if (sum(new_packet) > 0) && (sum(recoverable_packets) < num_source)

% Append the new packet to tbe K x K partially decoded matrix
cod_matrix = [cod_matrix ; new_packet];

% For each position on the diagonal
for arg_count = 1 : num_source

% Start by assuming that there is already an element in this diagonal slot
arg_is_in_diagonal = 1;

% As a row-echelon matrix is being formed, Check if the current diagonal element
% is equal to 0
if (cod_matrix(arg_count,arg_count) == 0)

arg_is_in_diagonal = 0;
% If it is, then see if there are any other coded packets which contain the arg_count th
% packet
idxs_of_swap_rows = find(cod_matrix(:, arg_count));
for row_count = 1 : numel(idxs_of_swap_rows)

% If other coded packets do contain the arg_count packet, and the arg_count packet is
% the first packet to appear in the coded packet, move that packet to this row
if sum(cod_matrix(idxs_of_swap_rows(row_count), 1 : arg_count - 1)) == 0

arg_is_in_diagonal = 1;
% Swap the rows
cod_matrix([idxs_of_swap_rows(row_count), arg_count], :) ...
= cod_matrix([arg_count, idxs_of_swap_rows(row_count)], :);
break;

end
end

end

if arg_is_in_diagonal
% Now that there is a 1 in the correct position on the diagonal, XOR the current vector
% with every other encoding vector to make sure that this vector is the only one with
% this element on the diagonal
idxs_of_competing_rows = find(cod_matrix(:, arg_count));
for row_count = 1 : numel(idxs_of_competing_rows)

if(idxs_of_competing_rows(row_count) ~= arg_count)
cod_matrix(idxs_of_competing_rows(row_count),:) = ...

xor(cod_matrix(idxs_of_competing_rows(row_count),:), ...
cod_matrix(arg_count,:));

end
end

end
end

% Simple back substitution starting from the end of the diagonal upwards allows obtains which
% packets are recoverable

% However, if the coding_matrix is now full rank then every source packet is recoverable
% there is no need to follow through with back substitution
if (sum(diag(cod_matrix)) < num_source)

for i = num_source : -1 : 1
if sum(cod_matrix(i,:)) == 1

recoverable_packets(cod_matrix(i,:) == 1) = 1;
cod_matrix(:,cod_matrix(i,:) == 1) = 0;

end
end

else
recoverable_packets = true(1, num_source);

end
cod_matrix = cod_matrix(1:num_source, :);

end

Listing 4.2 Simple example of Binary Gaussian Elimination algorithm used to
obtain the row-echelon form of the received encoding matrix.

43

4.3 Comparison of Decoding Schemes

over all of the received coding vectors every time a new packet is received,
instead, it is performing a full GE process over a partially solved encoding
matrix of maximum size K + 1 instead of N .

• The first line removes any previously recovered source packets from the newly
received coding vector, which greatly reduces the amount of purposeless row
operations that could be carried out.

• The arg_is_in_diagonal flag reduces the time wasted during the XORing
phase, where it is asserted that there should only be one coding vector with
a certain element on the diagonal, by bypassing this entire section of the
code if there is no coding vector with the correct element to be placed on
the diagonal.

• Finally, there are a couple of IF statements both before the main section
of the code and before the back-substitution takes place, which reduce the
amount of unnecessary operations by bypassing either the entire function
or part of it, if the algorithm has already recovered either all of the source
packets or all of the source packets that were present in the new coding
vector.

By optimising the original GE algorithm for MATLAB, and amalgamating the
OFGE concept of performing a GE process whenever a coded packet it received,
the investigation obtained an algorithm that executed faster and with greater
accuracy than the adapted OFGE strategy.

4.3 Comparison of Decoding Schemes

Figure 4.2 presents a comparison between the five different decoding strategies
that were encountered during this investigation. These results were obtained on a
platform equipped with a Intel i7 3770 processor and 8 GB of RAM.

As is mentioned above, and confirmed in the Figure, as the IBP scheme relies
on a correctly configured degree distribution to function, its computational speed
(close to Adapted GE and Original OFGE in Fig. 4.2 (a)) cannot outweigh its
loss of performance when compared to the more complex algorithms that utilise
Gaussian Elimination (Practically no progressive and overall performance seen in
Fig. 4.2 (b)).

Also, although the adapted OFGE process has greater progressive performance
that the original OFGE algorithm, as can be seen in Fig. 4.2 (a), the adapted GE
scheme can recover source packets faster whilst exceeding the performance of the

44

4.4 Summary

0 5 10 15 20 25 30
0.01

0.1

1

10

T
im

e
pe

r
Si

m
ul

at
io

n
(s

)

K

Adapt. OFGE
Orig. OFGE
Adapt. GE
Orig. GE
IBP

(a) Time Comparison of each of the decoding schemes with differing source message lengths

18 20 22 24 26 28
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Pr
ob

ab
ili

ty
 o

f
R

ec
ov

er
y

N

Adapt. OFGE M = 10
Adapt. OFGE M = 20
Orig. OFGE M = 10
Orig. OFGE M = 20
Adapt. GE M = 10
Adapt. GE M = 20
Orig. GE M = 10
Orig. GE M = 20
IBP M = 10
IBP M = 20

(b) Performance Comparison of CFC encoding scheme with K = 20, p = 0

Fig. 4.2 Shows the difference in computational time for the decoding strategies (a)
and the difference in performance when decoding rank-deficient coding matrices
(b).

adapted OFGE algorithm. Because of this, the adapted GE decoding algorithm
was chosen to be included in the simulation’s system model.

4.4 Summary

In this chapter, the performance of both Iterative Belief Propagation and the
Gaussian Elimination algorithm mentioned in Chapter 2 was compared, whilst
introducing a new decoding strategy called On-the-fly Gaussian Elimination.

The next chapter will introduce a performance framework that will allow the
interpretation of the two metrics from the transmitter’s perspective. Simulation
results for each of the encoding schemes will then contrasted and discussed.

45

Chapter 5
Performance Assessment of Layerless
Schemes

In this chapter, performance curves will be presented for the previously mentioned
encoding schemes. The majority of these results are simulated with the MATLAB
platform, however, the results for certain schemes (SFC and OU) are given by
the validated theoretical expressions described in Chapter 3. Firstly, a metric
framework is introduced to allow interpretation of the set of results from a sender’s
perspective. Instead of simply examining the probability of recovering a portion or
all of the source packets, the framework will start examining how many packets the
sender needs to transmit to provide a certain probability of recovering a portion of
the source message, and then how many more packets the sender needs to transmit
to provide full recovery.

5.1 Metric Framework

The metric framework that will be used to interpret the two individual metrics,
PK and PK,M , will now be presented. Three new parameters are defined to forge
links between the two separate metrics:

• P̂ , a predetermined target probability of packet recovery that a scheme has
to attain.

• N̂ , the minimum number of transmitted packets that are needed to recover
at least M source packets with a probability of at least P̂ .

• ∆N , the minimum number of additional packets that need to be transmitted
to recover all K source packets with a probability of at least P̂ .

Figure 5.1 shows the progressive and overall response of the Ordered Uncoded
scheme for a scenario with K = 20 and p = 0.1. If the target probability of packet

46

5.2 Layerless Scheme Comparison

10 15 20 25 30 35 40
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Pr
ob

ab
ili

ty
 o

f
re

co
ve

ry

N

OU (M = 10)

OU (M = 20)

11 39
28 additional packets are needed

N̂ = 11, ∆N = 28

Fig. 5.1 Shows the values that N̂ and ∆N would take for the OU scheme with
K = 20, p = 0.1 and P̂ = 0.7.

recovery is set to P̂ = 0.7 (depicted by the dashed red line), it is observed that
the minimum number of transmitted packets needed to recover at least 10 source
packets is N̂ = 11. Furthermore, the additional number of transmitted packets
needed to recover the entire source message, with a probability of at least 0.7, is
∆N = 28.

Although the OU scheme exhibits excellent progressive performance, confirmed
by the low N̂ value, the delay incurred in recovering the entire source message is
notably large (∆N > K). The OU scheme’s performance brings home the fact that
the investigation should not be focussing on just lowering N̂ , but also minimising
∆N as well.

For example, if a user could quickly recover and start playing the first half
of a source message but then ran out of media to play, they would have to wait
to receive a set of packets that is, in total, nearly double the length of the entire
source message. On the other hand, if a CFC had been utilised to broadcast the
media, the user would have waited longer to start playing the media, but they
would not have experienced any interruptions. These trade-offs will be explored
in the following section.

5.2 Layerless Scheme Comparison

Simulated and theoretical results for the four encoding schemes introduced in
Chapter 3 are now presented. The responses for a scenario with K = 20 and
p = {0.05, 0.1} are shown in Figure 5.2. Higher values of p can be used but it is

47

5.2 Layerless Scheme Comparison

10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
ab

il
it

y
 o

f
re

co
v

er
y

N

OU (M = 10)
CFC (M = 10)
SFC (M = 10)
SWFC (M = 10)
OU (M = 20)
CFC (M = 20)
SFC (M = 20)
SWFC (M = 20)

(a) p = 0.05

10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
ab

il
it

y
 o

f
re

co
v

er
y

N

OU (M = 10)
CFC (M = 10)
SFC (M = 10)
SWFC (M = 10)
OU (M = 20)
CFC (M = 20)
SFC (M = 20)
SWFC (M = 20)

(b) p = 0.1

Fig. 5.2 Packet recovery probabilities as a function of N for K = 20.

assumed that the physical layer employs error correcting codes that improve the
erasure probability as “seen” by the network/application layer, so that a maximum
erasure probability of p = 0.1 is feasible.

Table 5.1 shows the values of N̂ and ∆N for different erasure probabilities and
the various schemes under investigation, where P̂ = 0.9. For example, for the
K = 40, p = 0.05 case, it is observed that the OU scheme requires 22 packets
to be transmitted in order to recover at least half of the source message with
a probability of at least P̂ = 0.9. It can also be concluded that in order for
the OU scheme to recover the entire source message with probability P̂ , 58 more
transmissions are needed, which would lead to a unacceptably large delay.

It is apparent, for this scenario, that the SFC scheme is most appropriate.
This is because the SFC strategy not only outperforms SWFC and CFC in terms
of progressive packet recovery (with lower N̂ values in Table 5.1), but also SWFC
and OU if full packet recovery is considered (lower N̂ + ∆N values in Table 5.1).

48

5.3 Summary

Table 5.1 Values of N̂ and ∆N for different erasure probabilities and the various
schemes under investigation.

(a) K = 20

OU CFC SFC SWFC
p N̂ ∆N N̂ ∆N N̂ ∆N N̂ ∆N

0.05 11 29 24 1 11 14 20 10
0.1 13 38 26 1 13 14 24 6

(b) K = 40

OU CFC SFC SWFC
p N̂ ∆N N̂ ∆N N̂ ∆N N̂ ∆N

0.05 22 58 46 1 22 25 36 19
0.1 24 89 49 1 24 26 39 17

Considering the SWFC scheme, which combines w = K/2 source packets
throughout the initial K transmissions, it can be noted that this scheme is more
tolerant of the higher erasure probabilities. In other words, the progressive perfor-
mance of this scheme degrades less than SFC and OU when the erasure probability
is increased. For example, for K = 20 and N = 10, it can be seen in Figure 5.2
that the increase in erasure probability reduces PM,K of SFC and OU by ≈ 25%
and PM,K of SWFC by only ≈ 7%.

Similar trends can also be observed in Figure 5.3, for a larger source message
size of K = 40. Note that the difference between PM,K and PK for the CFC
scheme is negligible, as seen in both Figure 5.2 and Figure 5.3 as well as Table
5.1; this is because the CFC scheme makes no attempt to prioritise the recovery of
the source packets that are closest to being utilised. On the other hand, the OU
scheme exhibits excellent progressive performance, but as it is simply transmitting
ordered source packets it is susceptible to an increase in the erasure probability of
the channel. Note the steep increase in ∆N (depicted in Table 5.1) as the erasure
probability is increased.

5.3 Summary

In this chapter, simulated and theoretical results for the encoding schemes that
had been previously mentioned have been presented. A metric framework was
then employed to interpret the two individual metrics, PK and PK,M , from the
transmitter’s perspective.

Whereas, up to this point, the investigation has been concentrating on classless

49

5.3 Summary

20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
ab

il
it

y
 o

f
re

co
v

er
y

N

OU (M = 20)
CFC (M = 20)
SFC (M = 20)
SWFC (M = 20)
OU (M = 40)
CFC (M = 40)
SFC (M = 40)
SWFC (M = 40)

(a) p = 0.05

20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
ab

il
it

y
 o

f
re

co
v

er
y

N

OU (M = 20)
CFC (M = 20)
SFC (M = 20)
SWFC (M = 20)
OU (M = 40)
CFC (M = 40)
SFC (M = 40)
SWFC (M = 40)

(b) p = 0.1

Fig. 5.3 Packet recovery probabilities as a function of N for K = 40.

or layerless source messages, where each source packet has identical importance,
the next chapter will introduce the concept of “layered” video encoding, where the
source message is partitioned into a set of layers of differing importance.

The schemes presented in literature that attempt to adapt classical foun-
tain codes, so that they may exhibit unequal-error-protection, and in particular,
two methods called Non-Overlapping-Window Fountain Coding and Expanding-
Window Fountain Coding are then touched on.

Next will be an assessment of whether the encapsulation of one the previously
mentioned encoding schemes within these aforementioned windows provides any
benefit in terms of performance. And finally, will be an examination of whether,
from a progressive recovery point of view, adding Unequal Error Protection to a
layered source message increases performance.

50

Chapter 6
Performance Assessment of Layered
Schemes

In this chapter, the concept of a layered source message and some of the schemes
presented in literature that try to tailor fountain codes for use with scalable video
encoders are introduced. To examine the progressive and overall performance of
these “layered” schemes, and to explore if their progressive performance can be
enhanced at all, modifications to Chapter 3’s encoding schemes are introduced.
Simulation results are then presented and discussed for the modified encoding
schemes.

Recently, the Joint Video Team of the ITU-T Video Coding Experts Group
(VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG) standardised
a Scalable Video Coding (SVC) extension of the H.264 Advanced Video Coding
(AVC) standard [13]. In previous chapters, the investigation has focussed on the
examination of the performance of layerless encoding schemes, where every source
packet has identical importance, to see how well receivers can progressively recover
the media message. However, a video encoder that utilises the SVC extension
produces multiple layers, each with a different level of importance.

The fountain codes that have been investigated up to this point provide Equal-
Error-Protection (EEP) to each of the source packets, in that they do not alter the
probability of a source packet’s inclusion in a coded packet based on the source
packet’s importance. This method of operation was acceptable for the layerless
scenario, but with the introduction of importance layers, fountain codes that ex-
hibit Unequal-Error-Protection (UEP) are needed. This UEP approach is required
to:

• Allow users to decode the most important layers before the full source block
size is recovered (earlier recovery)

• Place more protection on the more important layers (reliable recovery)

51

6.1 Introduction to NOW and EW Strategies

Numerous methods of adapting fountain codes to provide UEP have been pro-
posed in literature. Rahnavard et al. introduced, in [22], a method of providing
UEP for a source message that has been partitioned into layers of different im-
portance, by weighting the packets contained within each layer with a different
probability of being selected, to be included in a coded packet, depending on their
importance.

Windowed approaches have also found employment for providing UEP. The
first scheme that established such a method, where a fountain encoder can only
encode over the subset of the source message contained in a window, was presented
by Studholme and Blake [23], known here as a Non-Overlapping Window (NOW)
scheme. In a NOW scheme, each layer of a SVC encoded source message is assigned
a probability of being selected that depends on its importance, with the most
important layer usually having the largest chance of being selected. At each time
step, the fountain encoder probabilistically selects a window to encode over and,
since the most important layer is chosen to be included in coded packets more
often, unequal error protection is obtained. The SWFC scheme that was mentioned
in Chapter 4 could also be said to offer UEP in that the scheme prioritises the
inclusion of source packets that are closest to being played.

The main difference between the windowed approaches described above and
Rahnavard’s weighted approach is that, in Rahnavard’s approach, even though
the probability of which source packets to select is biased towards including the
more important layers, there is still a chance that any source packet could be
included, regardless of importance layer. However, in windowed approaches, once
the window has been selected, only source packets within the window can be
included in coded packets.

An evolution of the windowing concept devised by Studholm and Blake is the
Expanding-Window (EW) concept presented by Vukobratović et al. in [24] and
expanded upon in [25]. In EW schemes, as opposed to NOW, the windows are
not simply defined as the boundaries of each importance layer but as progressively
increasing source block subsets which are aligned with the source’s importance
layers. This method, which will be expanded on in the following section, provides
excellent protection to the most important layer as it is included in every coded
packet.

6.1 Introduction to NOW and EW Strategies

The two main windowing schemes that aspire to provide UEP, the NOW and EW
strategies, will now be introduced in more detail.

52

6.1 Introduction to NOW and EW Strategies

s1 s2 · · · sK

1st Window 2nd Window Lth Window

k1 k2 kL

Fig. 6.1 An example of Non-Overlapping Window assignment.

6.1.1 Non-Overlapping Window

Let a layered source message x be comprised of K source packets in total that are
partitioned into L importance layers. The number of source packets in the most
important first layer is k1, the number of packets in the second most important
layer is k2 and the number in the least important layer is kL, so that ∑L

i=1 ki = K.
The NOW scheme defines its windows, as mentioned above, to simply be the

pre-defined importance layers already present in the source message. This be-
haviour can be seen in Figure 6.1. At each time step, the NOW encoder selects
which window to generate packets over with the aid of a probability distribution
Γ where the probability of choosing the first window is Γ1, the second is Γ2 and
the Lth window is ΓL such that ∑L

i=1 Γi = 1.
As with the encoding schemes that have been mentioned previously, the number

of source packets that will be included in each coded packet, the degree distribu-
tion, is uniformly random.

6.1.2 Expanding Window

In contrast to the NOW scheme described above, the EW scheme defines its win-
dows as progressively increasing source block subsets which are aligned with the
source’s importance layers, so that the cth window’s size is k1:c = ∑c

i=1 ki. This
behaviour can be seen in Figure 6.2. In similarity with the NOW scheme, proba-
bility distribution Γ is again employed to select which window to encode over at
each time step. It is palpable that the more important layers will be included in
more coded packets, and hence, they are better protected.

A interesting point to note is that when the NOW scheme is implemented,
coded packets that have been generated over a certain window can only be used
for decoding a single specific layer. However, coded packets generated over the
windows defined by the EW scheme can, in certain situations, assist in the decoding
of multiple layers.

For example, coded packets that have been generated over the first window
can assist in the decoding of the later windows. Also, if k1 innovative packets that

53

6.2 Encapsulation of layerless encoding schemes

s1 s2 · · · sK

1st Window 2nd Window Lth Window

k1 k2 kL

k1:2

k1:L = K

Fig. 6.2 An example of Expanding Window assignment.

have been encoded over the first window had not been received, although the first
layer cannot be recovered on its own merit, it may be possible to recover the first
window if a later window is successfully recovered, possibly with the assistance of
the first window’s coded packets.

Both the NOW and EW schemes usually utilise a CFC to generate coded
packets within the selected window at a certain time step. As was seen in Figure
5.2 and 5.3, this decision trades progressive performance for overall performance.
The investigation will now examine whether the progressive performance of these
windowed strategies can be improved, and what cost this introduces. If a different
method of encoding packets within a strategy’s windows was selected, such as SFC,
OU or SWFC, will this yield a benefit? The next section describes the operation
of these encoding schemes within the NOW and EW framework.

6.2 Encapsulation of layerless encoding schemes

This section describes the operation of each of the four encoding schemes described
in Chapter 3 within NOW and EW windows.

6.2.1 Conventional Fountain Code

Consider the generic layered source message with two importance layers depicted
by Figure 6.3. The behaviour of a CFC within a NOW or EW can be described
by adapting the definition of a CFC from (2.1).

For a NOW, coded packet tn would be constructed at time step n, where
n = {1, . . . , N} and N is the total number of transmitted coded packets, from the

54

6.2 Encapsulation of layerless encoding schemes

s1 s2 · · · sk1 sk1+1 sk1+2 · · · sK−1 sK

1st Layer 2nd Layer

k1 k2

Fig. 6.3 A generic layered source message with two importance layers.

linear combination of source packets as follows

tn =
k1:c∑

i=k1:(c−1)+1
gn,i si (6.1)

where gn,i is, again, a uniformly random binary coding coefficient, c is the proba-
bilistically selected window during this time step, and, for ease of notation, k1:0 = 0.

For a EW, (6.1) simplifies to

tn =
k1:c∑
i=1

gn,i si (6.2)

6.2.2 Systematic Fountain Code

For a SFC if, at time step n, n ≤ kc (NOW) or n ≤ k1:c (EW) this code would
transmit the nth source packet within the selected window. Once this condition
fails to be met for a specific window, the scheme will default to either (6.1) or
(6.2) for this aforementioned window. To clarify, other larger windows may still
transmit systematic packets.

6.2.3 Sliding Window Fountain Code

To define the behaviour of the SWFC within a NOW scheme, letting sℓ and sr

be the leftmost and rightmost source packets included in the window, the coded
packet tn, produced at time step n, can then be defined as

tn =
r∑

i=ℓ

gn,i si . (6.3)

where
ℓ = k1:(c−1) + δ

⌊
n − 1

w

⌋
+ 1 (6.4)

and r = ℓ + w − 1. In order to simplify this investigation, let w = ⌈kc/2⌉ and
δ = ⌈kc/4⌉. Again, the SWFC scheme defaults to (6.1) immediately after r ≥ k1:c.

55

6.2 Encapsulation of layerless encoding schemes

For the EW scenario, the behaviour of the SWFC scheme is identical to that
described in Chapter 3, apart from the fact that w = ⌈k1:c/2⌉ and δ = ⌈k1:c/4⌉
and that the scheme now defaults to (6.2) immediately after r ≥ k1:c.

6.2.4 Ordered Uncoded

If the benchmark OU scheme was deployed within a NOW, it would transmit
source packet sj at time step n where

j =

k1:c if mod(n, kc) = 0

k1:(c−1) + mod(n, kc) otherwise.
(6.5)

Whereas the scheme simplifies to

j =

k1:c if mod(n, k1:c) = 0

mod(n, k1:c) otherwise.
(6.6)

when OU is included within EW.
To assess how well these windowed schemes, the original NOW and EW with

a CFC and the NOW and EW schemes with different encoding strategies within
the windows, can progressively recover the source message, a few modifications
needed to be made to the progressive metric. Instead of considering a “single-
layer” source message consisting of 40 packets with a single set of PK and PK,M , a
layered message with two layers of length 15 and 25 is now being examined, each
layer with its own set of metrics.

For example, for the first importance layer, the investigation is interested in the
probability of recovering the first half of this layer as quickly as possible PK,M,L1 ,
and the probability of recovering the entire layer PK,L1 . The probability of re-
covering every source packet in the entire message is also utilised, so that these
layered results might be directly related to the layerless results.

The investigation is also interested in seeing how progressive performance is
affected by not taking the layers into account when encoding, for example, by not
windowing over the layers like EW and NOW. To clarify, the scheme that was
found to be the most suitable during the layerless investigation (SFC) was applied
to a layered source message (with k1 = 15 and k2 = 25) without prioritising any
of the individual layers, so that the encoder just sees a “layerless” source message
of 40 packets. The updated metrics for each individual layer that were described
in the above couple of paragraphs are also applied. The next section shows the
responses of these schemes over a layered source message.

56

6.3 Layered Scheme Comparison

6.3 Layered Scheme Comparison

The results presented in Figure 6.4 show the probability of recovering either a
portion of a layer or the entire layer of a two-layer source message with k1 = 15
and k2 = 25. The probability of encoding over the first layer is slightly biased
so that Γ1 = 0.6, and consequently, the probability of the second window being
selected is Γ2 = 0.4. The probability of a specific packet being lost during transit
over the lossy channel is p = 0.05.

6.3.1 Progressive Layer Recovery using NOW

It is interesting to note how the change in the NOW SFC scheme from systematic
to a CFC (Figure 6.4 (b)), with the addition of the requirement that a received
coded packet is linearly independent, shifts the scheme’s performance from the OU
trend it was previously following.

It also makes sense that the layerless version of the SFC scheme has greater
performance than the NOW version of SFC and OU, as these two schemes are
encoding over different layers 40% of the time. As the NOW SWFC scheme
switches to a CFC at N = kc it also makes sense that the scheme tracks the
CFC response, especially if the second layer is considered, where there is a large
probability (60%) of the encoder choosing the first layer to encode over, instead
of the second.

In similarity with the layerless results, the NOW OU scheme’s response has
the best progressive performance, when considering just the schemes within win-
dows. However, the NOW OU scheme could be described as two smaller layerless
messages each with a much higher erasure probability than the actual erasure
probability, p = 0.05, of the channel in this scenario. This is, once again, because
of the probability of the encoder picking the other window to encode over. It
is logical then, that the NOW OU scheme’s overall performance also follows the
trend set by the OU scheme in the layerless assessment, in that it does not take
kindly to large erasure probabilities. This trend can be seen in (Figure 6.4 (d)).

6.3.2 Progressive Layer Recovery using EW

The performance of the encapsulated EW schemes presented in Figure 6.4 (a) is
now considered. The EW version of OU and SFC now matches the layerless SFC
scheme perfectly for the first layer. This is to be expected as, until N > k1 all
three schemes are identical. It is interesting to note the ceilings present in the
NOW OU scheme’s second layer response, at N = {40, 80}, that are the result of
the first layer’s k1 = 15 packets being redundantly transmitted again.

57

6.3 Layered Scheme Comparison

20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
ab

il
it

y
 o

f
re

co
v
er

y

N

EW OU L1 (M = 8)
EW CFC L1 (M = 8)
EW SFC L1 (M = 8)
EW SWFC L1 (M = 8)
SFC L1 (M = 8)
EW OU L2 (M = 13)
EW CFC L2 (M = 13)
EW SFC L2 (M = 13)
EW SWFC L2 (M = 13)
SFC L2 (M = 13)

(a) EW PK,M for individual layers

20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
ab

il
it

y
 o

f
re

co
v
er

y

N

NOW OU L1 (M = 8)
NOW CFC L1 (M = 8)
NOW SFC L1 (M = 8)
NOW SWFC L1 (M = 8)
SFC L1 (M = 8)
NOW OU L2 (M = 13)
NOW CFC L2 (M = 13)
NOW SFC L2 (M = 13)
NOW SWFC L2 (M = 13)
SFC L2 (M = 13)

(b) NOW PK,M for individual layers

20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
ab

il
it

y
 o

f
re

co
v
er

y

N

EW OU L1 (M = 15)
EW CFC L1 (M = 15)
EW SFC L1 (M = 15)
EW SWFC L1 (M = 15)
SFC L1 (M = 15)
EW OU L2 (M = 25)
EW CFC L2 (M = 25)
EW SFC L2 (M = 25)
EW SWFC L2 (M = 25)
SFC L2 (M = 25)

(c) EW PK for individual layers

20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
ab

il
it

y
 o

f
re

co
v
er

y

N

NOW OU L1 (M = 15)
NOW CFC L1 (M = 15)
NOW SFC L1 (M = 15)
NOW SWFC L1 (M = 15)
SFC L1 (M = 15)
NOW OU L2 (M = 25)
NOW CFC L2 (M = 25)
NOW SFC L2 (M = 25)
NOW SWFC L2 (M = 25)
SFC L2 (M = 25)

(d) NOW PK for individual layers

Fig. 6.4 Performance of the NOW and EW schemes with different encoding strate-
gies within the windows for K = {15, 25}, p = 0.05. Layerless SFC has also been
included in each plot.

58

6.3 Layered Scheme Comparison

20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
ab

il
it

y
 o

f
re

co
v
er

y

N

EW OU L1 (M = 8)
EW CFC L1 (M = 8)
EW SFC L1 (M = 8)
EW SWFC L1 (M = 8)
SFC L1 (M = 8)
EW OU L2 (M = 13)
EW CFC L2 (M = 13)
EW SFC L2 (M = 13)
EW SWFC L2 (M = 13)
SFC L2 (M = 13)

(a) EW PK,M for individual layers

20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
ab

il
it

y
 o

f
re

co
v
er

y

N

NOW OU L1 (M = 8)
NOW CFC L1 (M = 8)
NOW SFC L1 (M = 8)
NOW SWFC L1 (M = 8)
SFC L1 (M = 8)
NOW OU L2 (M = 13)
NOW CFC L2 (M = 13)
NOW SFC L2 (M = 13)
NOW SWFC L2 (M = 13)
SFC L2 (M = 13)

(b) NOW PK,M for individual layers

20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
ab

il
it

y
 o

f
re

co
v
er

y

N

EW OU L1 (M = 15)
EW CFC L1 (M = 15)
EW SFC L1 (M = 15)
EW SWFC L1 (M = 15)
SFC L1 (M = 15)
EW OU L2 (M = 25)
EW CFC L2 (M = 25)
EW SFC L2 (M = 25)
EW SWFC L2 (M = 25)
SFC L2 (M = 25)

(c) EW PK for individual layers

20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
ab

il
it

y
 o

f
re

co
v
er

y

N

NOW OU L1 (M = 15)
NOW CFC L1 (M = 15)
NOW SFC L1 (M = 15)
NOW SWFC L1 (M = 15)
SFC L1 (M = 15)
NOW OU L2 (M = 25)
NOW CFC L2 (M = 25)
NOW SFC L2 (M = 25)
NOW SWFC L2 (M = 25)
SFC L2 (M = 25)

(d) NOW PK for individual layers

Fig. 6.5 Performance of the NOW and EW schemes with different encoding strate-
gies within the windows for K = {15, 25}, p = 0.1. Layerless SFC has also been
included in each plot.

59

6.3 Layered Scheme Comparison

40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
ab

il
it

y
 o

f
re

co
v
er

y

N

EW OU (M = 40)
EW CFC (M = 40)
EW SFC (M = 40)
EW SWFC (M = 40)
NOW OU (M = 40)
NOW CFC (M = 40)
NOW SFC (M = 40)
NOW SWFC (M = 40)
SFC (M = 40)

(a) p = 0.05

40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
ab

il
it

y
 o

f
re

co
v
er

y

N

EW OU (M = 40)
EW CFC (M = 40)
EW SFC (M = 40)
EW SWFC (M = 40)
NOW OU (M = 40)
NOW CFC (M = 40)
NOW SFC (M = 40)
NOW SWFC (M = 40)
SFC (M = 40)

(b) p = 0.1

Fig. 6.6 The probability of recovering every packet in the source message for each of
the NOW and EW schemes with different encoding strategies within the windows.
K = {15, 25} and p = {0.05, 0.1}. Layerless SFC has also been included in each
plot.

Again, it is interesting to note the degradation in performance of EW SFC and
EW SWFC as their second window swaps into a full CFC at N = 40, due to the
introduction of coded packets making it more difficult to pick out the individual
source packets that the progressive metric is looking for. The delay in the pro-
gressive recovery of the second layer when encoded with the layerless SFC stems
from the fact that, the scheme needs to have transmitted at least N = k1 + ⌈k2/2⌉
systematic packets before there is even a small chance of recovering half of the
second layer.

6.3.3 Entire Layer Recovery using NOW

The probability of fully recovering each source layer when the NOW scheme is
used (Figure 6.4 (d)) is now examined. As mentioned above, it is observable
that the NOW OU scheme does not perform at all well when confronted with
what is equivalent to a large erasure probability, the probability of the encoder
choosing the other window to encode over, with its response curves far to the right
of the other examined schemes. A notable characteristic of this plot is that the
performance of the NOW CFC, NOW SFC and NOW SWFC schemes appear to

60

6.3 Layered Scheme Comparison

be identical. It is hypothesised that not receiving, on average, roughly half of the
packets that a layer could generate, due to the other window being selected, wipes
out the individual characteristics of the SFC and SWFC schemes so that when the
two schemes switch to a CFC after kc, their performance equates.

Another interesting point is the discontinuity in the first layer response of the
NOW OU scheme at points where N is a multiple of k1, when the first set of k1

source packets are about to be retransmitted. The gradient of this response lessens
as time passes, as it takes a large amount of transmissions (at least 15) to cycle
through each iteration of k1 packets, in order to have even a chance at recovering
the specific packet(s) that have not yet been received.

The flat first layer response of the layerless SFC scheme makes sense as the
decoder has to wait for the other K − k1 packets to be transmitted before the
scheme will switch to a full CFC to start filling in the source packets that have
been lost through the channel.

6.3.4 Entire Layer Recovery using EW

Next, how well the EW schemes can fully recover each of source message layers
(Figure 6.4 (c)) will be looked at. The EW SFC, EW OU and layerless SFC again
start from the same point, but the EW SFC then switches to a CFC which really
enhances its performance, whereas the EW OU scheme encounters the same sort
of disjoint response that was described in the paragraphs above, with changes in
response every k1 transmitted packets.

It is also noteworthy that there is a trade-off between the performance of each
layer for the EW SFC, EW CFC and EW SWFC schemes. The performance of
the first layer directly relates to the reasoning given when examining the layerless
results in Chapter 5, the second layer performance, however, is novel. It obviously
relates to the number of linearly independent coded packets that have been encoded
over the second layer. The EW CFC scheme produces the most, and obtains
the best performance, as it has been encoding over the complete second window
since the start of transmission. Following on, the EW SWFC produces more
coded packets influenced by the second layer than the EW SFC scheme. One
of the situations where this occurs is over the initial SWFC window, which is 20
packets long and therefore includes the first 5 second layer packets, these 5 packets
then have the opportunity of being encoded over for 20 transmissions. The EW
SFC scheme, on the other hand, does not have the opportunity to start sending
systematic second layer packets until N > k1. The trends described above also
hold for a scenario with a larger erasure probability, such as p = 0.1. These results
can be seen in Figure 6.5.

61

6.4 Summary

6.3.5 Entire Source Message Recovery using Both Schemes

If the results given in Figure 6.6 are also included, it could be concluded that
since the layerless SFC scheme gives the best progressive performance and the
best overall performance, in terms of recovering the entire source message, it is
the best choice. However, if the objectives given towards the start of this chapter
are reconsidered, it is observed that a priority in the design of these schemes must
be the early full recovery of the most important layer, which would suggest the
most suitable strategy would be one of the EW schemes.

6.4 Summary

In this chapter, the concept of a layered source message and the NOW and EW
schemes that attempt to provide Unequal-Error-Protection to each of the source
message’s layers were introduced. The progressive and overall performance of
these layered schemes were then introduced, and the effect of adding the OU,
SFC, SWFC and CFC schemes within these windowed schemes on their progressive
performance investigated. Finally, simulation results were presented and discussed
for the considered layered encoding schemes.

62

Chapter 7
Conclusion

The main objective of this thesis was to examine the capability of fountain coded
schemes, that were already present in literature, to provide progressive source mes-
sage recovery. This task was accomplished with the comparison of the simulation
results of numerous layerless schemes, four of which are noted in this document.

To facilitate the examination of the progressive capability of each scheme a new
metric, PK,M , was introduced, along with a framework to summarise both the new
metric and the probability of recovering the entire source message. Theoretical
expressions for the benchmark (OU) scheme and the CFC and SFC schemes were
derived.

So that accurate simulation results were obtained efficiently, three branches of
decoding techniques were assessed for suitability. The adapted Gaussian Elim-
ination algorithm depicted in Chapter 4 was chosen, as it was both exact and
exhibited acceptable computational complexity.

After examination of the results in Chapter 5 it was apparent, for the channel
conditions that were considered, that the SFC scheme was most appropriate, as it
exhibited better progressive and overall performance.

Once the layerless scheme comparison had been completed, the next stage
was to question whether the progressive performance of the windowing techniques
used in the broadcast of layered source messages could be enhanced, with the
introduction of encoding techniques within the windows.

A layerless version of the SFC scheme was also applied to the layered message
to see if, from a progressive performance point of view, adding the extra encoding
complexity associated with the windowing schemes is strictly necessary. After
considering the results in Chapter 6 it can be observed that, if just progressive
and overall performance is inspected, the layerless SFC scheme is clearly the most
suitable candidate.

However, if one of the main purposes of adding Unequal-Error-Protection to

63

7.1 Individual Contribution

layered source messages is reconsidered, the requirement that the most important
layer should be ideally fully recovered before K coded packets have been transmit-
ted, it can be concluded the SFC scheme does not meet this requirement. In light
of this, an EW scheme would appear to be the most suitable alternative.

7.1 Individual Contribution

My individual contributions are summarised below:

• Derivation of theoretical expressions for both the probability of progressively
recovering at least M source packets and the the probability of recovering
the entire source message, when using a Systematic Fountain Code (Chapter
3).

• Development of a MATLAB simulation platform to obtain simulation results
for the layerless and layered scenarios. This platform also allowed the use of a
Robust Soliton distribution, as described in Chapter 2, to optimise decoding
performance when using the IBP decoder.

• Adaptation of the original On-The-Fly Gaussian Elimination algorithm in
an attempt to increase performance (Chapter 4).

• Adaptation of an exact Gaussian Elimination process to decrease its compu-
tational complexity (Chapter 4).

• Performed a thorough analysis and comprehensive discussion of simulation
results (Chapters 5 and 6).

7.2 Areas for Future Work

In order to keep the theoretical derivations tractable, and the computational com-
plexity of the decoder within the simulation platform small, this investigation
focussed on examining fountain codes where the relationships between elements
in coded packets were defined by a Galois Field of order 2, in other words by the
XOR function. Where a Galois Field is simply a field that contains a finite num-
ber of elements, in our case 2, on which the operations of multiplication, addition,
subtraction and division have been specifically defined [26].

For our uses, employing a higher order Galois Field means that the number of
possible combinations of the source packets within each coded packet increases,
so, in turn, the probability of the linear independence of a coded packet increases.

64

7.2 Areas for Future Work

In fact, for a Galois Field of order larger than 28, the probability of linear inde-
pendence tends to 1. Because of this, in most recent literature the authors use
larger finite fields, for example [27]. It would be interesting to observe the effect of
this increase on the progressive performance of the fountain coded schemes. How-
ever, our current theoretical expressions would not hold and this would require a
redesign of our encoding and decoding algorithms.

During the early stages of this investigation, the Joint Scalable Video Model
(JSVM) reference software [28] was examined, which is a reference tool used by the
developers of the H.264 SVC codec. It is possible to use this software to generate
scalable video files from normal video files and then, by using another tool within
the system, extract and modify the individual packets within each layer.

The investigation experimented with removing half of the second layer and
viewing the degradation in output, with mind to producing a demonstration. How-
ever, due to the time constraints imposed by the sheer learning curve in using the
software, this did not materialise.

Another area that could be explored would be how the introduction of a degree
distribution to the fountain coded schemes affects both the progressive performance
and the number of row operations required when decoding.

65

Appendix A
Conference Paper: Performance
Assessment of Fountain-coded Schemes
for Progressive Packet Recovery

Attached is the paper we presented towards the end of July 2014 at the 9th In-
ternational Symposium on Communications Systems, Networks and Digital Signal
Processing in Manchester.

66

Performance Assessment of Fountain-coded
Schemes for Progressive Packet Recovery

Andrew L. Jones, Ioannis Chatzigeorgiou and Andrea Tassi
School of Computing and Communications

Lancaster University, United Kingdom
Email: {a.jones2, i.chatzigeorgiou, a.tassi}@lancaster.ac.uk

Abstract—Fountain codes are gradually being incorporated
into broadcast technologies, such as multimedia streaming for
4G mobile communications. In this paper, we investigate the
capability of existing fountain-coded schemes to recover a fraction
of the source data at an early stage and progressively retrieve the
remaining source packets as additional coded packets arrive. To
this end, we propose a practical Gaussian elimination decoder,
which can recover source packets “on-the-fly”. Furthermore,
we introduce a framework for the assessment of progressive
packet recovery, we carry out a performance comparison of
the investigated schemes and we discuss the advantages and
drawbacks of each scheme.

Keywords—fountain coding; sliding window; Gaussian elimi-
nation; erasure channel; multicast communication.

I. INTRODUCTION

Network layer protocols traditionally partition data into
multiple packets and then repeatedly transmit them until
they are successfully received. This approach requires the
implementation of a feedback channel in which the receiver
can request the retransmission of corrupted packets. Fountain
codes, initially proposed in [1], do away with a dedicated
feedback channel and ease wastefulness of resources by trans-
mitting random linear combinations of source packets. The
first practical implementation of fountain codes was LT codes
[2] but it was not until the invention of Raptor codes [3]
that the fountain principle found its way to recent standards,
such as Long Term Evolution (LTE) [4] and Digital Video
Broadcasting for Handheld devices (DVB-H) [5].

Even though fountain codes can be applied to a diverse
set of reliability-focused applications, such as voice commu-
nications and data storage, they are not well suited to mission-
critical or latency-intolerant applications. As randomness is an
integral part of their design, there is no guarantee that source
packets will be recovered in the correct order. Furthermore,
the decoding process can only begin when a sufficiently large
number of coded packets have been received; therefore, a
receiver cannot obtain an early estimate of the source data
and gradually refine them as additional packets are recovered.

Sliding-window fountain codes, which were proposed in
[6] and extended in [7], incur a small performance penalty
compared to “windowless” fountain codes, but address the
issues of unordered packet recovery and limited memory stor-
age at the receiving side. Nevertheless, the authors considered
an erasure-free channel and a non-negative overhead, that

is, decoding is initiated when the number of received coded
packets is at least equal to the number of source packets.

The motivation for our work is to modify the on-the-fly
Gaussian elimination decoder [8], so that source packets can
be extracted from the pool of received coded packets as soon
as possible. Partial recovery of the source data will provide
an early insight into their information content. Full recovery
will be progressively achieved as additional coded packets are
received and added to the pool. As part of our objectives,
we also propose and utilise a framework, which assesses the
capability of schemes to progressively recover the source data
for communication over erasure channels.

The remainder of this paper has been organised as follows.
Section II describes the three schemes under investigation,
namely conventional fountain coding, sliding-window fountain
coding and systematic fountain coding. Section III presents
the Gaussian elimination decoder, proposes a modification
that allows source data to be progressively recovered and
explains in detail the decoding process. The performance
assessment framework and a simple uncoded transmission
scheme, which will be used as a benchmark, are introduced
in Section IV. Performance comparisons are presented and
discussed in Section V whereas the main findings of the paper
are summarised in Section VI.

II. REVIEWED FOUNTAIN-CODED SCHEMES

In this section, we describe the fountain-coded schemes
under consideration. In all cases, a message comprising K
source packets s1, s2, . . . , sK , is input to an encoder. The
encoder generates N packets, t1, t2, . . . , tN , and transmits
them over a broadcast erasure channel without feedback.

A. Conventional Fountain Coding

The encoder of a Conventional Fountain Code (CFC) con-
structs coded packet tn at time step n, where n = 1, . . . , N ,
from the linear combination or, equivalently, the bitwise sum
of source packets as follows

tn =

K∑

i=1

gn,i si (1)

where gn,i is a binary coding coefficient selected in an
uniformly random manner. It is worth noting that we have
chosen to employ a random distribution in order to examine
the worst-case performance of fountain coding. In the rest of

67

s1 s2 sK. . .

Window

s1 s2 sK. . .

w

δ w

s3 s4 s5 s6

s3 s4

Fig. 1. Sliding window scheme as proposed in [6], [7]. In this representation,
w = 4 and δ = 2, so every window is encoded over for 4 transmissions.

the paper we impose that binary coefficients associated to a
coded packet cannot all be simultaneously null.

B. Systematic Fountain Coding

The Systematic Fountain Code (SFC) combines both un-
coded and coded packet transmissions. In particular, the SFC
that we considered sequentially transmits each of the K source
packets uncoded (referred to as systematic packets). As soon
as every source packet has been transmitted once, the scheme
behaves like a CFC. Using (1), the considered SFC encoder
produces a stream of systematic/coded packets where the n-th
transmitted packet can be defined as follows

tn =

sn if n ≤ K
K∑

i=1

gn,i si otherwise.
(2)

C. Sliding Window Fountain Coding

The Sliding Window FC (SWFC) scheme considers a fixed
window of size w that is moved along the source message
by δ packets after w coded packets have been transmitted
over each window, as shown in Fig. 1. As the sliding window
is moving along the source message chronologically, it may
be possible to recover a subset of the source message before
fully recovering the whole source packet stream. In order to
maximise the probability that at least M source packets are
recovered as soon as possible, we set w and δ to M and
M/2, respectively. The considered w value allows the SWFC
scheme to initially resemble a miniature fountain code, as the
first window will be encoded over for w transmissions.

Formally, let s` and sr be the leftmost and rightmost source
symbol encompassed by the window, respectively. As long as
r < K, the n-th coded packet can be defined as follows

tn =

r∑

i=`

gn,i si (3)

where

`
.
= δ

⌊n− 1

w

⌋
+ 1 (4)

and r
.
= ` + w − 1, where b·c denotes the integer part of a

number. For r = K, we let the SWFC scheme default to CFC,
thus the expression of tn is provided by (1).

III. DECODING FOR PROGRESSIVE PACKET RECOVERY

In this paper we employ a customised implementation of the
On-the-Fly Gaussian Elimination (OFGE) decoding process
proposed by V. Bioglio et al. [8]. The OFGE process was
chosen as it offers either an improved decoding time or a
more accurate solution, when compared to other decoding
algorithms for fountain coding such as iterative belief propa-
gation [2] and incremental Gaussian elimination [9].

In its original version, the OFGE process waits for enough
innovative coded packets (namely, K linearly independent
coded packets) to produce a full rank upper triangular matrix
so that every source packet could be recovered by an efficient
back substitution phase. This partially conflicts with the objec-
tives of the paper, as we aim to recover some source packets
before K linearly independent packets have been received. To
this end, our version of the OFGE algorithm, as presented in
the rest of this section, is characterised by a XORing phase
that leads to the recovery of a fraction of the source packets
before the reception of K coded packets.

In order to describe the modified OFGE implementation, it
is worthwhile to provide the following definitions:
• let G be a K ×K matrix and G[t] be its t-th row;
• let gi be the i-th received vector of coding coefficients;
• let us define the degree of gi as the number of non-zero

components of the vector;
• let I(gi) be the index of the leftmost vector component

equal to 1 in gi.
The proposed OFGE algorithm consists of three phases:
1. TRIANGULARISATION PHASE

(i) If G[I(gi)] is empty then insert gi into G[I(gi)] and
move to the back-substitution phase.

(ii) If the degree of G[I(gi)] is greater than the degree of
gi, swap the I(gi)-th row with gi. Otherwise, replace
gi with gi ⊕G[I(gi)].

(iii) If the degree of gi is greater than 0 go back to (i).
Otherwise, move to the back-substitution phase.

2. BACK-SUBSTITUTION PHASE

(i) Define a temporary matrix L which is equal to G.
(ii) For any a which goes from K to 1 perform the

following steps:
(a) Set to 0 all the elements of the matrix L which

belong to the j-th column (for any j such that sj
has been already recovered).

(b) If L[a] has a degree of 1 then the I(L[a])-th
source packet is recovered.

3. XORING PHASE

(i) For any c and d which go from K to 2 and c− 1 to
1, respectively, perform the following steps:
(a) If G[c] ⊕ G[d] has a degree of 1, the packet
I(G[c]⊕G[d]) is recovered. Otherwise, if d > 1,
for any e that goes from d− 1 to 1.
• If G[c] ⊕G[d] ⊕G[e] has a degree of 1, the

packet I(G[c]⊕G[d]⊕G[e]) is recovered.
(ii) Move to the back-substitution phase and exit.

68

To give an example of the progressive OFGE decoding
process, if the first coded packet that we receive is associated
with the coding vector g1 = [0, 0, 1, 1, 1] (namely, it is a
linear combination of s3, s4 and s5), the OFGE process will
place g1 straight into G[3], as G[3] is currently empty. If
g2 = [1, 1, 0, 1, 0] is then received, as I(g2) = 1 and G[1] is
empty, g2 will be inserted straight into G[1]. At this point, G
looks like the left side of the following relationship

1 1 0 1 0
0 0 0 0 0
0 0 1 1 1
0 0 0 0 0
0 0 0 0 0

Recv. g3−−−−−→

1 1 0 1 0
0 1 1 1 1
0 0 1 1 1
0 0 0 0 0
0 0 0 0 0

. (5)

Then, if g3 = [1, 0, 1, 0, 1] then, as I(g3) = 1 and G[1]
already contains a coding vector of lesser or equal degree,
g3 is replaced by g3 ⊕ G[1] = [0, 1, 1, 1, 1]. And as I(g3)
is now 2 and G[2] is empty, the new value of g3 is inserted
directly into G[2], namely, the right side of (5). During the
XORing phase, the combination of G[3]⊕G[2] = [0, 1, 0, 0, 0]
will be considered. Hence, source packet s2 will be marked
as recovered.

Let us imagine that g4 = [0, 1, 1, 0, 0] is now received. As
I(g4) = 2 and G[2] contains a encoding vector of greater
degree, g4 is swapped with G[2]. As g4 has a greater degree
than G[2], g4 is replaced by g4 ⊕G[2] = [0, 0, 0, 1, 1]. Now
I(g4) = 4 and G[4] is empty, so g4 is inserted straight into
G[4]. As a consequence, G is equal to the left side of the
following relationship

1 1 0 1 0
0 1 1 0 0
0 0 1 1 1
0 0 0 1 1
0 0 0 0 0

Recv. g5−−−−−→

1 1 0 1 0
0 1 1 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

. (6)

Matrix G is then passed to the back-substitution phase which,
as s2 has already been recovered, finds that G[2] has a degree
of 1. Source packet s3 is now marked as recovered. If the
next received vector is g5 = [0, 0, 1, 0, 1], it is immediately
swapped with G[3] because of its lesser degree. Vector g5

now has a degree larger than that of G[3], so g5 is replaced by
g5 ⊕G[3] = [0, 0, 0, 1, 0]. Now I(g5) = 4 and G[4] contains
an encoding vector of greater degree, so g5 is swapped with
G[4]. The vector g5 now has a degree larger than that of G[4],
so g5 is replaced by g5 ⊕G[4] = [0, 0, 0, 0, 1]. As I(g5) = 5
and G[5] is empty, g5 is inserted straight into G[5].

At this stage, G has assumed the form in the right side
of (6); it is then passed to the back-substitution phase which
finds rows of degree 1 whilst examining G[4] and G[5].
Source packets s4 and s5 are now marked as recovered. As
all instances of the recovered packets in matrix L have been
set to 0, the back-substitution phase will also recover s1.

IV. PERFORMANCE ASSESSMENT FRAMEWORK

Throughout this paper we consider packet transmission over
a broadcast erasure channel without feedback. As it is often

assumed, the probability p of a packet erasure captures the
average quality of both the communication channel and the
underlying error-correcting capability of the physical layer.
In this section, we introduce a method for assessing the
capability of a scheme to progressively recover packets. Prior
to this, we define two useful performance metrics and compute
them for ordered uncoded transmission. This will be used as
a benchmark for the performance comparison of the afore-
mentioned fountain-coded schemes.

A. Performance Metrics

We denote the probability that all K source packets have
been successfully recovered at the destination, when N ≥ K
packets have been transmitted, as PK(N). This metric mea-
sures the capability of transmission schemes to recover the full
source message as soon as a sufficient number of packets (at
least K) has been broadcast.

On the other hand, PK,M (N) shall signify the probability
that at least M source packets from subset {s1, . . . , sm}
have been recovered, given that packets t1, t2, . . . , tN have
been transmitted, where M ≤ m ≤ min(K,N). Metric
PK,M (N) measures the capability of a scheme to retrieve
and possibly use – immediately after reception – a fraction of
the source packets, which either precede or are contemporary
with the last transmitted packet. For example, assume that a
message comprises source packets s1, . . . , s10 and the encoder
transmits packets t1, . . . , t6 in six time steps. The proposed
metric focuses on the recovery of some or all source packets
from subset {s1, . . . , s6}, even if source packets that come
after t6 in time have been recovered at the destination.

B. Ordered Uncoded Transmission

Having defined PK(N) and PK,M (N), we shall now obtain
closed-form expressions for the case of Ordered Uncoded
(OU) transmission, which will be used as a performance
benchmark in our study. Note that the term uncoded trans-
mission implies that the transmitted packets are not linear
combinations of the source packets. In OU transmission, the
K source packets are sequentially transmitted and periodically
repeated. At time step n = jK + i, the transmitted packet is

tjK+i = si, for j ≥ 0 and i = 1, . . . ,K. (7)

If the allocated transmission energy and time are sufficient
to broadcast N = αK + β packets, where α, β are non-
negative integers, we understand that (α+1) copies of packets
s1, . . . , sβ and α copies of packets sβ+1, . . . , sK will be
transmitted. The probability of recovering all source packets
at the destination is the probability that at least one copy of
each of the first β and the last (K − β) source packets will
be received, that is

PK(N) =
(

1− pα+1
)β (

1− pα
)K−β

. (8)

Parameters α and β can be expressed in terms of N and K as
α = bN/Kc and β = (N mod K), where mod denotes the
modulo operation.

69

20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N

P
K
,M

(N
)

OU Theory (p = 0.1)
OU Sim. (p = 0.1)
OU Theory (p = 0.15)
OU Sim. (p = 0.15)
OU Theory (p = 0.3)
OU Sim. (p = 0.3)

(a) M = 20

40 80 120 160 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N

P
K
(N

)

OU Theory (p = 0.1)
OU Sim. (p = 0.1)
OU Theory (p = 0.15)
OU Sim. (p = 0.15)
OU Theory (p = 0.3)
OU Sim. (p = 0.3)

(b) M = 40

Fig. 2. Performance validation of OU transmission for K = 40, different
values of p and (a) partial message recovery (M = 20) or (b) full message
recovery (M = 40).

We now alter our focus from the recovery of the full set of
source packets to the retrieval of a smaller set of m packets,
where M ≤ m ≤ min(K,N). After some manipulation,
we arrive at the following expression for the probability of
recovering a specific instance of exactly m packets, provided
that h ≥ 0 of them are among the first β packets and the
remaining (m− h) occupy the last (K−β) positions,

f(m,h) =
(

1− pα+1
)h (

1− pα
)m−h

pα(K−m)+β−h. (9)

The probability of recovering at least M source packets can
be obtained from (9) for all valid values of m and h, that is

PK,M (N) =
K∑

m=M

hmax∑

h=hmin

(
β

h

)(
K − β
m− h

)
f(m,h) (10)

where hmin = max(0,m−K+β) and hmax = min(β,m). We
note that the upper limit on m can be relaxed from min(K,N)
to K; in the event of N ≤ m < K, f(m,h) will be zero and
all unnecessary terms in (10) will be eliminated.

Fig. 2 compares analytical results with simulation results for
K = 40 source packets and different values of erasure proba-
bility p. We observe in Fig. 2a that expression (10) accurately
determines PK,M (N) which, in this example, corresponds to
the probability of recovering at least half of the source packets
(M = 20) in the correct order. Similarly, simulation results for
PK(N) are in agreement with the values obtained from (8),
as shown in Fig. 2b. As expected, PK(N) can be seen as a
special case of PK,M (N) for M = K.

C. Assessment of Progressive Packet Recovery

Let P̂ be the predetermined target probability of packet
recovery for a transmission scheme. In order to assess the
capability of that scheme to progressively recover the source
message of K packets, we use N̂ ≤ N to represent the
minimum number of transmitted packets that are required

TABLE I
VALUES OF N̂ AND ∆N FOR OU TRANSMISSION, K= 40, M = 20,

P̂ = 0.9 AND DIFFERENT VALUES OF p.

p N̂ ∆N

0.10 24 89

0.15 26 105

0.30 33 166

for the recovery of at least M source packets with pro-
bability PK,M (N̂) ≥ P̂ . Furthermore, we denote as ∆N
the minimum number of additional packets that need to be
transmitted to recover all K source packets with probability
PK(N̂ + ∆N) ≥ P̂ .

For fixed values of K, M and P̂ , the smaller the value of
N̂ is, the faster the partial recovery of the source message
will be. We also deduce that a small value of ∆N indicates
that the transmission scheme under investigation needs only
a few extra packets to make a transition from the partially
retrieved message to the fully recovered message for the same
probability P̂ .

An example is given in Table I for OU transmission, K= 40,
M = K/2 = 20 and P̂ = 0.9. The depicted values of N̂ and
∆N generate probabilities PK,M (N̂) and PK(N̂ + ∆N) that
approach from above and are as close as possible to 0.9. They
can both be obtained from Fig. 2 or derived from expressions
(8) and (10). As shown in Table I, half or more of the source
packets can be retrieved with probability 0.9 from a reasonably
small number of transmitted packets N̂ . However, progressive
packet recovery incurs a significant delay; we observe that the
number of additional transmitted packets ∆N for the recovery
of all source packets with probability 0.9 is markedly high.
Note that ∆N increases considerably with an increase in the
erasure probability p.

V. RESULTS AND DISCUSSION

The responses of the reviewed schemes for K = 20 and
p = {0.05, 0.1}, are shown in Fig. 3. It is apparent for this
scenario that, with the aforementioned erasure channel, the
SFC scheme is most appropriate. This is because SFC not only
outperforms SWFC and CFC in terms of progressive packet
recovery (lower N̂ values in Table II), but also SWFC and OU
if we consider full packet recovery (lower N̂ + ∆N values in
Table II).

If we consider the SWFC scheme, which combines w
source packets throughout the initial K transmissions, it can
be noted that this scheme is more tolerant of the higher erasure
probabilities. In other words, the progressive performance of
this scheme degrades slower than SFC and OU when the
erasure probability is increased. For example, for K = 20
and N = 10, it can be seen in Fig. 3 that the increase in
erasure probability reduces PM,K of SFC and OU by ≈ 25%
and PM,K of SWFC by only ≈ 7%.

Similar trends can also be observed in Fig. 4, for K = 40.
The capability of each reviewed scheme to progressively
recover source packets has been summarised in Table II. Note

70

10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
ab

il
it

y
 o

f
re

co
v

er
y

N

OU (M = 10)
CFC (M = 10)
SFC (M = 10)
SWFC (M = 10)
OU (M = 20)
CFC (M = 20)
SFC (M = 20)
SWFC (M = 20)

(a) p = 0.05

10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
ab

il
it

y
 o

f
re

co
v

er
y

N

OU (M = 10)
CFC (M = 10)
SFC (M = 10)
SWFC (M = 10)
OU (M = 20)
CFC (M = 20)
SFC (M = 20)
SWFC (M = 20)

(b) p = 0.1

Fig. 3. Packet recovery probabilities as a function of N for K = 20.

that the difference between PM,K and PK for the CFC scheme
is negligible, if any, as seen in both Fig. 3 and Fig. 4 as
well as Table II; this is because the CFC scheme makes no
attempt to prioritise the recovery of the source packets which
are closest to being utilised. On the other hand, the OU scheme
exhibits excellent progressive performance, but as it is simply
transmitting ordered source packets it is susceptible to an
increase in the erasure probability of the channel. Note the
steep increase in ∆N (depicted in Table II) as the erasure
probability is increased.

Another interesting point, shown in both Fig. 3 and Fig. 4,
is the change in the response of PM,K for SWFC when the
scheme defaults to CFC after K transmissions. The ceiling
in the probability of recovery can be attributed to the fact
that the first δ and the last δ source packets have had half
the opportunities of being included in an coded packet, when
compared to the other K −w source packets. As K increases
or p decreases, the ceiling tends to 1.

It is also interesting to note the tradeoff exhibited by SWFC,
for a fixed window size w, between PM,K and PK when
δ is altered. Although, for brevity, these results have been
omitted. If δ < w/2, the progressive recovery of SWFC is
greatly enhanced, as each source packet will be included in a
greater number of coded packets. However, as the encoding
window is sliding much slower that previously, the time taken
for the encoding process to have covered every source packet
is substantially increased. This, of course, detrimentally affects
PK . The exact opposite reasoning holds for δ > w/2.

VI. CONCLUSIONS

In this paper, we addressed the issue of progressive packet
recovery in fountain-coded (FC) data transmission. We pre-

20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
ab

il
it

y
 o

f
re

co
v

er
y

N

OU (M = 20)
CFC (M = 20)
SFC (M = 20)
SWFC (M = 20)
OU (M = 40)
CFC (M = 40)
SFC (M = 40)
SWFC (M = 40)

(a) p = 0.05

20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
ab

il
it

y
 o

f
re

co
v

er
y

N

OU (M = 20)
CFC (M = 20)
SFC (M = 20)
SWFC (M = 20)
OU (M = 40)
CFC (M = 40)
SFC (M = 40)
SWFC (M = 40)

(b) p = 0.1

Fig. 4. Packet recovery probabilities as a function of N for K = 40.

TABLE II
VALUES OF N̂ AND ∆N FOR DIFFERENT ERASURE PROBABILITIES AND

THE VARIOUS SCHEMES UNDER INVESTIGATION.

OU CFC SFC SW

p N̂ ∆N N̂ ∆N N̂ ∆N N̂ ∆N

0.05 11 29 25 0 11 14 20 10

0.1 13 38 27 0 13 14 25 6

(a) K = 20

OU CFC SFC SW

p N̂ ∆N N̂ ∆N N̂ ∆N N̂ ∆N

0.05 22 58 47 0 22 25 36 19

0.1 22 91 50 0 22 28 39 17

(b) K = 40

sented a novel extension of an efficient implementation of
the Gaussian elimination algorithm known as the on-the-fly
decoder. The considered FC schemes were assessed using a
proposed framework and compared against ordered uncoded
transmission. As expected, the FC-based schemes clearly
outperform ordered uncoded transmission in terms of the
probability of recovering the entire source message, regardless
of the length of the message and the erasure probability. On the
other hand, we established that the FC-based strategies require
more transmission attempts than ordered uncoded transmission
to recover a fraction of the source message. We also observed
that the systematic FC scheme remarkably outperforms the
other candidates in terms of progressive message recovery; it
requires the smallest number of transmitted packets to retrieve
at least half of the packets of the source message and pro-
gressively acquire the remaining packets. Nevertheless, if an

71

increase in overhead can be tolerated, the sliding-window FC
scheme is an attractive alternative for systems using receiving
equipment that can store only a limited number of packets.

ACKNOWLEDGMENT

This work was conducted as part of the R2D2 project,
which is supported by the Engineering and Physical Sciences
Research Council (EPSRC) under Grant EP/L006251/1.

REFERENCES

[1] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A Digital
Fountain Approach to Reliable Distribution of Bulk Data,” in SIGCOMM
Comput. Commun. Rev., vol. 28, no. 4, Oct. 1998, pp. 56–67.

[2] M. Luby, “LT Codes,” in Proc. of the 43rd IEEE Symp. on Found. of
Comput. Sci., Washington, DC, USA, 2002, pp. 271–280.

[3] A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, no. 6,
pp. 2551–2567, Jun. 2006.

[4] M. Luby, M. Watson, T. Gasiba, T. Stockhammer, and W. Xu, “Raptor
codes for reliable download delivery in wireless broadcast systems,” in
3rd IEEE Consumer Commun. Networking Conference, vol. 1, Jan. 2006,
pp. 192–197.

[5] Digital Video Broadcasting (DVB); IP Datacast over DVB-H: Content
Delivery Protocols, ETSI Techn. Spec., Rev. 1.3.1, Jun. 2009.

[6] M. Bogino, P. Cataldi, M. Grangetto, E. Magli, and G. Olmo, “Sliding-
Window Digital Fountain Codes for Streaming of Multimedia Contents,”
in Circuits and Systems, 2007. ISCAS 2007. IEEE International Sympo-
sium on, May 2007, pp. 3467–3470.

[7] P. Cataldi, M. Grangetto, T. Tillo, E. Magli, and G. Olmo, “Sliding-
Window Raptor Codes for Efficient Scalable Wireless Video Broadcasting
With Unequal Loss Protection,” IEEE Trans. Image Process., vol. 19,
no. 6, pp. 1491–1503, June 2010.

[8] V. Bioglio, M. Grangetto, R. Gaeta, and M. Sereno, “On the fly Gaussian
elimination for LT codes,” IEEE Commun. Lett., vol. 13, no. 12, pp.
953–955, December 2009.

[9] S. Kim, K. Ko, and S. Chung, “Incremental Gaussian elimination decod-
ing of raptor codes over BEC,” IEEE Commun. Lett., vol. 12, no. 4, pp.
307–309, April 2008.

72

Appendix B
Conference Paper: Binary Systematic
Network Coding for Progressive Packet
Decoding

Attached is the paper currently under review for the 2015 IEEE International
Conference on Communications (ICC).

73

Binary Systematic Network Coding
for Progressive Packet Decoding

Andrew L. Jones, Ioannis Chatzigeorgiou and Andrea Tassi
School of Computing and Communications, Lancaster University, United Kingdom

Email: {a.jones2, i.chatzigeorgiou, a.tassi}@lancaster.ac.uk

Abstract—We consider binary systematic network codes and
investigate their capability of decoding a source message either
in full or in part. We carry out a probability analysis, derive
closed-form expressions for the decoding probability and show
that systematic network coding outperforms conventional net-
work coding. We also develop an algorithm based on Gaussian
elimination that allows progressive decoding of source packets.
Simulation results show that the proposed decoding algorithm
can achieve the theoretical optimal performance. Furthermore,
we demonstrate that systematic network codes equipped with the
proposed algorithm are good candidates for progressive packet
recovery owing to their overall decoding delay characteristics.

Keywords—Network coding, Gaussian elimination, decoding
probability, rank-deficient decoding.

I. INTRODUCTION

Network coding (NC), originally proposed in [1], has the
potential to significantly improve network reliability by mixing
packets at a source node or at intermediate network nodes prior
to transmission. The classical implementation of NC, which
is often referred to as straightforward NC [2], randomly com-
bines source packets using finite field arithmetic. As the size of
the field increases, the likelihood of the transmitted packets be-
ing linearly independent also increases. However, the decoding
process at the receiver is computationally expensive, especially
if the field size is large. Furthermore, straightforward NC
incurs a substantial decoding delay because source packets
can be recovered at the receiver only if the received network-
coded packets are at least as many as the source packets.

Heide et al. [3] proposed the adoption of binary sys-
tematic NC, which operates over a finite field of only two
elements, as a means of reducing the decoding complexity
of straightforward NC. A source node using systematic NC
first transmits the original source packets and then broadcasts
linear combinations of the source packets. The reduction
in decoding complexity at the receiver decreases energy
consumption and makes systematic NC suitable for energy-
constrained devices, such as mobile phones and laptops.
Lucani et al. [4] developed a Markov chain model to show
that the decoding process of systematic NC in time division
duplexing channels requires considerably fewer operations, on
average, than that of straightforward NC. Barros et al. [5] and
Prior and Rodrigues [6] observed that opting for systematic
NC as opposed to straightforward NC reduces decoding delay
without sacrificing throughput. Therefore, systematic network
codes exhibit desirable characteristics for multimedia broad-
casting and streaming applications. More recently, Saxena and

Vázquez-Castro [7] discussed the advantages of systematic NC
for transmission over satellite links.

As in [3], we also consider binary systematic network codes
and investigate their potential in delivering services, such as
multimedia and streaming, which often require the progressive
recovery of source packets and the gradual refinement of the
source message. Our objective is to prove that systematic NC
not only exhibits a lower decoding complexity than straight-
forward NC, as shown in [4], but also a better performance, as
observed in [5]. Even though our focus is on binary systematic
NC, we explain that our analysis can be easily extended to
finite fields of larger size. In addition, we develop a decoding
algorithm and propose a framework, which helps us study the
performance of systematic NC in terms of the probability of
recovering a source message either in part or in full.

The rest of the paper has been organised as follows.
Section II analyses the performance of systematic NC and
introduces metrics for evaluating its capability of progressively
recovering source messages. Section III proposes a modifica-
tion to the Gaussian elimination algorithm that allows source
packets to be progressively decoded. Section IV discusses the
computational cost and accuracy of the proposed decoding
algorithm, validates the derived theoretical expressions and
contrasts the performance of systematic NC with that of
benchmark transmission schemes. The main contributions of
the paper are summarised in Section V.

II. BINARY SYSTEMATIC NETWORK CODING

Let us consider a source node, which segments a message
s = [si]Ki=1 into K source packets and encodes them using a
systematic NC encoder. The encoder generates and transmits
N packets, which comprise K systematic packets followed by
N −K coded packets. The systematic packets are identical
to the source packets, while the coded packets are obtained
by linearly combining source packets. The n-th transmitted
packet, denoted by tn, can be expressed as follows

tn =

sn if n ≤ K

K∑

i=1

gn,i si if K < n ≤ N
(1)

where gn,i is a binary coefficient chosen uniformly at random
from the elements of the finite field GF(2). We can also
express tn in matrix notation as tn = G[n] · sᵀ, where
G[n] = [gn,i]Ki=1 is the coding vector associated with tn.

74

Note that when n ≤ K, in line with the definition of binary
systematic NC, we set gn,i = 1 if i = n, else gn,i = 0.

In the remainder of this section, we investigate the theo-
retical performance of systematic NC and derive analytical
expressions for the probability of decoding the entire source
message or a fraction of the source message. We also present
performance metrics and benchmarks for the evaluation of
systematic NC for progressive packet recovery.

A. Probability of Decoding the Entire Source Message

As previously mentioned, a source node using systematic
NC transmits N packets, of which K are systematic and
the remaining N −K are coded. Assume that a receiver
successfully recovers r packets, of which h are systematic and
r − h are coded. The coding vectors of the r received packets
are stacked to form the r ×K decoding matrix G.

Let fK(r,N) denote the probability of decoding the K
source packets given that r packets have been received. We
understand that fK(r,N) is non-zero only if K ≤ r ≤ N . The
value of r also determines the smallest allowable value of h.
For instance, if K ≤ N < 2K, the N −K transmitted coded
packets are fewer than the K transmitted systematic packets;
given that r ≥ K packets are received, the number of received
systematic packets h should be at least r−(N−K). Other-
wise, if N ≥ 2K, the smallest value of h can be zero. There-
fore, h is defined in the range max (0, r−N+K) ≤ h ≤ K.
Having defined the parameters of the system model and their
interdependencies, we can now proceed with the derivation of
an analytical expression for fK(r,N).

Lemma 1. For N ≥ K transmitted packets, the probability
of a receiver decoding all of the K source packets, given that
K ≤ r ≤ N packets have been successfully received, is

fK(r,N)=

(
N−K
r−K

)
+

K−1∑

h=hmin

(
K
h

)(
N−K
r−h

)K−h−1∏

j=0

(
1− 2−r+h+j

)

(
N
r

) (2)

where hmin = max (0, r−N+K).

Proof. The decoding probability fK(r,N) can be decomposed
into the sum of the following probabilities

fK(r,N) = P{h=K} +
K−1∑

h=hmin

P{h<K} wK−h(r − h). (3)

The term P{h = K} represents the probability of recovering
the K source packets directly from the K successfully received
systematic packets. This is the case when r −K out of the
N −K coded packets have been successfully delivered to the
receiver along with the K systematic packets. Considering that
r out of the N transmitted packets have been received, we can
deduce that P{h = K} is given by

P{h=K} =

(
N−K
r−K

)
(
N
r

) . (4)

The sum of products in (3) considers the probability of recov-
ering h < K systematic packets and decoding the remaining

K − h source packets from the r − h received coded packets.
More specifically, the probability P{h < K} of receiving h
out of the K systematic packets and r − h out of the N −K
coded packets is equal to

P{h < K} =

(
K
h

)(
N−K
r−h

)
(
N
r

) . (5)

On the other hand, the probability of having K − h linearly
independent coded packets among the r − h received ones
can be obtained from the literature of straightforward NC, for
example [8]. We find that

wK−h(r − h) =
K−h−1∏

j=0

(
1− 2−(r−h)+j

)
. (6)

Substituting (4), (5) and (6) into (3) gives (2). This concludes
the proof.

Proposition 1. The probability of a receiver decoding all of
the K source packets, after the transmission of N ≥ K packets
over a channel characterized by a packet erasure probability p,
can be expressed as follows

PK(N) =
N∑

r=K

(
N
r

)
(1− p)

r
pN−rfK(r,N). (7)

Proof. The proof follows from Lemma 1. The conditional
probability fK(r,N) has been weighted by the probability
of successfully receiving r out of N transmitted packets and
averaged over all valid values of r.

The closed-form expressions for the decoding probability
of systematic network codes can be used to contrast their
performance to the performance of straightforward network
codes and give rise to the following proposition.

Proposition 2. Systematic network codes exhibit a higher
probability of decoding all of the K packets of a source
message than straightforward network codes.

Proof. For the same number of received packets r, the prob-
ability of decoding all of the K source packets is fK(r,N)
for systematic NC and wK(r) for straightforward NC, where
wK(r) =

∏K−1
j=0

(
1− 2−r+j

)
as per (6). If we show that the

relationship fK(r,N) ≥ wK(r) holds for all valid values of
N , we can infer that the decoding probability of systematic NC
is higher than that of straightforward NC. Dividing fK(r,N)
by wK(r) gives

fK(r,N)

wK(r)
=
(
N
r

)−1[(N−K
r−K

)
A +

K−1∑

h=hmin

(
K
h

)(
N−K
r−h

)
Bh

]
(8)

where

A=

K−1∏

j=0

2r−j

2r−j − 1
and Bh =

1, for h = 0

h−1∏

j=0

2r−j

2r−j − 1
, for h > 0.

(9)

75

Note that A > 1 and Bh ≥ 1 for all valid values of r, that is,
K ≤ r ≤ N . Therefore, the right-hand side of (8) can become
a lower bound on the ratio fK(r,N)/wK(r) if coefficients A
and Bh are removed. More specifically, we can obtain

fK(r,N)

wK(r)
>
(
N
r

)−1 K∑

h=hmin

(
K
h

)(
N−K
r−h

)
(10)

if the binomial coefficient
(
N−K
r−K

)
in (8) is included into the

sum and the upper limit of the sum is updated accordingly.
We distinguish the following two cases for the value of N :
• N ≥ 2K: In this case, we have hmin = 0. Invoking a spe-

cial instance of the Chu-Vandermonde identity [9, p. 41],
we can reduce the sum at the right-hand side of (10) to

K∑

h=0

(
K
h

)(
N−K
r−h

)
=
(
N
r

)
. (11)

• K≤N<2K: As previously explained, hmin =r−N+K.
Setting h′=N−K−r+h, expressing the sum in (10)
in terms of h′, exploiting the properties of binomial
coefficients and using the widely-known Vandermonde’s
convolution [10, p. 29] gives

K∑

h=r−N+K

(
K
h

)(
N−K
r−h

)
=

N−r∑

h′=0

(
K

N−r−h′
)(

N−K
h′
)

=
(

N
N−r

)
=
(
N
r

)
.

(12)

If we combine identities (11) and (12) with inequality (10), we
obtain fK(r,N)/wK(r) > 1 for all valid values of N , which
concludes the proof. We note that the ratio fK(r,N)/wK(r)
approaches 1 as the value of N −K increases.

Remark. Even though this paper is concerned with binary
systematic NC, i.e. the elements of matrix G are selected
uniformly at random from GF(2), the same reasoning can be
employed to obtain PK(N) when operations are performed
over GF(q) for q ≥ 2. The probability fK(r,N) of decoding
the entire source message, given that r packets have been
received, can be written as

fK(r,N)=

(
N−K
r−K

)
+
K−1∑

h=hmin

(
K
h

)(
N−K
r−h

)K−h−1∏

j=0

(
1−q−r+h+j

)

(
N
r

) . (13)

Both Propositions 1 and 2 hold for q ≥ 2. Substituting (13)
into (7) gives the general expression for PK(N).

B. Probability of Decoding a Fraction of the Source Message

In Section II-A, we focused on deriving the probability
of decoding the K source packets when N ≥ K packets
have been transmitted. Of equal interest is the probability of
recovering at least M < K source packets when N ≥ M
packets have been transmitted. To the best of our knowledge,
a closed-form expression for this probability, denoted hereafter
as PK,M (N), has not been obtained for straightforward NC.
However, a good approximation, which follows readily from
Proposition 1, can be computed for the case of systematic NC.

Corollary 1. The probability of recovering at least M < K
source packets, when N ≥M packets have been transmitted
over a channel with packet erasure probability p, can be
approximated by

PK,M (N) ≈
Nmin∑

r=M

(
Nmin

r

)
(1− p)

r
pNmin−r (14)

where Nmin = min (K,N).

Proof. The number of transmitted systematic packets is either
N if N < K, or K if N ≥ K. In general, min (K,N) system-
atic packets are sent over the packet erasure channel, for any
value of N . If we wish to recover at least M < min (K,N)
source packets and the erasure probability p is small, M or
more received packets will most likely be systematic and, thus,
linearly independent. As a result, the probability of decoding at
least M source packets reduces to the probability of recovering
at least M systematic packets, given by (14).

We remark that the assumption of a low value of p is
reasonable when the physical layer employs error correcting
codes that improve the channel conditions as “seen” by higher
network layers, where NC is usually applied. For example, the
Long Term Evolution Advanced (LTE-A) framework considers
an erasure probability of p = 0.1 [11].

C. Performance Metrics and Benchmarks

In order to assess the performance of systematic NC and
explore its capability to progressively decode a source mes-
sage, we will compare it with ordered uncoded (OU) trans-
mission [12] and straightforward NC. In OU transmission, the
K source packets are periodically repeated. The transmitted
packet at time step n = i + mK can be expressed as
ti+mK = si for i = 1, . . . ,K and m ≥ 0. We note that
transmission is uncoded in the sense that transmitted packets
are not linear combinations of the source packets. By contrast,
the n-th transmitted packet in straightforward NC is given by
tn =

∑K
i=1 gn,i si for n > 0, implying that all transmitted

packets are linear combinations of the source packets.
Probabilities PK,M (N) and PK(N) will be used to contrast

the performance of systematic NC, straightforward NC and
OU transmission. In order to create links between the two
decoding probabilities, we introduce the following parameters:

• P̂ is a predetermined target probability of packet recovery
that a transmission scheme has to attain. Probabilities
PK,M (N1) and PK(N2) can be set equal to P̂ in order
to determine the number of transmitted packets N1 and
N2 that are required for the partial or full recovery of the
source message, respectively.

• N̂ signifies the minimum number of transmitted packets
required by the receiver to recover at least M source
packets with a probability of at least P̂ .

• ∆N denotes the minimum number of additional packets
that should be transmitted so that the receiver recovers
the K source packets with a probability of at least P̂ .

76

A performance comparison of the investigated schemes will
be carried out in Section IV. Prior to that, we discuss decoding
algorithms for NC schemes and propose a decoding process
that allows progressive decoding of source packets in the
following section.

III. PROGRESSIVE DECODING

If the objective of the decoding algorithm is the recovery
of the K source packets after the reception of at least K
transmitted packets, Gaussian Elimination (GE) could be used
especially when the value of K is small. The GE algorithm
transforms the decoding matrix G into row-echelon form [13].
The rank of the transformed matrix, which is equal to the rank
of the original decoding matrix, can be obtained by inspecting
the number of non-zero rows within the echelon form. If the
rank is K, that is, if G is a full-rank matrix, the K source
packets can be successfully recovered.

GE and schemes based on Belief Propagation (BP) [14]
experience a large spike in computation when K transmit-
ted packets are received. On-the-Fly Gaussian Elimination
(OFGE) [15] manages to mitigate the decoding delay and
computational complexity of GE by invoking an optimized tri-
angulation process every time a packet is received. The OFGE
decoder spreads computation out over each packet arrival and
the decoding matrix G is already in partial triangular form by
the time the K-th transmitted packet is received.

Both GE and OFGE have been designed to perform full-rank
decoding. As a result, if the rank of G is less than K, that is,
if the decoding matrix is rank-deficient, some source packets
might still be decodable but GE or OFGE will not necessarily
identify them. A modified version of OFGE, which we refer
to as OFGE for Progressive Decoding (OFGE-PD), was pre-
sented in [12]. Similarly to OFGE, OFGE-PD also comprises a
triangulation stage and a back-substitution stage. An additional
stage, called the XORing phase, enables OFGE-PD to decode
source packets from rank-deficient decoding matrices at the
expense of increased computational complexity.

We revisited the original GE algorithm and we amalga-
mated the OFGE principle of initiating the decoding process
whenever a packet is received. A sketch of the proposed
algorithm, referred to as Gaussian Elimination for Progressive
Decoding (GE-PD), is presented in Algorithm 1. To facilitate
the description of GE-PD, we introduced function Degree,
which determines the number of non-zero elements in a
row vector; function Diag, which generates a row vector
containing the elements of the main diagonal of a matrix;
function LeftmostOne, which returns the position of the
first non-zero entry in a row vector; and function Swap,
which swaps two rows in a matrix. The decoding matrix G
is initially set equal to the K × K zero matrix. Recall that
G[n] represents the n-th row of G, while G[i][j] denotes
the entry of G in the i-th row and j-th column (equivalent to
gi,j). We note that, depending on the adopted programming
language, the code can be further optimized and the execution
speed of GE-PD improved.

Algorithm 1 Gaussian Elimination for Progressive Decoding
1: Receive new 1×K coding vector R
2: Set entries in R that correspond to decoded packets to 0
3: if (Degree(R) > 0) then
4: G[K + 1]← R
5: for i = 1 to K do
6: one in diag ← TRUE
7: if (G[i][i] = 0) then
8: one in diag ← FALSE, j ← i + 1
9: repeat

10: if LeftmostOne(G[j]) = i then
11: Swap(G[i],G[j])
12: one in diag ← TRUE
13: end if
14: j ← j + 1
15: until (j > K + 1) or one in diag
16: end if
17: if one in diag then
18: for j = 1 to (K + 1) do
19: if (j 6= i) and (G[j][i] = 1) then
20: G[j]← G[j]⊕G[i]
21: end if
22: end for
23: end if
24: end for
25: G← BackSubstitution(G, K)
26: G← Top K rows of G
27: end if

Function BackSubstitution(G, K)
1: for i = K to 1 step −1 do
2: if Degree(G[i]) = 1 then
3: j = LeftmostOne(G[i])
4: for k = 1 to K do
5: if k 6= i then G[k][j]← 0
6: end for
7: end if
8: end for
9: return G

As line 2 in Algorithm 1 indicates, whenever a new coding
vector R is received, it is updated so that any previously de-
coded source packets are not considered again in the decoding
process. If the updated row-vector R still contains non-zero
entries, it is appended to the bottom of the decoding matrix
G (lines 3-4). Lines 6-16 rearrange the rows of G in an
effort to transform it into an upper triangular matrix. Lines 17-
23 aim to transform G into row-echelon form by ensuring
that each non-zero element on the main diagonal of G is
the only non-zero element in that column. Finally, function
BackSubstitution is called in line 25 to establish which
source packets are decodable. The efficiency and accuracy of
GE-PD are investigated in the following section.

IV. RESULTS AND DISCUSSION

This section compares the proposed GE-PD with OFGE-PD,
OFGE and GE in terms of computational cost and capability
of progressively recovering source packets. The decoding
algorithm that achieves the best accuracy but requires the
least computational time is identified. It is then used to obtain
simulation results, which are compared to theoretical predic-
tions in order to validate the derived analytical expressions
for systematic NC. The performance of systematic NC is then
contrasted to that of straightforward NC and OU transmission,
and the suitability of each scheme for progressive packet
recovery is discussed.

77

0 5 10 15 20 25 30
0

1

2

3

4

5

6

T
im

e
p

er
 S

im
u

la
ti

o
n

 (
se

c)

K

OFGE-PD

OFGE

GE-PD

GE

Fig. 1. Computational cost of the decoding schemes for different numbers
of source packets (K = 1, . . . , 30).

A. Assessment of GE-PD

Fig. 1 compares the computational cost of the considered
decoding schemes. Recall that GE-PD and OFGE-PD are
modified versions of GE and OFGE, respectively, which have
been adapted to recover source packets from rank-deficient
decoding matrices, as described in Section III. The computa-
tional cost has been expressed in terms of the time required for
a decoder to recover the full sequence of K source packets
when straightforward NC is applied and channel conditions
are perfect, i.e. p = 0. The plotted results were obtained on
a simulation platform equipped with an Intel Core i7-3770
processor and 8 GB of RAM. As expected [15], Fig. 1 shows
that OFGE yields substantial computational savings over the
conventional GE. However, the inclusion of progressive de-
coding capabilities in OFGE adds noticeable overhead to the
decoding process. We observe that the computational cost of
the resultant OFGE-PD increases rapidly for large values of
K. On the other hand, GE-PD is not only more efficient than
the original GE but also executes faster than OFGE.

Straightforward NC for K = 20 source packets and perfect
channel conditions were also assumed for the performance
assessment of the four decoding schemes. Fig. 2 depicts the
probability of each scheme recovering at least half (M = 10)
or all (M = 20) of the source packets when N packets have
been transmitted. As we see, OFGE is not optimized for
recovering a fraction of the source message in contrast to
OFGE-PD, which requires a smaller number of transmitted
packets to recover half of the source message but at a higher
computational cost. A fact worthy of attention is that the
decoding accuracy of GE is matched by that of GE-PD, which
exhibits a computational cost as low as that of OFGE. For this
reason, the proposed GE-PD was the decoding algorithm of
choice for the simulation of the considered NC-based schemes.

B. Performance Validation of Systematic NC

In order to validate the derived analytical expressions for
the decoding probability of systematic NC, a comparison
between theoretical and simulation results was carried out.
We considered a source message comprising K = 40 packets,

17 18 19 20 21 22 23 24 25 26 27 28
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
ec

o
d

in
g

 P
ro

b
ab

il
it

y

N

OFGE-PD M = 10

OFGE-PD M = 20

OFGE M = 10

OFGE M = 20

GE-PD M = 10

GE-PD M = 20

GE M = 10

GE M = 20

Fig. 2. Performance comparison of the decoding schemes for K = 20.

20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N

P
K
,M
(N

)

Theory (p = 0.1)

Simulations (p = 0.1)

Theory (p = 0.15)

Simulations (p = 0.15)

Theory (p = 0.3)

Simulations (p = 0.3)

(a) M = 20

40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N

P
K
(N

)

(b) M = K = 40

Fig. 3. Performance validation of systematic NC for K = 40, different values
of p and (a) partial recovery (M = 20) or (b) full recovery (M = 40) of the
source packets.

which are encoded using a systematic NC and transmitted over
a packet erasure channel with p = {0.1, 0.15, 0.3}.

Fig. 3a shows that expression (14) for PK,M (N) accu-
rately predicts the probability of decoding at least half of
the source message (M = 20). Similarly, expression (7) for
PK(N) matches the simulated results for decoding the entire
source message (M = 40), as reported in Fig. 3b. The excel-
lent agreement between theory and simulation establishes the
validity of the theoretical analysis. It also demonstrates that
the proposed GE-PD is both efficient and accurate, considering
that the number of decoded source packets matches the one
predicted by the theoretical model.

C. Evaluation of Systematic NC for Progressive Decoding

Fig. 4 shows the probability that a receiver employing sys-
tematic NC recovers at least half (M = K/2) or all (M = K)
of the source packets, when N packets have been transmitted.
The performance of systematic NC is contrasted with that
of OU transmission and straightforward NC, referred to here
as SF NC for brevity. Two scenarios have been considered;
Fig. 4a depicts the performance of the three transmission
schemes when K = 20, while Fig. 4b presents plots for
the case of K = 40. In both scenarios, the packet erasure
probability has been set to p = 0.1.

78

We observe in Fig. 4a that OU transmission allows the
recovery of at least half of the source message for a small value
of N . However recovery of the whole source message requires
a large number of transmitted packets. For example, for a
target probability of P̂ = 0.7, a system using OU transmission
can retrieve M = 10 source packets if just N̂ = 11 packets
are transmitted. On the other hand, recovery of all M = 20
source packets requires the transmission of at least 39 packets.
In other words, ∆N = 39− 11 = 28 packets need to be
transmitted, on average, to allow recovery of the whole source
message, when half of the message has already been retrieved.
As we see in Fig. 4b, a larger value of K will markedly
increase the value of ∆N .

By contrast, SF NC incurs a significant delay in recovering
at least half of the source message but only a few extra
transmitted packets are required to obtain the entire message.
We observe in Fig. 4a that if P̂ = 0.7 then N̂ = 24 packets
are needed to reconstruct half of the message, while the
transmission of only ∆N = 1 additional packet is sufficient
for the decoding of the entire message.

As is apparent from Fig. 4a and Fig. 4b, systematic NC
combines the best performance characteristics of both OU
transmission and SF NC. We observe that the value of N̂
for recovering at least half of the source packets is as small
as that of OU transmission, while the required number of
transmitted packets for retrieving all of the source packets is
smaller than or similar to that of SF FC. The latter observation
confirms Proposition 2. Consequently, systematic NC is the
most appropriate of the considered transmission schemes for
progressive packet decoding, as it exhibits a high probability
of either partially or fully decoding the source message.

V. CONCLUSIONS

In this paper, we considered systematic random linear net-
work coding, obtained theoretical expressions that accurately
describe its decoding probability and proved that systematic
network codes exhibit a higher probability of decoding the
entirety of a source message than straightforward network
coding. We also proposed Gaussian elimination for Progressive
Decoding (GE-FD), which aims to recover source packets
as soon as one or more transmitted packets are successfully
delivered to a receiver. We demonstrated that GE-PD per-
forms similarly to the optimal theoretical decoder in terms
of decoding probability and also exhibits low computational
cost. Furthermore, we established that the decoding delay
characteristics of systematic network coding for both partial
and full recovery of source messages are notably better than
those of straightforward network coding.

ACKNOWLEDGMENT

This work was conducted as part of the R2D2 project, which
is supported by EPSRC under Grant EP/L006251/1.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network information
flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, Jul. 2000.

10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
ec

o
d
in

g
 P

ro
b
ab

il
it

y

N

OU Trans., M = 10

SF NC, M = 10

Sys. NC, M = 10

OU Trans., M = 20

SF NC, M = 20

Sys. NC, M = 20

(a) K = 20

20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
ec

o
d
in

g
 P

ro
b
ab

il
it

y

N

OU Trans., M = 20

SF NC, M = 20

Sys. NC, M = 20

OU Trans., M = 40

SF NC, M = 40

Sys. NC, M = 40

(b) K = 40

Fig. 4. Decoding probabilities as a function of N for p = 0.1 and (a) K = 20
or (b) K = 40.

[2] S. Zhang, S. C. Liew, and P. P. Lam, “Hot topic: Physical-layer network
coding,” in Proc. MobiCom, Los Angeles, USA, Sep. 2006.

[3] J. Heide, M. Pedersen, F. Fitzek, and T. Larsen, “Network coding for
mobile devices - Systematic binary random rateless codes,” in Proc.
IEEE ICC Workshops, Dresden, Germany, Jun. 2009.

[4] D. Lucani, M. Médard, and M. Stojanovic, “Systematic network coding
for time-division duplexing,” in Proc. IEEE ISIT, Austin, USA, Jun.
2010.

[5] J. Barros, R. Costa, D. Munaretto, and J. Widmer, “Effective delay
control in online network coding,” in Proc. IEEE INFOCOM, Rio de
Janeiro, Brazil, Apr. 2009.

[6] R. Prior and A. Rodrigues, “Systematic network coding for packet loss
concealment in broadcast distribution,” in Proc. ICOIN, Kuala Lumpur,
Malaysia, Jan. 2011.

[7] P. Saxena and M. Vázquez-Castro, “Network coding advantage over
MDS codes for multimedia transmission via erasure satellite channels,”
in Personal Satellite Services. Springer International Publishing, 2013,
vol. 123, pp. 199–210.

[8] O. Trullols-Cruces, J. Barcelo-Ordinas, and M. Fiore, “Exact decoding
probability under random linear network coding,” IEEE Commun. Lett.,
vol. 15, no. 1, pp. 67–69, Jan. 2011.

[9] W. Koepf, Hypergeometric Summation: An Algorithmic Approach to
Summation and Special Function Identities. Vieweg Verlag, 1998, p. 41.

[10] S. Roman, The Umbral Calculus. Academic Press, 1984, p. 29.
[11] S. Sesia, I. Toufik, and M. Baker, LTE - The UMTS Long Term Evolution:

From Theory to Practice. John Wiley & Sons, 2011.
[12] A. L. Jones, I. Chatzigeorgiou, and A. Tassi, “Performance assessment

of fountain-coded schemes for progressive packet recovery,” in Proc.
CSNDSP, Manchester, UK, Jul. 2014.

[13] J. Epperson, An Introduction to Numerical Methods and Analysis,
2nd ed. John Wiley & Sons, 2013, ch. 7, pp. 420–427.

[14] W. Niu, Z. Xiao, M. Huang, J. Yu, and J. Hu, “An algorithm with
high decoding success probability based on LT codes,” in Proc. ISAPE,
Guangzhou, China, Nov. 2010.

[15] V. Bioglio, M. Grangetto, R. Gaeta, and M. Sereno, “On the fly Gaussian
elimination for lt codes,” IEEE Commun. Lett., vol. 13, no. 12, pp. 953–
955, Dec. 2009.

79

References

[1] A. L. Jones, I. Chatzigeorgiou, and A. Tassi, “Performance Assessment of
Fountain-coded Schemes for Progressive Packet Recovery,” in Proc. 9th Int.
Symp. on Commun. Syst., Networks and Digital Signal Process. (CSNDSP),
Manchester, United Kingdom, Jul. 2014.

[2] M. Bogino, P. Cataldi, M. Grangetto, E. Magli, and G. Olmo, “Sliding-
Window Digital Fountain Codes for Streaming of Multimedia Contents,” in
IEEE Int. Symp. on Circuits and Syst. (ISCAS), May 2007, pp. 3467–3470.

[3] P. Cataldi, M. Grangetto, T. Tillo, E. Magli, and G. Olmo, “Sliding-Window
Raptor Codes for Efficient Scalable Wireless Video Broadcasting With Un-
equal Loss Protection,” IEEE Trans. Image Process., vol. 19, no. 6, pp. 1491–
1503, Jun. 2010.

[4] V. Bioglio, M. Grangetto, R. Gaeta, and M. Sereno, “On the fly Gaussian
elimination for LT codes,” IEEE Commun. Lett., vol. 13, no. 12, pp. 953–955,
Dec. 2009.

[5] L. L. Peterson and B. S. Davie, Computer Networks: A Systems Approach,
5th ed. Elsevier, 2012, ch. 2, pp. 102–106.

[6] A. F. Molisch, Wireless Communications. Chichester, 2011, ch. 4, pp. 47–51.

[7] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A Digital Fountain
Approach to Reliable Distribution of Bulk Data,” in SIGCOMM Comput.
Commun. Rev., vol. 28, no. 4, Oct. 1998, pp. 56–67.

[8] M. Luby, “LT Codes,” in Proc. of the 43rd IEEE Symp. on Found. of Comput.
Sci., Washington, DC, USA, Nov. 2002, pp. 271–280.

[9] A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, no. 6, pp.
2551–2567, Jun. 2006.

[10] M. Luby, M. Watson, T. Gasiba, T. Stockhammer, and W. Xu, “Raptor
codes for reliable download delivery in wireless broadcast systems,” in 3rd
IEEE Consumer Commun. Networking Conf., vol. 1, Jan. 2006, pp. 192–197.

[11] Digital Video Broadcasting (DVB); IP Datacast over DVB-H: Content Deliv-
ery Protocols, ETSI Techn. Spec., Rev. 1.3.1, Jun. 2009.

[12] A. L. Jones, I. Chatzigeorgiou, and A. Tassi, “Binary Systematic Network
Coding for Progressive Packet Decoding,” in 2015 IEEE Int. Conf. Commun.
(ICC), London, United Kingdom, Jun. 2015, submitted for publication.

80

References

[13] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the Scalable Video
Coding Extension of the H.264/AVC Standard,” IEEE Trans. Circuits Syst.
Video Technol., vol. 17, no. 9, pp. 1103–1120, Sep. 2007.

[14] D. J. C. MacKay, “Fountain codes,” IEE Proc. Commun., vol. 152, no. 6, pp.
1062–1068, Dec. 2005.

[15] J. Epperson, An Introduction to Numerical Methods and Analysis, 2nd ed.
John Wiley & Sons, 2013, ch. 7, pp. 420–427.

[16] O. Trullols-Cruces, J. Barcelo-Ordinas, and M. Fiore, “Exact Decoding Proba-
bility Under Random Linear Network Coding,” IEEE Commun. Lett., vol. 15,
no. 1, pp. 67–69, Jan. 2011.

[17] S. H. Friedberg, A. J. Insel, and L. E. Spence, Linear Algebra, 4th ed. Pear-
son, 2002, ch. 3, pp. 152–167.

[18] V. Bryant, Aspects of Combinatorics: A Wide-Ranging Introduction. Cam-
bridge University Press, 1992, ch. 1, pp. 1–13.

[19] M. Spiegel, Mathematical Handbook of Formulas and Tables, ser. Schaum’s
Outline. McGraw-Hill, 1968, ch. 1, p. 3.

[20] S. Kim, K. Ko, and S. Chung, “Incremental Gaussian elimination decoding of
raptor codes over BEC,” IEEE Commun. Lett., vol. 12, no. 4, pp. 307–309,
Apr. 2008.

[21] W. Niu, Z. Xiao, M. Huang, J. Yu, and J. Hu, “An algorithm with high de-
coding success probability based on LT codes,” in 9th Int. Symp. on Antennas
Propagation and EM Theory (ISAPE), Nov. 2010, pp. 1047–1050.

[22] N. Rahnavard, B. Vellambi, and F. Fekri, “Rateless codes with unequal error
protection property,” IEEE Trans. Inf. Theory, vol. 53, no. 4, pp. 1521–1532,
Apr. 2007.

[23] C. Studholme and I. Blake, “Windowed erasure codes,” in IEEE Int. Symp.
on Inform. Theory, Jul. 2006, pp. 509–513.

[24] D. Vukobratović, V. Stanković, D. Sejdinović, L. Stanković, and Z. Xiong,
“Scalable Video Multicast Using Expanding Window Fountain Codes,” IEEE
Trans. Multimedia, vol. 11, no. 6, pp. 1094–1104, Oct. 2009.

[25] D. Vukobratović and V. Stanković, “Unequal Error Protection Random Linear
Coding Strategies for Erasure Channels,” IEEE Trans. Commun., vol. 60,
no. 5, pp. 1243–1252, May 2012.

[26] G. L. Mullen and D. Panario, Handbook of Finite Fields, ser. Discrete Math-
ematics and Its Applications. CRC Press, 2013, ch. 2, pp. 13–14.

[27] D. Vukobratović, C. Khirallah, V. Stanković, and J. Thompson, “Random
Network Coding for Multimedia Delivery Services in LTE/LTE-Advanced,”
IEEE Trans. Multimedia, vol. 16, no. 1, pp. 277–282, Jan. 2014.

[28] Fraunhofer HHI, “JSVM Reference Software,” http://bit.ly/V9lQ5M, 2014,
[Online; accessed 10th Aug. 20014].

81

http://bit.ly/V9lQ5M

	Contents
	List of Figures
	List of Tables
	Code Listings
	1 Introduction
	1.1 Objectives

	2 Fundamentals of Fountain Coding
	2.1 Encoding Process of a RLFC
	2.2 Decoding Process of a RLFC
	2.3 Theoretical Performance of a RLFC
	2.3.1 Including the possibility of a null coded packet
	2.3.2 Without the possibility of a null encoded packet
	2.3.3 Implementation of the Expression
	2.3.4 End-to-end probability of packet recovery

	2.4 Luby Transform Codes
	2.4.1 Iterative Belief Propagation
	2.4.2 Sparsity Optimisation

	2.5 Summary

	3 Introduction to the Encoding Schemes
	3.1 Conventional Fountain Codes
	3.2 Systematic Fountain Codes
	3.2.1 Theoretical probability of recovering every source packet
	3.2.2 Probability of linear independence of each case
	3.2.3 Probability of recovering at least M packets

	3.3 Sliding-Window Fountain Codes
	3.3.1 Optimising the window's parameters

	3.4 Ordered Uncoded Scheme
	3.4.1 Theoretical Probability of Recovering Every Source Packet
	3.4.2 Probability of recovering exactly m source packets
	3.4.3 Probability of Recovering At Least M Packets

	3.5 Summary

	4 Decoding Schemes for Progressive Recovery
	4.1 On-the-fly Gaussian Elimination
	4.1.1 Original Algorithm
	4.1.2 Adapted Algorithm

	4.2 Gaussian Elimination
	4.3 Comparison of Decoding Schemes
	4.4 Summary

	5 Performance Assessment of Layerless Schemes
	5.1 Metric Framework
	5.2 Layerless Scheme Comparison
	5.3 Summary

	6 Performance Assessment of Layered Schemes
	6.1 Introduction to NOW and EW Strategies
	6.1.1 Non-Overlapping Window
	6.1.2 Expanding Window

	6.2 Encapsulation of layerless encoding schemes
	6.2.1 Conventional Fountain Code
	6.2.2 Systematic Fountain Code
	6.2.3 Sliding Window Fountain Code
	6.2.4 Ordered Uncoded

	6.3 Layered Scheme Comparison
	6.3.1 Progressive Layer Recovery using NOW
	6.3.2 Progressive Layer Recovery using EW
	6.3.3 Entire Layer Recovery using NOW
	6.3.4 Entire Layer Recovery using EW
	6.3.5 Entire Source Message Recovery using Both Schemes

	6.4 Summary

	7 Conclusion
	7.1 Individual Contribution
	7.2 Areas for Future Work

	Appendix A Conference Paper: Performance Assessment of Fountain-coded Schemes for Progressive Packet Recovery
	Appendix B Conference Paper: Binary Systematic Network Coding for Progressive Packet Decoding
	References

