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Abstract

We apply an inverse problem approach to locating a known gas source in a desert setting from simultaneous

measurements of gas concentration and wind data. We use a random search algorithm with simulated annealing to

generate candidate distributions of source strengths and positions. These distributions are then assessed by means of a cost

function, which quantifies the degree to which the postulated source distribution accounts for the measured gas

concentrations. We present results from using three cost functions with differing regularisation terms. We assess the

robustness of these and the differing regularisation terms by the progressive addition of random noise and systematic

offsets to the concentration data. We show that for our application, the best reconstructions are obtained by using a

multiplicative regularisation parameter defined to minimise the total gas emissions.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Numerous gas dispersion models exist that seek
to predict gas concentrations resulting from a
known source dispersing into the atmosphere.
However, the inverse of this process, locating an
unknown gas source from a measurement of
concentration is ambiguous: a small source close
to the measurement location can give the same
concentration as a large source further away. This
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ambiguity can be reduced by making multiple
measurements of gas concentration at different
positions and/or under differing wind conditions.
Such an approach, combined with inverse disper-
sion techniques, has been used to estimate gas
emissions and source locations for agricultural
settings (Flescha et al., 2005) and land-fills (Lehning
et al., 1994).

The increasing difficulty of finding new oil and
gas reserves has prompted the development of
several novel prospecting tools, particularly those
targeted at frontier exploration: where large areas
must be screened prior to more detailed investiga-
tion. Examples of such techniques include searching
.
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Position Concentration Wind Wind SD of SD of

(No.) (Kg/m3) Directio n Speed Horizonta l Vertical

(o) (m/s) Wind Wind

Directio n Directio n

(o) (o)

82 1.17E-09 163.94 3.84 10.13 5.11

83 1.30E-09 177.77 5.66 11.26 2.37

84 2.62E-09 159.05 5.33 15.07 2.58

Fig. 1. A sample of 1min averaged data recorded at three

locations.
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satellite and airborne images for subtle signs of oil
on the sea surface (MacDonald et al., 1996) and
stimulation of fluorescence in these oil films by
airborne lasers (Martin and Cawley, 1991). Another
approach is based on the well-known fact that all
reservoirs leak some hydrocarbons to the surface
(Horvitz, 1985; Schumacher, 1999), and of these
thermogenic ethane provides a useful tracer. Hirst
et al. (2004) describes how measurements of atmo-
spheric ethane concentration can be used to
remotely locate ground-level sources of ethane
escaping into the atmosphere. These ethane see-
pages are evidence of subsurface hydrocarbon
systems that might be associated hydrocarbon
accumulations.

Using a highly sensitive atmospheric ethane
sensor based on laser diode absorption spectroscopy
described fully by Gibson et al. (2002), with a 3D
ultra-sonic anemometer we have carried out multi-
ple surveys in the Middle East, each of which
covered multiple hundreds of square kilometres.
However, to reliably interpret these data, a verified
and robust algorithm is needed to determine the
positions and strengths of the sources responsible
for the observed data. To that end, the reconstruc-
tions within this paper were produced using data
collected from a single calibrated gas source at a
known location. This survey site was a flat desert
location meaning that the wind field could be
assumed consistent over the area of interest. The
source comprised a continuously weighed cylinder
of ethane with a regulated release rate of 5 kg h�1.
We used a 200m diameter network of perforated
pipes to distribute the gas to simulate a diffuse area
source. The gas concentrations were measured at a
height of 5m above the ground collocated with the
anemometer at seven downwind locations. These
locations were 2–5 km downwind of the release in a
North West direction. Gas concentration and wind
measurements were made for a period of at least
15min, before moving to the next location. The
whole measurement sequence was completed over
4 h from noon i.e. during the most stable wind
conditions. It is normal when using a Gaussian
plume model to average the short timescale data
into bins, the duration of which is a significant
fraction of the time of flight from source to
measurement location (Gifford, 1976). However,
under the stable wind conditions we experienced in
the desert we found that a 1min bin time was a
reasonable compromise between representative data
and data collection rate. Hence the 1 s data were
averaged into 1min bins to give approximately 100
measurements, each comprising: gas concentration,
the average wind speed and direction, along with
horizontal and vertical standard deviations of wind
direction. These deviations in wind direction char-
acterise the growth in the width and height of the
gas plume with distance and were averaged over the
whole data set at each location (15min). A
representative example of the 1min data for three
locations is given in Fig. 1. Based upon the
reproducibility of the gas sensor (when observing
a fixed concentration) we estimate the standard
deviation of concentration measurements averaged
over 1min is less than 0.2 ppb.

2. Inverse problems

Given a known gas source and wind field we
could calculate the expected gas concentration for
any downwind location. However, given a down-
wind concentration measurement and knowledge of
the wind field, the location of the source is
ambiguous. Non-inverting problems of this type
are termed inverse problems: problems that can be
solved in one direction but for some physical reason
cannot be solved in the opposite direction. Such
problems are widely encountered in several fields,
most typically with determining an enhanced
reconstruction of an object from a series of low
quality images (Arridge, 1999). In all such inverse
problems the aim is to infer the unknown state from
measured consequences of that state. In the case of
gas dispersion, the unknown state is the gas source
distribution of strengths and locations; and the
measured consequences are the gas concentrations
for the associated wind conditions and measure-
ment locations. Our aim is to find the source
distribution that will generate predicted concentra-
tions closest to those actually measured.
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Gas dispersion is a complicated phenomenon
with numerous physical processes active at different
length scales (Draxler, 1976) in most experimental
situations access to wind field data is limited,
typically comprising a very small number of mea-
surement locations. In common with much earlier
work (Hirst et al., 2004; Gifford, 1976) we employ a
simple Gaussian plume dispersion model which can
be implemented using a single location wind speed
and direction measurement. Within our numerical
model we divide the 8 km� 8 km survey area into a
16� 16 grid, with each cell, j, containing a central
diffuse source of unknown strength Sj. Each of
these M sources gives rise to a downwind gas
concentration approximated by a Gaussian plume
model (Gifford, 1976), see Fig. 2, and the predicted
concentration is the sum over all the gas sources in
the grid of cells. For the ith measurement of mass
concentration we have

Ci ¼
XM
j¼1

Sj

pV iswi
shi

exp �
1

2

Dwi

swi

� �2
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where Vi is the wind velocity at the time and
location of the ith measurement, Dwi

and Dhi
are the

offset from the plume centre, swi
is the width of the

Gaussian plume and shi
is the height in the plume.

Both swi
and shi

are length measurements and are
calculated using the angular standard deviations of
the wind direction in both the horizontal, ywi

, and
vertical, yhi

, directions, respectively,

swi
¼ ywi

zþ k, (2)

shi
¼ yhi
ðzþ kÞ, (3)

where z is the distance from the source position, j, to
the measurement location, i, and we have approxi-
mated the near field concentration effects of diffuse
sources by adding a constant, k, to these plume
width terms, where k is in units of cell size.
Δ
C

Δ i
i hi

Fig. 2. The Gaussian
There are many search algorithms that could be
used to identify the combination of source strengths
and locations that best predict the measured
concentrations. We employ an iterative direct search
algorithm (Seldowitz et al., 1987) to postulate
different source distributions. Within each iteration,
a new postulated source distribution is generated by
assigning a random source strength to a randomly
selected cell, j. The predicted concentrations arising
from the new set of postulated sources are then
calculated from using the Gaussian plume model.
The new postulated source distribution is numeri-
cally assessed by evaluating the chosen cost func-
tion, En, giving a single numerical value reflecting
the closeness of the predicted concentrations to
those actually measured. Typically, En would be
defined such that a closer match between observed
and predicted concentrations gives a lower value of
En. The new postulated source value, Sj, is accepted
or rejected depending on whether the corresponding
value of En is reduced or not. Repeated iterations
minimise the value of En and result in a source
distribution that best accounts for the concentra-
tions measured. An obvious candidate cost function
would be that based solely on the predicted and
measured concentration w2, for which

En ¼
w2

N
¼

1

N

XN

i¼1

jCmi
� Cei

j2

s2i
. (4)

We note that an accurate determination of w2=N

requires a correspondingly accurate knowledge of
s2i which encompasses both the noise associated
with the measurement technique and errors in the
forward model. In Section 4 we will discuss how to
estimate si.

3. Simulated annealing

If we calculated the cost function over the full
range of M source strengths, we would obtain an
M dimensional landscape where each axis repre-
sented the range of emissions from the source in a
V

Sj

θw
i

V
θ

h i

plume model.
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Fig. 3. A w2=N reconstruction compared to the known source

distribution (the expected reconstruction for the area), the

cylinder release area is shown with colour indicating ethane flux,

with the scale shown.
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particular cell. Ideally, the resulting cost function
landscape would contain a clearly identified global
minimum, corresponding to the optimum distribu-
tion of M source strengths and locations. However,
typically, this global minimum will be surrounded
by local minima, to which the algorithm will
converge to. We avoid this by refining the search
algorithm to occasionally accept postulates that
increase En, thereby allowing escape from a local
minimum. The technique is referred to as simulated
annealing and was developed by analogy with
thermodynamic cooling (Press et al., 2002). The
criterion for accepting an increase in the cost
function is based by thermodynamic analogy on
the Boltzman probability distribution,

Rð0; 1Þo exp �
En � En�1

Tn

� �
, (5)

where Rð0; 1Þ is a random number between zero and
one, En is the value of the cost function for the new
postulate, En�1 is the value of the cost function at
the last accepted change and Tn is the temperature
or cooling parameter, which is reduced after each
iteration. If EnoEn�1 that change is always
accepted, however, if En4En�1 the change is
sometimes accepted dependent on whether
expðEn � En�1=TÞ is greater than the random
number, R. Whether or not this holds true depends
on the value of T. The value of T is reduced after
each iteration according to

Tn ¼ Tn�1ð1� eÞ. (6)

The initial iterations, corresponding to high values
of T, accept most changes whether En is improved
or not. As T is reduced fewer changes are accepted.
Since the parameter T is described as a temperature
it is usual to describe the rate of cooling in terms of
thermal mass. For our reconstructions of source
strengths on a 16� 16 grid we typically run
upwards of 4 million iterations during which time
the annealing parameter, T, is progressively reduced
to zero.

4. Choice of cost function

Although En ¼ w2=N is a useful general indicator
of the closeness of two data sets; for our application
a simple minimisation of w2=N generally leads to an
unrealistic set of source strengths. This arises
because it is possible to over minimise w2=N: in
effect one is fitting artefacts and noise in the data,
(Press et al., 2002). To counter this it is usual to
incorporate a regularisation term into the cost
function. This is chosen to favour combinations of
source strengths that correspond to physically
realistic values and/or behaviours. The most
obvious restriction is that the gas sources should
be positive. This constraint is inherent in our
approach because when postulating a new source
strength, only positive values are considered. An-
other constraint is that in keeping with geophysical
expectations we restrict the maximum source
strength, thereby defining the limit of the parameter
space. Our main goal within this paper is to
compare the effects of different regularisation terms
within the cost function. We seek a regularisation
scheme that gives the most accurate reconstruction
and is robust to likely sources of noise or error in
the concentration data. The accuracy of a recon-
struction can be judged both in terms of the
predicted source location and source strength.
Within our application it is the source position
which is of most significance.

It is important to appreciate that the choice of
cost function is independent of the method of
minimisation. Providing we successfully minimise
En then it is the choice of cost function alone that
determines the distribution of source strengths and
locations the algorithm identifies.

Initially we used En ¼ w2=N as the cost function.
Fig. 3 shows the corresponding En ¼ w2=N recon-
struction compared to the known release rate and
position. Although the cylinder is approximately
located this minimisation gives rise to strong
sources at positions distant from the source loca-
tion. Not only is this unlikely, but in our specific
case of a known source, it is simply wrong. This
illustrates the consequence of minimising w2=N,
when the system is under-determined.

Many different regularisation terms are possible,
ranging from those that have a statistical rationale
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Fig. 4. Reconstructions shown for each cost function for a range

of l from l ¼ 0 (the w2=N solution) to a value which increases

w2=N by a factor 1þ
ffiffiffiffiffiffiffiffiffi
2=N

p
. The location of the release is

marked with an �.
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to those that are more arbitrary and depend on the
specific nature of the problem. Of the former
perhaps the best known are those based on entropy:
a maximum entropy cost function aims to minimise
the disorder of the source distribution favouring
distributions that are smooth. An alternative
approach is based solely on the smoothness of the
source strength distributions. A third, and distinctly
different approach, is based on minimising the total
emission rate. The maximum entropy cost function
(maxent) is given by (Press et al., 2002)

EðmaxentÞ ¼
w2

N
þ l

XM
j¼1

Sj ln
SjPM
j¼1Sj

 !
, (7)

where l is a factor that determines the relative
importance of w2=N and the regularisation term.
However, this requires an accurate knowledge of the
noise distribution, s, otherwise w2 itself is subject to
an error, discussed in Section 2. We estimate the
appropriate value of s by simply running an initial
w2=N reconstruction for a given data set and from
this reconstruction calculating the standard devia-
tion of the residuals, effectively normalising w2=N to
unity. For the entropy regulariser there is a strong
statistical argument for setting l to bring w2=N to
within a specified statistical range, 1�

ffiffiffiffiffiffiffiffiffi
2=N

p
(Press

et al., 2002).
The maxent regularisation term is insensitive to

the interchange of two or more sources. An
alternative regularisation function is based on the
smoothness of the resulting reconstruction and is
sensitive to interchange of sources,

EðsmoothÞ ¼
w2

N
þ l

XM
j¼1

ðSj � hSji8Þ
2

aþ ðSj � hSji8Þ
2
, (8)

where each source strength is compared to the
average of the eight sources in the grid cells
immediately adjacent to j denoted by hSji8. This
favours reconstructions that have strong correla-
tions between neighbouring sources. Again l
dictates the weighting between w2=N and the
regulariser. a has a similar effect on the function
to that of l but also prevents singularities in the cost
function. Amongst reconstructions with the same
value of w2=N, regularisation by either entropy or
smoothness favours smooth reconstructions.

Another cost function we have used is based on
our expectation that the sum of the sources be small
(Hirst et al., 2004). Rather than implementing this
as an additive term to the cost function, we used the
total flux as a multiplicative factor,

EðfluxÞ ¼
w2

N
l
XM
j¼1

Sj þ
1

l

� �
. (9)

Again l sets the degree of regularisation and also
ensures the multiplicative factor cannot fall below
unity.

We will now compare the performance of these
three cost functions when applied to invert data for
the known release. In all the reconstructions shown
in this paper we have subtracted 0.7 ppb from all the
concentration measurement data; this is to remove
the effect of the background atmospheric ethane
concentration at this latitude and time of year
(Rudolph, 1995). We must next determine the
optimum value of l for each of the cost functions.
This will be the value of l that gives the
reconstruction closest to the known result for that
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cost function. Fig. 4 shows reconstructions obtained
using each of our three cost functions for a range of
values of l, l is increased from 0 (i.e. the w2=N

solution) to the value of l which results in an
increase of w2=N by a factor 1þ

ffiffiffiffiffiffiffiffiffi
2=N

p
.

When using the optimised l values, all three cost
functions approximately locate the cylinder release.
However, the smoothing cost function results in the
source being, incorrectly, spread over adjacent cells.
Next we shall establish which of the cost functions is
most robust to likely sources of experimental
uncertainty: namely added noise and baseline
offsets in the concentration data.
Fig. 5. Reconstructions for each cost function with increasing

added noise, colour indicates ethane flux at source. The first row

shows the reconstructions based on the original data. Subsequent

rows show reconstructions for each of the cost functions as

increasing amounts of random noise are added to the concentra-

tion data. The location of the release is marked with an �.
5. Noise sensitivity

We are able to test the robustness of each cost
function by modifying our controlled release data to
include Gaussian noise added to the measured
concentrations. In Fig. 5 we see that even adding
up to 1.2 ppb of noise to the intrinsic sensor noise of
0.2 ppb does not prevent reasonable reconstruction
of the gas source. This significant level of noise
immunity arises because multiple measurements
under similar wind directions are taken at each
measurement location. As might be expected, we see
that using the smoothing regularisation spreads the
Fig. 6. Reconstructions for each cost function with increasing

added concentration offsets, colour indicates ethane flux at

source. The first row shows the reconstructions based on the

original data. Subsequent rows show reconstructions for each of

the cost functions as increasing amounts of added offset are

added to the concentration data. The location of the release is

marked with an �.



ARTICLE IN PRESS
L.C. Thomson et al. / Atmospheric Environment 41 (2007) 1128–11341134
reconstructed source over the neighbouring grid
cells. The maxent and flux minimiser regularisation
functions perform similarly with the latter finding
the best overall reconstruction that achieved by
adding 1.2 ppb of noise, see Fig. 5.

6. Offset sensitivity

We also want the reconstruction results to be
robust to offsets in measured concentrations. This is
particularly relevant because the exact background
ethane concentration in the atmosphere is uncertain
and subject to daily variation. In order to test
robustness to offsets, we add a concentration offset
to the data collected from the controlled release and
calculate the reconstructions using each of the cost
functions. Fig. 6 shows reconstructions for each of
the three cost functions with progressively increas-
ing offsets added to the concentration measure-
ments. From the reconstructions shown in Fig. 6 we
draw similar conclusions to those made in relation
to the addition of Gaussian noise, namely the flux
minimzer cost function is the most robust.

7. Conclusion

We have shown that we can locate (and estimate
the release rate of) a source of ethane dispersing in a
desert environment by inverting the gas dispersion
process. We have used a random search algorithm
in conjunction with simulated annealing to evaluate
the performance of three cost functions. We have
shown that despite the addition of Gaussian noise
or concentration offsets to the data our algorithm
continues to locate the gas source with each of our
three cost functions. For our application the cost
function minimising the total source emissions is the
most robust to the experimentally relevant effects of
increased noise or concentration offsets in the
measured data.
References

Arridge, S.R., 1999. Optical tomography in medical imaging.

Inverse Problems 15 (2).

Draxler, R.R., 1976. Determination of atmospheric diffusion

parameters. Atmospheric Environment 10, 99–105.

Flescha, T., Wilsona, J.D., Harperb, L.A., Crenna, B.P., 2005.

Estimating gas emissions from a farm with an inverse-

dispersion technique. Atmospheric Environment 39 (27),

4863–4874.

Gibson, G., Monk, S.D., Padgett, M.J., 2002. A field-portable,

laser-diode spectrometer for the ultra-sensitive detection of

hydrocarbon gases. Journal of Modern Optics 49 (5–6),

769–776.

Gifford, F.A., 1976. Lectures on Air Pollution and Environ-

mental Impact Analyses. American Meterological Society.

Hirst, B., Gibson, G., Gillespie, S., Archibald, I., Podlaha, O.,

Skeldon, K.D., Courtial, J., Monk, S., Padgett, M., 2004. Oil

and gas prospecting by ultra-sensitive optical gas detection

with inverse gas dispersion modelling. Geophysical Research

Letters 31.

Horvitz, L., 1985. Geochemical-exploration for petroleum.

Science 229, 821–827.

Lehning, M., Chang, D.P.Y., Shonnard, D.R., Bell, R.L., 1994.

An inversion algorithm for determining area-source emissions

from downwind concentration measurements. Journal of Air

and Waste Management Association 44 (10), 1204–1213.

MacDonald, I.R., Reilly, Jr., J.R., Best, S.E., Venkataramaiah,

R., Guinasso, Jr., N.L., Amos, J., 1996. A remote sensing

inventory of active oil seeps and chemosynthetic communities

in the northern Gulf of Mexico. In: Schumacher, D., Abrams,

M.A. (Eds.), Hydrocarbon Migration and its near-surface

expression, AAPG Mem., vol.66. pp. 27–37.

Martin, B.A., Cawley, S.J., 1991. Onshore and offshore

petroleum seepage: contrasting a conventional study in papua

new guinea and airborne laser fluorescing over the arafura

sea. The APEA Journal 31, 333–353.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.,

2002. Numerical Recipes in C++. Cambridge University

Press, Cambridge.

Rudolph, J., 1995. The tropospheric distribution and budget of

ethane. Journal of Geophysical Research 100 (D6),

11369–11382.

Schumacher, D., 1999. Exploring for Oil and Gas Traps,

American Association of Petroleum Geologists.

Seldowitz, M.A., Allebach, J.P., Sweeney, D.W., 1987. Synthesis

of digital holograms by direct binary search. Applied Optics

26 (14), 2788–2798.


	An improved algorithm for locating a gas source �using inverse methods
	Introduction
	Inverse problems
	Simulated annealing
	Choice of cost function
	Noise sensitivity
	Offset sensitivity
	Conclusion
	References


