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Abstract

We describe a method for detecting, locating and quantifying sources of gas emissions to the at-
mosphere using remotely obtained gas concentration data; the method is applicable to gases of
environmental concern. We demonstrate its performance using methane data collected from air-
craft. Atmospheric point concentration measurements are modelled as the sum of a spatially and
temporally smooth atmospheric background concentration, augmented by concentrations due to
local sources. We model source emission rates with a Gaussian mixture model and use a Markov
random field to represent the atmospheric background concentration component of the measure-
ments. A Gaussian plume atmospheric eddy dispersion model represents gas dispersion between
sources and measurement locations. Initial point estimates of background concentrations and source
emission rates are obtained using mixed `2-`1 optimisation over a discretised grid of potential source
locations. Subsequent reversible jump Markov chain Monte Carlo inference provides estimated val-
ues and uncertainties for the number, emission rates and locations of sources unconstrained by a
grid. Source area, atmospheric background concentrations and other model parameters, including
plume model spreading and Lagrangian turbulence time scale, are also estimated. We investigate
the performance of the approach first using a synthetic problem, then apply the method to real
airborne data from a 1600km2 area containing two landfills, then a 225km2 area containing a gas
flare stack.
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1. Introduction

There is growing interest in developing methods for detecting and locating sources of gas emissions
into the atmosphere. Greenhouse gases are of intense interest (e.g. [4, 35]). Other applications
include monitoring toxic gas emissions, locating explosives from their volatile emissions (e.g. [2]]),
mapping naturally occurring gas seeps for oil and gas exploration (e.g. [19]), identifying sources of
nuisance odours, and even understanding how moths are able to find mates by detecting pheromones
at concentrations corresponding to individual molecules (e.g. [38]). For greenhouse gases and oil
and gas exploration the goal is to locate sources and quantify emission rates. For explosives,
nuisance odours and moths, locating the source is sufficient!

The extensive literature on inversion (and the related field, compressive sensing, e.g. [9]) includes
contributions from the statistics, applied mathematics, electrical engineering and physics communit-
ies. [33] reviews the development and application of Monte Carlo methods for inverse problems
in the Earth sciences in general and geophysics in particular. [1] presents a method for large
scale reservoir modelling using Bayesian inversion of geo–electric resistivity data using reversible
jump Markov chain Monte Carlo. [39] reports Bayesian inversion to assess ecosystem responses
to elevated levels of atmospheric carbon dioxide. [3] considers Bayesian compressed sensing to
jointly reconstruct a set of magnetic resonance imaging from under sampled data. [21] suggests
that compressive sensing can be achieved more effectively using Bayesian inference at comparable
computational time. [24] discusses contaminant mapping using unmanned aerial vehicles navigated
by expert system. [37] reviews algorithms for sparse approximation.

[30] reviews source estimation methods for atmospheric releases of toxic agents, including forward
modelling (possibly using Bayesian inference) and backward transport modelling, emphasising the
need to assess uncertainties in characterisation of sources using atmospheric transport and disper-
sion models. [34] discusses early detection of the location and size of a contaminant release into
the atmosphere from a network of environmental sensors using a Gaussian plume forward model
with stochastic parameters and Bayesian inference using Markov chain Monte Carlo (MCMC). It
is noted that the main distinguishing feature of Bayesian inference as opposed to optimisation for
source estimation is that the former estimates probability distributions for parameters of interest
and quantifies the uncertainty in the estimated parameter, whereas the latter provides point es-
timates for the parameters of interest through optimising an objective function. [23] notes that
determining the source of an emission from the limited information provided by a finite and noisy
set of concentration measurements obtained from real-time sensors is an ill-posed inverse problem.
They show that solving the adjoint advection-diffusion equation just once per detector location
allows efficient forward model estimation leading to efficient Bayesian inference using MCMC. [25]
uses a genetic algorithm to find the combination of source location, source height, source strength,
surface wind direction, surface wind speed, and time of release that produces a concentration field
that best matches sensor observations. A rationale is developed to specify the minimum number of
sensors necessary to estimate the source term and to obtain the relevant wind information to a given
precision. [32] presents an inverse modelling technique to estimate source strength and location,
together with the uncertainty in those estimates, using a limited number of measurements from
a sensor network. Experimental design aspects are addressed, including the optimal number and
configuration of sensors for a given measurement campaign, and the minimum period of observation
for source detection with confidence. The need to relate uncertainty in estimated source properties
to those of the input data is emphasised. [17] introduces a Bayesian multiple change-point model
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for monitoring of air quality standards by pollutants such as nitrogen oxides and carbon monox-
ide. Change-points are identified and the rate of occurrence of air quality threshold exceedence
estimated using a reversible jump MCMC approach. [41] uses reversible jump MCMC to estim-
ate the characteristics of an unknown number of sources. [43] compares reversible jump MCMC
with importance sampling with progressive correction, for estimation of radioactive sources. [42]
addresses the reconstruction of source distributions consisting of an unknown number of localized
sources, using concentration measurements obtained from a sensor array using simulated annealing
in conjunction with a reversible-jump MCMC.

In this paper we concentrate on the task of detecting, locating and quantifying the emission rates
of sources of a single gas species of interest. While the method we have developed is broadly applic-
able to any gas or passively transported, detectable atmospheric component (e.g. aerosols, radon,
smoke, dust, viruses) we concentrate on methane emissions using data acquired during develop-
ment and testing of an airborne system for mapping natural gas seeps in hydrocarbon exploration
over areas typically up to 5000km2 per flight. We apply the method to measurements from test
flights around two modern landfills and a flare stack within a modern natural gas processing fa-
cility, collected at ranges of up to 12km downwind of sources. We make inferences about source
emission rates using gas concentration measurements. We measure concentrations by volume and
use our understanding of gas dispersion to relate these to source emission rates expressed as m3s−1

of pure gas per source. For area sources emission rates can also be expressed as mass flux; i.e. mass
emission rate per unit time per unit area. Critical to achieving this goal is estimating the level
of atmospheric background concentration so we can identify the additional concentration over and
above background, attributable to the local source(s) of interest. Previous surveys using similar
methodology have been undertaken within Shell.

The novelty of the current work lies in the tailored application of a combination of standard
statistical modelling components and inference tools for inversion in remote sensing. The layout
of the paper is as follows. Motivating landfill and flare stack applications are first described in
section 2. Section 3 outlines the modelling procedure and illustrates it in application to a synthetic
problem. Application of the method to the landfill and flare stack measurements is described
in section 4. Section 5 provides a discussion of findings and suggestions for future development.
Modelling details are relegated to three appendices, describing background modelling (A), initial
parameter estimation using mixed optimisation (B) and mixture modelling (C).

2. Data

We used an ultra-sensitive, high precision methane gas sensor, mounted in an aircraft, to measure
a continuous stream of air from the leading edge of a wing – well away from any fuel/lubricant
or engine exhaust fumes. The sensor continuously measures gas concentration and passes data
to the aircraft’s data logging system together with GPS, radar altitude, barometric pressure, air
temperature and wind velocity data, and several system control parameter values. The sensor
delivers better than 1 ppb (part per billion by volume) precision concentration data with a response
time of approximately 1 second. Flight data are subsequently merged with specialist meteorological
data, including additional wind, atmospheric boundary layer depth and auxiliary data: such as the
air sample transit time from sample inlet to sensor measurement chamber.

The datasets presented here are atypical of normal seep surveys, in that we know the locations of
sources in the survey areas. Consequently, these data sets provide a valuable test of our measure-
ment and analysis procedures. Source related concentrations are up to two orders of magnitude
greater than those typically encountered in natural seepage surveys, and as a consequence flight tra-
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jectories can be generally further from source locations than usual. Landfill measurements provide
a direct test of the total system performance; flare stack measurements provide a means of determ-
ining the gas sample transit time in flight at operational speeds; this is essential to correctly assign
concentration data to measurement locations.

2.1. Landfills

Atmospheric methane is responsible for half the global warming effect of CO2 despite CO2 concen-
trations being approximately 220 times greater than those of methane. There are strong incentives
to reduce methane emissions to the atmosphere. Landfills are prodigious sources of anthropogenic
methane; about 25% of United States’ methane emissions are from landfills,[20].

The global average atmospheric methane concentration is approximately 1, 820ppb, increasing at
approximately 8ppb per annum [8]. Local atmospheric background methane concentration can
vary by approximately 20 ppb during daytime due to changes in Atmospheric Boundary Layer
(ABL) depth. This layer of the atmosphere effectively contains all ground level emissions for
that day. Its growth is driven by solar heating of the ground. In effect, ground level emissions
accumulate near the ground during the night when the ABL is thin and are diluted into the
growing volume of the ABL during daytime. It is important to account for the associated changes
in local background concentration, so as to more precisely determine that portion of measured
concentration attributable to the local sources of interest: since source related concentrations can
be comparable to the much longer term changes in background.

The top of the ABL constitutes a “ceiling” on vertical transport of gases from the ground, and
reduces rate of dilution with downwind distance from the source. This effect must be included
in the gas dispersion model used to relate measured concentration to source strength. It can be
modelled as the sum of multiple reflections from the ABL ceiling and ground surface. At longer
ranges such as those prevailing here, there will be multiple reflection terms successively from the
ABL ceiling and the ground surface, until the air within the ABL is well mixed ([15]). The aircraft
must be within the ABL if it is to detect concentrations from ground level sources.

For the data presented here the aircraft flies at approximately 200m AGL (above ground level)
at a speed of approximately 50ms−1; ABL depth is approximately 400m. The area of interest
is 40km × 40km and the flight time approximately 80 minutes during morning hours. Figure 1
shows the flight track of the aircraft around each site, tracing a loose serpentine pattern downwind
of each landfill. Initial average wind speed and direction (based on measurements near the site
and model data provided for multiple altitudes by the UK Meteorological Office, UKMO, [6] ) are
about 6.5ms−1 and 033o degrees meteorological. (Wind direction is defined as the direction from
which the wind blows, in a clockwise sense, with North as 0o. In this case, the wind direction is
approximately North-Easterly, i.e. air moves approximately to the South West.).

[Figure 1 about here.]

[Figure 2 about here.]

Figure 1 shows the flight trajectory around and in the vicinity of the two landfills; Figure 2 shows
measured methane concentrations in time. Inspection of the concentration trace along the tra-
jectory in Figure 1 indicates the wind direction is approximately constant for the period of the
flight.
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2.2. Flare stack

The flare stack flight comprises 8 separate multi–looped circuits of the flare at altitudes from 150m
to 350m AGL; ABL depth is greater than 1500m. Each circuit intersects the plume three times
at different angles and ranges to probe the 3-D structure of the dispersion plume. Additionally
measurements are used to determine the air sample transit time to provide consistent plume de-
lineation. The flare stack is 50m high, situated within a recently completed natural gas processing
plant at a coastal location, probably burning methane and light hydrocarbons. Photographs of the
flare stack show it to be a clean yellow flame, which suggests it is burning at high efficiency [22].
Methane content of a few percent is expected in the residual unburnt gas; this is due to thermal
decomposition and incomplete combustion of the fuel-rich hydrocarbon feed [29]. A coastal location
suggests that wind fields will be variable.

[Figure 3 about here.]

[Figure 4 about here.]

Initial UKMO model–based average wind speed and direction are 11ms−1 at −243o. Figure 3 shows
the flight track around and in the vicinity of the flare stack; Figure 4 shows measured methane
concentrations against time. Inspection of the concentration trace along the track in Figure 3
suggests that the UKMO predicted wind direction is inaccurate for this portion of the flight, which
is close to sunset and situated over the coastline.

3. Model

3.1. Model form

We seek to locate and quantify emission rates of methane sources given n observed atmospheric
concentration measurements y = {yi}ni=1 along airborne trajectory x = {xi}ni=1. The overwhelming
majority of concentration measured is the atmospheric background contribution of about 1800ppb
with an additional 0 − 100ppb (typically) attributable to local ground level sources. Background
level varies in space and time. Poor estimation of background concentration disproportionately im-
pacts estimation of concentration attributable to local sources. Hence we prefer to jointly estimate
background and source contributions. y is modelled as the sum of a slowly varying background
b = {bi}ni=1 along the trajectory and contributions due to a distributed group of m sources at
ground level locations z = {zj}mj=1 with emission rates s = {sj}mj=1 and auxiliary characterist-
ics C = {Cj}mj=1. Measurements along the trajectory are assumed to be made with independent

identically-distributed additive Gaussian errors ε = {εi}ni=1, with εi ∼ N(0, σ2ε ). Steady-state gas
transport between a source of unit emission rate at location zj and measurement location xi in
wind field W is given by coupling function aij = a(xi, zj , Cj ;W). With A = {aij}n,mi=1,j=1, we adopt
the model:

y = As + b + ε (1)

Model mis-specification can be diagnosed by analysis of residuals, e.g. the fitted values of elements
of ε in equation 1 should represent a random sample from a normal distribution with mean zero
and constant variance.
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Plume model

The wind fieldW is described by wind vector U (with wind direction θU) at measurement location
x, and horizontal and vertical plume opening angles γH and γV respectively. We approximate
coupling a(x, z, w;U, γH , γV ) between a unit source of half width w at location z and measurement
location x in wind field W by a Gaussian plume model. The measurement location relative to the
plume is expressed in terms of downwind distance δR, and horizontal and vertical offsets δH and
δV of measurement location with respect to wind vector: δR

δH
δV

 =

 cos(θU) sin(θU) 0
− sin(θU) cos(θU) 0

0 0 1

 (x− z)

The source – measurement location coupling is then given by:

a(x, z, w;U, γH , γV ) =
1

2π|U|σHσV
fHfV (2)

fH = exp

{
−
δ2H

2σ2H

}
fV =

nRfl∑
j=0

fV j

where:

fV j = exp
{
− (2b(j + 1)/2cD + (−1)jδV −H)2

2σ2V

}
+ exp

{
− (2b(j + 1)/2cD + (−1)jδV +H)2

2σ2V

}
for nRfl reflections (see Section 2.1), where D is the maximum altitude of the atmospheric boundary
layer above ground level (referred to as the atmospheric boundary layer depth) and b(j + 1)/2c
represents the integer part of (j+ 1)/2. σH = δR tan(γH) +w and σV = δR tan(γV ) play the role of
plume “standard deviations” in horizontal and vertical directions respectively. The sum of 2nRfl
exponential terms represents nRfl plume reflections in the ground and at the interface between
atmospheric boundary layer and free atmosphere above it at altitude D. 2 sets of reflections
(nRfl = 2) were used in all work reported in this article; sensitivity to this choice is discussed
in Section 5. Values of U, D, γH and γV are obtained directly from wind field data supplied by
UKMO. The plume model parameters are illustrated in Figure 5. Typical plume characteristics
are shown and discussed in Section 4.1.

[Figure 5 about here.]

Background model

Well-mixed background gas concentration b along the trajectory is assumed to be positive and
smoothly–varying spatially and temporally. We assume it can be represented by an appropriate
set of r-dimensional smooth spatio-temporal basis functions:

b = Pβ (3)
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for an n × r matrix P of bases, where β = {βk}rk=1 are parameters to be estimated. As a default
approach, we assume P to be the identity matrix and adopt a Gaussian Markov random field model
for β(≡ b). In this case, β is a random vector with prior probability density function:

f(β) ∝ exp{−µ
2 (β − β0)

T (Jβ)(β − β0)} (4)

with pre-specified precision matrix Jβ and tuning parameter µ. Due to the random field’s condi-
tional independence structure, Jβ is guaranteed to be sparse, allowing efficient parameter estima-
tion. As outlined in Appendix A, we specify the precision matrix such that pairs of locations aligned
with the wind direction have higher dependence. The prior β0 is sampled from N(J−1β (As−y),J−1β ).
We have also considered other background representations of the form b = Pβ, e.g. polynomial or
spline bases, for which r � n (see Appendix A).

3.2. Initial parameter estimation

Initial parameter estimation is performed assuming a spatial grid of potential source locations.
Subsequent grid–free Bayesian mixture modelling (see Section 3.3) uses estimates so found as a
starting solution. Given measured concentrations y on trajectory x and associated wind field data
({U(xi)}ni=1, γH , γV ), initial point estimates for source emission rates s and background parameters
β are obtained as follows. We assume a Laplace prior for s with pre-specified precision Q and tuning
parameter λ:

f(s) ∝ exp{−λ‖Qs‖1} (5)

Since the likelihood corresponding to model 1 is:

f(y|s,β) ∝ exp{− 1
2σ2
ε
‖As + Pβ − y‖2}, (6)

by applying Bayes theorem, the posterior parameter density becomes:

f(s,β|y) ∝ f(y|s,β)f(s)f(β) (7)

In particular the maximum a-posteriori parameters are obtained by maximising f(s,β|y) with
respect to s and β, or equivalently by minimising − loge f(s,β|y). In optimisation terms, initial
parameter estimation can be stated as:

argmins,β
1

2σ2
ε
‖As + Pβ − y‖2 + µ

2 (β − β0)
TJ(β − β0) + λ‖Qs‖1 (8)

where terms in µ and λ can be viewed as regularisations that impose background smoothness and
source sparsity respectively. The value of measurement error standard deviation σε was estimated
from bench testing of the optical sensor and is given in Appendix D. We further choose to restrict
the domain of source elements such that sj ∈ [0, smax], and background bi ∈ [0, yi+ τ ] for tolerance
τ . Details are given in Appendix B. Values for λ and Q are also given in Appendix D. We emphasise
that the Laplace prior is used solely for initial parameter estimation.

3.3. Mixture model

Full parameter estimation is performed using a mixture modelling approach, using estimates from
initial optimisation (see Section 3.2) as starting solution. We assume that each of m sources can be
represented as a two-dimensional Gaussian kernel located at zj with half width wj (corresponding to
the standard deviation of the Gaussian) and source emission rate sj . Using reversible jump Markov
chain Monte Carlo (RJMCMC) simulation ([16]), we treat m as a random variable, and estimate
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the joint distribution of m and all other model parameters. We can also make inferences about
apparent bias and/or uncertainty in wind field parameters and measurement error. Bias-correction
of wind direction proves to be important in some applications. RJMCMC for mixtures of univariate
Gaussians was considered by [31] and extended to multivariate Gaussian mixture models by [45].

Markov chain Monte Carlo (MCMC) is a simulation procedure for Bayesian inference, which ex-
ploits the fact that Markov chains have stationary distributions exhibiting reversible transitions.
We seek to create a Markov chain with the posterior distribution f({z,w, s,β}|y) as its station-
ary distribution using the Metropolis-Hastings algorithm ([27] and [18]). Extending the posterior
density in (7) to include source locations and half widths, and writing the resulting parameter set
{z,w, s,β} as θ for brevity, the expression for the posterior parameter density becomes:

f(θ|y) ∝ f(y|θ)f(θ) (9)

Enumerating the constant of proportionality in (9) is generally computationally costly, and hence
so is direct sampling from the posterior. Fortunately MCMC (e.g. using Metropolis-Hastings
acceptance sampling or similar) circumvents the need to evaluate the constant of proportionality.
We proceed by judiciously partitioning the set of model parameters θ (to exploit problem structure
and ensure reasonable MCMC performance), so that dependent parameters appear in the same
subset θκ of parameters indexed by κ (see, e.g. [12]), and that different sampling techniques (such
as Gibbs sampling, see below) can be exploited for different subsets. The conditional posterior
distribution of parameter subset θκ becomes:

f(θκ|y,θκ) ∝ f(y|θκ,θκ)f(θκ|θκ) (10)

where θκ represents the remaining model parameters. The Metropolis-Hastings algorithm then
provides a basis for acceptance of a candidate {θ′κ,θκ} (with θ′κ generated by sampling from a
suitable proposal q(θκ,θ

′
κ|θκ), such as a multivariate Gaussian centred at θκ) given the current

Markov chain position {θκ,θκ} with probability α(θκ,θ
′
κ|θκ):

α(θκ,θ
′
κ|θκ) = max

{
1,

f(θ′κ|y,θκ)q(θ′κ,θκ|θκ)

f(θκ|y,θκ)q(θκ,θ
′
κ|θκ)

}
(11)

Since the conditional posterior appears in both the numerator and denominator of (11), the fact
that the conditional posterior is only known in (10) up to a constant of proportionality is of no
consequence. Starting from an arbitrary starting point, having allowed for a period of burn-in
(to facilitate convergence [12]), the sequence of points θ = {z,w, s,β} on the Markov chain will
converge to a (dependent) sample from f(z,w, s,β|y). In this way, for a fixed number m of sources,
we can estimate the joint posterior distribution of the model parameters.

RJMCMC allows sampling from distributions for which the number of sources m (and hence the
total number of model parameters) is not fixed. As explained in Appendix C, the Metropolis-
Hastings algorithm can be extended to accommodate “birth” of a new source, “death” of an existing
source, coalescence of neighbouring sources and source division. The Markov chain will therefore
explore estimates of z, w and s of different dimensions together with β. Inference is extended to
include estimation of quantities such as the measurement error standard deviation σε, additive bias
of wind vector U and multiplicative scale factors for horizontal and vertical plume opening angles
γH and γV in the analysis reported in section 4. Inclusion of a Lagrangian turbulence time–scale
parameter is discussed in Section 5.

When the conditional posterior distribution f(θκ|y,θκ) can be written in closed form, values of
θκ can be sampled directly given current values of θκ. This approach, known as Gibbs sampling
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(e.g. [14]) or sampling from full conditionals, avoids the need for acceptance sampling. In the
current work, the conditional distribution of background parameters β is known in closed form and
is amenable to sampling from full conditionals. When full conditionals are not available we use the
Metropolis-Hastings algorithm.

The initial optimisation solution (section 3.2) is sampled to give a suitable starting point to accel-
erate MCMC convergence to the stationary distribution.

4. Application

4.1. Illustrative analysis

We illustrate the approach using a synthetic problem. Gas plumes from 10 randomly located ground
level methane sources are generated with emission rate of 0.1m3s−1 propagating in a variable
wind field generated using a random walk, with wind speed and direction of [6.3, 6.6]ms−1 at
between [218, 222]o meteorological, and plume opening angles of between γH = [11.5, 13.9]o and
γV = [11.5, 13.9]o, within an area of 40km × 40km. Wind field characteristics (apart from wind
direction) were chosen to be generally consistent with the landfill application. The wind field varies
temporally but not spatially. We simulate methane concentrations on a flight path of 1hour 9mins
sampled at 3s intervals yielding 1379 observations, and add a constant background of 1800ppb.
Methane concentrations and flight trajectory relative to source locations are illustrated in Figure 6.
Methane concentrations in time are shown in Figure 7. Detail of plume extent for two intervals
of flight trajectory (corresponding to the central region of Figure 6) at 200m above ground level,
and simulated concentration measurements at the aircraft, are given in Figure 8. Also shown are
simulated concentrations as a function of relative northing for these trajectory intervals. Referring
to pane (b), the longer right–hand tail of concentration with relative northing indicates that the
aircraft’s trajectory has a positive downwind component. Referring to pane (c), the source at
approximately (20, 13)km contributes a concentration peak on the trajectory at relative northing
of approximately 15km, and the source at approximately (20.5, 16)km a trajectory concentration
peak at approximately 17.5km. The source at approximately (20.5, 15)km contributes a “shoulder”
at approximately 16.5km.

Inspection of Figures 6 and 7 shows that each source is upwind of at least part of the flight path,
and that gas emanating from each source contributes to the concentrations, since there is evidence
of increased methane concentration on the flight trajectory directly downwind of each source. Each
source is therefore identifiable in principle. Some sources (e.g. those near (20, 15)km) are close to a
downwind section of the flight path, others (e.g. the source at (3, 4)km) are relatively distant. We
anticipate that the former will be more precisely modelled. Plumes from sources around (20, 15)km
contribute to simulated concentrations on multiple downwind passes of the flight path, providing
range information to resolve source location, whereas plumes from other sources (e.g. that near
(20, 32)km) intersect the flight path just once.

[Figure 6 about here.]

[Figure 7 about here.]

[Figure 8 about here.]
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The survey area is partitioned into a 80 × 80 grid of 500m × 500m cells and a random field
background model is assumed. Cell size is determined by a balance of physical (e.g. likely source
extent) and computational considerations. The starting set of source locations and emission rates
for RJMCMC is selected by sampling 15 locations from the initial gridded optimisation solution
and weighting each cell by its estimated emission rate. RJMCMC is executed for 13000 iterations
of which the first 3000 burn-in iterations are ignored, generating a dependent sample from the joint
posterior distribution of parameters for source locations, half-widths, emission rates, background,
measurement error and wind direction bias. Burn-in length was determined by inspection of trace
plots and 10, 000 iterations post burn-in were judged to be sufficient to characterise the posterior.
More formal procedures (e.g. Gelman-Rubin convergence diagnostic, [13]), were not considered
necessary.

Estimated source emission rates are summarised in emission rate maps in Figure 9. Panel a)
shows the initial optimisation solution, which identifies 9 of the 10 sources. Most estimated source
locations are displaced downwind of the defined locations, closer to the flight path. The source at
(3, 4)km, furthest from the flight path, was not identified. Panel b) shows the posterior median
estimate. The MCMC median solution, in common with the optimisation solution, only identifies
9 of 10 sources, though these are closer to their true locations. We summarise marginal spatial
uncertainty in terms of the 2.5% and 97.5% credible values for source emission rates shown in
Panels c) and d) respectively. 8 of the 10 known sources appear in Panel c). In Panel d) there
are 3 spurious sources. For visualisation purposes only, source maps in Figure 9 a) , b) and c) are
estimated from gridded source estimates generated at the end of each complete iteration (over all
parameters) of the Markov chain.

Figure 10 (a) compares background estimates from optimisation and MCMC (with credible in-
tervals). Recalling that the actual background is constant at 1800ppb, both estimates are within
0.1ppb of the truth. Figure 10 (b) compares unexplained residual concentration with simulated
concentration from optimisation (red) and MCMC (black). For a good model fit, we expect re-
siduals to be zero–mean and show no relationship to the measured concentration. The MCMC
residuals are relatively well distributed around zero. For optimisation, residuals corresponding to
simulated concentrations close to true background (1800ppb) are small; for larger simulated con-
centrations, residuals are large and positive since the Laplace prior over source emission rate (5)
penalises source strength, generally resulting in positive residuals. Source locations are constrained
to the centres of grid cells for the optimisation solution, but not for the grid–free mixture model
estimate. The interested reader should note that the case presented is a typical example from a
number of simulated cases considered but omitted for brevity.

[Figure 9 about here.]

[Figure 10 about here.]

4.2. Landfills

The analogous analysis procedure is adopted for modelling landfill measurements. For initial op-
timisation, the survey area is partitioned into a 100× 100 grid of 400m × 400m cells. The starting
point for RJMCMC is chosen by sampling 5 locations from the optimisation solution, weighting
each cell by its estimated emission rate.

The estimated source emission rates are shown in Figure 11. Panel (a) shows the initial optimisation
solution; sources within the landfill boundaries are supplemented by “ghost” sources downwind of
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the landfills. These are likely due to errors in the wind field data or inadequacies in the plume model
as well as changes in the wind direction during the prolonged gas transit times to the measurement
locations which are up to 15km away which cannot be incorporated within the plume representation.
Panel (b) shows the posterior MCMC median source estimate. Sources are centred within each
landfill with just a single additional “ghost” source downwind of the eastern landfill (28, 19)km,
implying that correcting for wind direction bias (of approximately 2o) improves inversion. Panels
(c) and (d) show similar characteristic to Panel (b). Interestingly, no other spurious sources appear,
suggesting strong spatial localisation of sources in this case. To our knowledge there is no actual
gas emission at the “ghost” source location in Panel (2) (which also appears in Panel (1)). If indeed
the “ghost” source is an artefact, more sophisticated wind field corrections would be necessary to
eradicate it. However, land fills are uncharacteristically strong emission sources that are detectable
at extreme ranges with correspondingly extended gas transit times. For more representative sources
transit times are much shorter. Figure 12 (a) shows estimated background concentration along the
flight path for initial optimisation and MCMC. Figure 12 (b) gives fitted residuals against measured
concentrations for initial optimisation and MCMC. Residuals for higher concentrations are generally
larger and positive, indicating underestimation of source emission rate.

[Figure 11 about here.]

[Figure 12 about here.]

4.3. Flare stack

[Figure 13 about here.]

[Figure 14 about here.]

The analysis procedure is similar to that adopted for the applications above. The survey area is
partitioned into an 50 × 50 grid of 300m × 300m cells. The RJMCMC starting point is chosen
by sampling 5 locations from the initial optimisation solution, again weighted by emission rate.
Figure 3 shows a clear discrepancy between plume direction and mean wind direction predicted
by UKMO wind field data. The mixture model, incorporating a constant wind direction bias
parameter, successfully corrects this. Inspection of Figure 3 suggests a prior wind direction bias
of approximately −18o. The corresponding posterior 95% credible interval is estimated to be
[−18.12,−17.2]o. This uncharacteristically large wind bias is attributed to the flight being in the
late afternoon (as the ABL subsides) and is situated at the coast where winds are inherently less
predictable.

Source emission rates in Figure 13 are estimated using corrected wind directions, otherwise the
initial optimisation solution (Panel (a)) would be severely compromised. The posterior median
mixture model result (Panel (b)) is very similar. Panel (c) shows that 2.5% credible values from
the mixture model are ≤ 0.004m3s−1. Marginal 97.5% credible values in Panel (d) suggest greater
uncertainty in flare stack location (e.g. compared with the landfill), despite good initial optimisation
and posterior median estimates. Findings from Figure 14 are similar to those from Figure 12.

5. Discussion

Detection and location of sources of gas emissions into the atmosphere is a topic of intense interest.
In this work we describe a method for detecting, locating and quantifying such sources using
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remotely obtained gas concentration data. The method developed is broadly applicable to any gas or
passively transported, detectable atmospheric component, such as aerosols, radon, smoke, ash, dust
and viruses. The method can be applied using ground based or airborne concentration data collected
using point or line–of–sight sensors. Here, atmospheric point concentration measurements are
modelled as the sum of a spatially and temporally smooth atmospheric background, augmented by
concentrations arising from local sources. We model source emission rates with a Gaussian mixture
model and use a Markov random field to represent the atmospheric background concentration
component of the measurements. A Gaussian plume atmospheric eddy dispersion model represents
the gas dispersion process between sources and measurement locations. An initial point estimate
of background concentration and source emission rates is obtained using mixed `2− `1 optimisation
over a discretised grid of potential source locations. Subsequent reversible jump Markov chain
Monte Carlo inference provides estimated values and uncertainties for the number, emission rates,
locations and areas of sources, as well as atmospheric background concentrations and other model
parameters. We investigate the performance of the approach first for a synthetic inversion problem.
We then apply the model to locating and detecting of gas emissions using actual airborne data (a)
in the vicinity of two landfills, and (b) in the vicinity of a gas flare stack. All analysis was performed
using [26].

As discussed in the introduction, individual model components and inference tools used in this work
are commonplace in the modelling literature. The combination of components and tools, pulling
together physical constraints with rigourous analysis, has proved useful for the remote sensing ap-
plications considered in this work. The Gaussian plume model is a particularly simple steady–state
approximation to dispersion of a gas release into the atmosphere, widely used in the environmental
modelling literature (e.g. [15]). In this work, the plume model provides a reasonable basis for estim-
ating known flare stack and landfill locations. However, we find that correcting bias in (predicted)
wind directions supplied by UKMO improves inference. There is evidence, in the form of a “ghost”
source downwind of the eastern landfill, that a simple bias correction is not adequate, and that a
more sophisticated approach (e.g. a slowly varying wind-direction bias) might be beneficial. There
is considerable opportunity to achieve this within the Bayesian modelling framework. Incorporating
plume model uncertainty in the initial optimisation can be achieved in some sense by considering
optimisation over a representative set of forward model matrices A (in (1)), rather than a single
choice. Predicated on the availability of wind field data of adequate quality we might also consider
more sophisticated plume models, e.g. plumes following wind flow lines, or from computational
fluid dynamics. In the MCMC case, we assume a-priori that sources can occur with equal probab-
ility at any location. For RJMCMC we sample those grid locations from the optimisation solution
with the greatest emission rates as a starting solution. Work continues to explore incorporation of
spatial prior distributions for source location, for example using Polya trees to encode some degree
of source clustering. There is scope to develop more sophisticated background models incorporating
parameters known to influence background methane concentration (such as topography). It would
be interesting to explore modelling background as the superposition of a number of distant sources.
Our field experience suggests that natural gas seeps can be intermittent, requiring adaptation of our
model formulation. Smoothly varying gas release rates could be accommodated relatively simply.

The Gaussian plume model provides an elementary means of modelling gas transport from source
to measurement location under ideal steady state wind field assumptions, allowing rapid estimation
of forward model matrices A at the expense of accuracy and precision. For example, the Gaus-
sian plume model will be inadequate in the convective boundary layer since it does not account
for looping of plumes in thermals. Nevertheless, given inherent uncertainties in the estimates of
wind field parameter values supplied by UKMO, we consider the Gaussian plume adequate for the
purposes of the current work. For example in the landfills application, assuming ideal wind field
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conditions over an interval of approximately 10 minutes for wind speed of approximately 6.5ms−1,
suggests that the plume model is appropriate for measurement locations within approximately 4km
downwind of a source. More distant measurement locations require ideal conditions over longer
periods for the Gaussian plume model to be appropriate. Nevertheless, even over larger distances,
the Gaussian plume is likely to provide reasonable approximation to reality provided the wind field
remains relatively steady. Note that source strengths are considerably larger in the current flare
stack and landfill applications than would typically be encountered. As a consequence, flight tra-
jectories further from the source locations have been employed. In general, therefore, measurement
locations would be closer to source locations.

At the suggestion of one reviewer, we modified the form of the 2 reflection Gaussian plume model
for the landfill application to incorporate a Lagrangian turbulence time scale effect, such that, in
the notation of Section 3.1:

σH = δR tan(γH)κ+ w

σV = δR tan(γV )κ

κ =
1

1 +
√

t
1.6tL

where t = δR/|U| and tL is the turbulence time-scale parameter. In previous work, for similar wind
conditions, we found that a value of tL = 1000s is appropriate; a similar value is recommended
by [10]. Using the mixture model, we estimate a source map very similar indeed to that given
in Figure 11. We also included tL as a parameter to be estimated in the reversible jump MCMC
scheme. The maximum a posteriori estimate for tL was approximately 950s for the landfill applica-
tion. Further, we investigated the effect of including more than 2 reflections in the Gaussian plume
model. The maximum change in the estimated downwind plume concentrations was negligible at
approximately 1ppb, similar to the magnitude of the measurement error, σε, for the landfill applic-
ation. Consequently, the change in the estimated source map was negligible. Further information
on these sensitivity studies is available from the authors on request.

As implemented in the current work, optimisation is used to provide an initial point solution for
inversion on a spatial grid. Subsequent Bayesian inference gives a more flexible grid-free mix-
ture model framework within which to estimate the joint posterior distribution of all parameters,
providing in particular estimates for parameter uncertainty. Early attempts at inversion followed
a stepwise approach in which atmospheric background was estimated prior to, and independent of
emission sources. The current approach, involving simultaneous estimation of background, sources
and wind field characteristics improves performance. We also explored Bayesian inference on the
same spatial grid used for the initial optimisation. The very large number of potential source
locations makes this computationally intensive.

Our experience of processing multiple survey data sets has made clear the need for rigorous data
management and pre-processing procedures, e.g. in the merging of spatio-temporal data from
different sources (e.g. aircraft and wind field). Efficiency of inference is improved for a given
deployment by specifying a flight trajectory (or sequence of flight trajectories) appropriately, given
prevailing wind conditions and prior information concerning likely source locations. Methods of
statistical experimental design are central to achieving this for both airborne and ground based
line–of–sight gas sensors. It is also strongly desirable to have a means of confirming the quality
of inference, particularly of source location and release rate, using a persistent known gas source
within the region of interest. In some cases, this might take the form of an existing methane source
(such as a flare stack or landfill), or perhaps a small controlled release (e.g from a gas cylinder).
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Appendices

A. Background model

A.1. MRF background model

We model the background as a Gauss-Markov random field, a class of graphical model. Markov
random fields are joint distributions for variables X1, . . . , XN and an associated undirected graph
G = (E,V). The vertex set V := {1, . . . , N}, and the edge set E is a subset of V × V. The graph
specifies the conditional independence structure of random variables as follows. If three sets of
variables A,B,C ⊆ V are such that the set B separates A from C in the graph G, then (Xi)i∈A
must be conditionally independent of (Xi)i∈C given (Xi)i∈B. A simple special case of a Markov
random field is a Markov chain, wherein G is simply a linear graph. In a Gauss-Markov random
field, the random variables are also assumed to be jointly Gaussian. It can be shown (e.g. [36])
that for Gaussian variables, the conditional independence condition is equivalent to the precision
matrix J being sparse with respect to the graph G. That is, for i different from j, Jij 6= 0 if and
only if there is an edge between node i and node j in G.

For the random field model, we particularise (4) as:

f(β) ∝ exp{−1
2β

TJββ} (12)

where again Jβ is sparse with respect to a graph to be designed. As stated in Sec. 3.1, we take P
to be the identity matrix, so that our background estimate b is simply equal to β.

In designing a Gauss–Markov random field to model the background field, we seek to capture
two effects. First, the background should be smooth. Second, since the background concentration
travels with wind, it should be smoother along the direction of the wind. To model these two effects,
we introduce two different types of edges in the graphical model. The first are edges connecting
adjacent measurements vertices. These ensure overall smoothness of the background with respect
to time and space. The second type of edge concerns the wind. At each measurement point, we
consider the line along the wind direction from this point. We find the next measurement point
that crosses this line, and connect an edge in the graph between these two points. Thus the second
point is as close as possible to directly in line with the wind from the initial point. “Wind–linked”
points along the trajectory for the landfill application is given in Figure 15.

[Figure 15 about here.]

The graphical structure outlined above determines the sparsity pattern of Jβ, but not the values
themselves. The structure of Jβ is as follows:

Jβ =
∑

(i,j)∈E

αijΛij

where Λij is a matrix non-zero only at the intersections of the ith and jth rows and columns, and
the non-zero elements of Λij are given by: [

1 −1
−1 1

]
.

This may be alternately stated as, for any vector x:

xTJβx =
∑

(i,j)∈E

αi,j(xi − xj)2.
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The values αij represent the strengths of the links, and they are chosen as follows. We assume
that if the background value were measured in the same packet of air at two different times, the
change in background concentration would roughly grow with the time difference. Similarly, at
two different points in space at the same time, the difference in background concentration would
grow with the spatial separation. This suggests that the strength of each link should be determined
by the time difference and the spatial distance between the two connected points. In particular,
we take as parameters two constants cT and cD. The parameter cT is the expected change in
background concentration per second difference in measurement time, and cD is the change in
background concentration per meter separation. The strength αij is then given by:

αij =
1

(cT ∆T + cD ∆D)2

where ∆T is the difference in time between the two measurements and ∆D is the spatial distance
between the two measurements. For the links between adjacent measurements, we calculate ∆D
as simply the distance from first measurement point to the second measurement point. For the
wind-based cross-links, we use the distance from the second measurement to the point in space
where the packet of air at the first measurement would be, assuming that it travels with the wind
at the wind speed and direction as measured at the first point. Other parametric forms for αi,j ,
e.g. motivated by diffusion–advection transport could be considered.

B. Initial parameter estimation

We solve the optimisation problem (8) based on an alternating direction method. The objective
function is not entirely separable with respect to the variables s and β, since they are coupled
through the data fitting term ‖As + Pβ − y‖2, but the rest of the terms and the constraints are
uncoupled. These type of split methods were devised originally ([11]) for large-scale separable
problems, but variants have gained a lot of attention recently to solve other problems, especially
in the fields of image processing, machine learning and compressed sensing ([44, 40, 7]) where the
objective function can be written as the sum of convex subproblems, each with special structure
and characteristics that can be exploited, such as the sum of smooth and non-smooth terms (like
the `2-`1 problem that we have). Even if the optimisation problem can be written as a standard
linear or quadratic program –and their respective theories and solvers are very mature– these new
methods can have better practical and computational properties.

In our case, the main optimisation problem (8) is indeed a quadratic objective function with linear
inequality constraints, and J is a positive semi-definite matrix, so it could be solved with standard
convex quadratic solvers. However, the problem has a special structure that can be exploited and
we have found that a iterative split technique converges much faster than using Matlab’s quadprog
routine1.

The algorithm can be described as an alternating sequence of optimisation of the background and
ground sources. In the first stage, (8) is minimised only with respect to β, the parameterised
background, while keeping the current estimate of s fixed. Analogously, in the second stage, (8)
is minimised only with respect to the ground sources emission rate s, while keeping the current
estimate of the background fixed. Then, a criterion of optimality is computed and, if satisfied, the
current solution is deemed to be close enough to the global minimum. If it is not satisfied, the
algorithm iterates again through the first and second stages.

1Matlab 2008a
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Step 1: Estimate the background. Although it is physically reasonable, the non-negativity
constraint of the background, 0 ≤ Pβ, is actually not enforced explicitly, since in practice it
is never active. The sub-problem

min
β,w

1
2σ2
ε
‖As + Pβ − y‖2 + µ

2 (β − β0)
TJ(β − β0)

subject to Pβ ≤ y + τ .

is solved by the method of augmented Lagrangian for inequalities ([28]). To do this, the
inequality constraint is converted into an equality constraint by introducing a slack non-
negative variable w:

min
β,w

1
2σ2
ε
‖As + Pβ − y‖2 + µ

2 (β − β0)
TJ(β − β0)

subject to

{
−Pβ + y + τ + w = 0

w ≥ 0

This, in turn, is solved by moving the equality constraint into the objective function and
introducing its corresponding Lagrange multiplier z ∈ Rn, to obtain

min
β,w

L(β, z; η) = 1
2σ2
ε
‖As + Pβ − y‖2 + µ

2 (β − β0)
TJ(β − β0) +

n∑
j=1

ψ
(
ci(β), zi; η)

subject to w ≥ 0

where ci is the i-th component of the constraint

c = −Pβ + y + τ + w

and ψ is the auxiliary function defined as

ψ(a, b; η) =

{
−ba+ 1

2ηa
2 if a− ηb ≤ 0 ,

−η
2b

2 otherwise.

and this problem is solved with a combination of Newton’s method and projected gradient
to maintain the feasibility w ≥ 0. For more details on the practical considerations with this
type of methods, see §17.4 of ([28]).

Step 2: Estimate the sources. The subproblem

min
s

1
2σ2
ε
‖As + Pβ − y‖2 + λ‖Qs‖1

subject to 0 ≤ s ≤ smax

has simple bound constraints and we use a gradient-projection method to solve it. We use a
majorise-minimise ([5]) method to solve for this quadratic form with simple bound constraints
0 ≤ s ≤ smax.

min
s≥0

1
2σ2
ε
‖As + Pβ − y‖2 + µ

2 (β − β0)
TJ(β − β0) + λqT s

Note that the term ‖Qs‖1 has been replaced by qT s, where q = diag(Q). This is due to
the fact that since we have that ‖s‖1 ≡ 1T s when s ≥ 0, and therefore the term is fully
differentiable in the half-space s ≥ 0, and no concerns of the non-differentiability of the
`1-norm must be taken into account.
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C. Mixture model

C.1. MCMC step types

Referring to section 3.3, we write the parameter set as θ for brevity. θ consists of source parameters
z, w, s, background parameters β, measurement error standard deviation σε and (potentially) wind
direction and other plume bias, turbulence time-scale and uncertainty terms.

Metropolis Hastings

In conventional MCMC using the Metropolis Hastings algorithm, we construct a Markov chain with
stationary distribution corresponding to the posterior distribution f(θ|D) given observed data D
consisting of observed airborne concentrations y (and potentially wind field measurements). For
transitions between two states {θκ,θκ} and {θ′κ,θκ}, we ensure reversibility of the Markov chain
by imposing the detailed balance condition:∫

f(θκ|D,θκ)q(θκ,θ
′
κ|θκ)α(θκ,θ

′
κ|θκ)dθκ =

∫
f(θ′κ|D,θκ)q(θ′κ,θκ|θκ)α(θ′κ,θκ|θκ)dθ′κ

for acceptance probability α and proposal distribution q, from which (11) emerges. In the current
work, the proposal distribution q always corresponds to a random walk such that q(θκ,θ

′
κ|θκ) =

q(θ′κ,θκ|θκ) (e.g. we might use θ′κ = θκ+ε for (multivariate) Gaussian ε). The manner in which the
chain explores the posterior distribution for dependent variables or multi-modal distributions (such
as our mixture model) can be improved by updating subsets of parameters in a particular order,
adopting a good starting solution, and refining the standard deviations of proposal distributions in
the Metropolis–Hastings sampling.

Reversible jump Metropolis Hastings

In RJMCMC, we construct a Markov chain which satisfies an extended balance equation:∫
f(θκ|D,θκ)g(φ|θκ)j(θκ|θκ)α(θκ,θ

′
κ|θκ)dθκdφ =

∫
f(θ′κ|D,θκ)g′(φ′|θκ)j(θ′κ|θκ)α(θ′κ,θκ|θκ)dθ′κdφ

′

where θκ and θ′κ are now of different dimensions . We facilitate dimension-jumping by constructing
augmented sets of variables {θκ,φ} and {θ′κ,φ′} which are of the same dimension, using specified
bijective functions h to move between them, such that (θ′κ,φ

′) = h(θκ,φ) (and (θκ,φ) = h′(θ′κ,φ
′),

with h′ ≡ h−1 ). We also specify the joint distribution g(φ|θκ) (typically uniform or Gaussian;
g′(φ′|θκ) is known given g and h). j(θκ|θκ) is the probability that a particular dimension-jumping
move will be attempted from state {θκ,θκ}.

The Metropolis-Hastings acceptance probability α(θκ,θ
′
κ|θκ) (corresponding to (11)) for a dimension–

jumping move becomes:

α(θκ,θ
′
κ|θκ) = max

{
1,
f(θ′κ|D,θκ)j(θ′κ|θκ)g′(φ′|θκ)

f(θκ|D,θκ)j(θκ|θκ)g(φ|θκ)

∣∣∣∣∂(θ′κ,φ
′)

∂(θκ,φ)

∣∣∣∣} (15)

where the Jacobian is easily evaluated given h. The acceptance probability for the reverse move is
similarly:

α(θ′κ,θκ|θκ) = max

{
1,
f(θκ|D,θκ)j(θκ|θκ)g(φ|θκ)

f(θ′|D,θκ)j(θ′κ|θκ)g′(φ′|θκ)

∣∣∣∣ ∂(θ,φ)

∂(θ′,φ′)

∣∣∣∣}
We use RJMCMC to update the number of sources m by independent birth-death and coalesce-split
steps. We include brief descriptions of typical split and birth steps to illustrate the scheme further.
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A split–combine step

In the split step, we select an existing source j∗ at random and consider splitting it in two. In
this case, θκ is the triplet {zj∗ ,wj∗ , sj∗}. We draw random variables {rz, rw, rs} from uniform
distributions on appropriate intervals with zero mean, which to create two new sources j∗+ and
j∗− to replace j∗. The new source parameters are given by:

zj∗± = zj∗ ± rz, rz(1) ∼ U([−Ez1
2
,
Ez1
2

]), rz(2) ∼ U([−Ez2
2
,
Ez2
2

])

wj∗± = wj∗ ± rw, rw ∼ U([−Ew/2, Ew/2])

sj∗± = sj∗ ± rs, rs ∼ U([−Es/2, Es/2])

In this case, the Jacobian of the transformation (from (15)) is equal to 2× 2× 2 = 8. We assume
that source location components, widths and emission rates have independent uniform priors on
Iz1, Iz2, [0, Rw] and [0, Rs]. Iz1× Iz2 is the Eastings–Northings domain of the survey area, and Rw
and Rs are constants specified in Appendix D. Expressions for f(θ′κ|D,θκ) and f(θκ|D,θκ) are:

f(θκ|D,θκ) ∼ f(D|θκ,θκ)× 1

Rz1Rz2RwRs
× f(Prior for all other parameters)

f(θ′κ|D,θκ) ∼ f(D|θ′κ,θκ)× (
1

Rz1Rz2RwRs
)2 × f(Prior for all other parameters)

where Rz1 =length(Iz1) and Rz2 =length(Iz2). Noting that g = (Ez1Ez2EwEs)
−1 and that g′ = 1,

using (15) we obtain the acceptance probability for splitting source j∗:

α(split source j∗|θκ) = max

{
1,
f(θ′κ|D,θκ)

f(θκ|D,θκ)
× j(θ′κ|θκ)

j(θκ|θκ)
× Ez1Ez2EwEs
Rz1Rz2RwRs

× 8

}
in which jump probabilities j(θ|θκ) and j(θ′|θκ) are equal. Values adopted for Ez1, Ez2, Ew and
Es are given in Appendix D. Since the Markov chain is reversible by construction, the acceptance
probability for the combine step is given by the reciprocal of the above.

A birth–death step

In the birth step, we draw random variables {rz, rw, rs} from uniform priors as described below to
create one new source j∗. The new source parameters are given by:

zj∗ = rz, rz(1) ∼ U(Iz1), rz(2) ∼ U(Iz2)

wj∗ = rw, rw ∼ U([0, Rw])

sj∗ = rs, rs ∼ U([0, Rs])

The Jacobian of the transformation is unity, and the acceptance probability becomes:

α(birth source j∗|θκ) = max

{
1,
f(θ′κ|D,θκ)

f(θκ|D,θκ)
× j(θ′κ|θκ)

j(θκ|θκ)
× 1× 1

}
in which jump probabilities j(θ|θκ) and j(θ′|θκ) are equal (except for the case m = mmax). Values
adopted for Iz1, Iz2, Rw and Rs are given in Appendix D. Since the Markov chain is reversible by
construction, the acceptance probability for the death step is given by the reciprocal of the above.
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C.2. MCMC procedure

A new state of the Markov chain having the posterior distribution of model parameters given
observed data as stationary distribution, is created from the current state of the chain using the
following procedure:

Update source parameters, {z,w, s}. Firstly, source locations are updated sequentially using
a Gaussian random-walk. Candidate locations outside the spatial domain of interest are
rejected. Secondly, source widths are updated sequentially using a Gaussian random-walk.
Finally, source emission rates are updated sequentially using a Gaussian random-walk.

Update measurement error, σε. Measurement error variance is updated using a Gaussian ran-
dom walk on log10 σε.

Update background parameters, β. The background parameter vector β is updated by sampling
from its full conditional.

Update wind direction bias, plume opening angle scale factors and Lagrangian turbulence time-scale parameters.
The additive bias in wind direction is updated using a Gaussian random walk modulo 2π. Mul-
tiplicative plume opening angle scale factors are updated using a Gaussian random walk on
the log (base 10) scale. Optionally, the turbulence time-scale is updated using a Gaussian
random walk.

Update number of sources, m. With equal probabilities of 0.25, one of 4 candidate states is
generated, which if accepted, either increases (by birth or splitting) or decreases (by coales-
cence or death) the number of sources by 1. Steps involving new states in which m < 0 or
m > mmax are rejected, where mmax is an upper bound for the number of sources.

D. Parameter values

Key parameter and prior values used for all applications are given in Table 1. Wherever possible,
we specify the model in such a way that the same values for parameters and priors can be used for
each of the synthetic, landfill and flare stack applications.

[Table 1 about here.]

Note that random walk updates for measurement error and plume opening angle parameters are
performed on a logarithmic (base 10) scale, and that wind direction random walk updates are
performed modulo 2π. All other random walk updates are performed on a linear scale. When
symmetric random walk chains are adopted, no explicit prior parameter specification is required
([12].
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Figure 1: Flight track around and in vicinities of two landfills. Blue marker size and colour saturation indicate strength
and location of measured methane concentrations. Arrow shows average direction of predicted air movement during
flight. Polygons show perimeters of methane–emitting landfill areas. Dimensions in km. Aircraft takes off in North
East corner and flies over Westerly landfill first.
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Figure 2: Methane concentrations along landfill flight path as a function of time.
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Figure 3: Flight track around and in vicinity of the flare stack. Blue marker size and colour saturation indicate strength
and location of measured methane concentrations. Arrow shows average direction of predicted air movement during
flight. Black annulus indicates location of flare. The visible discrepancy in alignment of significant concentrations
and flare stack with respect to arrow indicates error in predicted direction of air movement. Aircraft enters from the
SW corner and leaves NE corner.
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Figure 4: Methane concentrations along flare stack flight path as a function of time.
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Figure 5: Illustration of plume model parameters. Red line: source height H. Magenta line: downwind distance δR
of measurement location relative to the source. Cyan line: horizontal offset δH . Green line: vertical offset δV . Blue
line: source half width w. Thick black horizontal lines perpendicular to wind direction represent ground level and
top of ABL at height D. The current plume model allows for reflections from ground and ABL ceiling. In this figure
δR is too short for reflections to be effective. The hatched blue area represents the marginal variation with δH of the
value of a for δV = 0 and fixed δR. The hatched red area represents the marginal variation with δV of the value of a
for fixed δH and δR. The locus of the black dot (corresponding to a contour of constant a for fixed δR) is drawn as a
black closed curve.
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Figure 6: Flightpath for the synthetic problem. Marker size and colour saturation represent strength and location
of simulated methane concentrations. Arrow shows direction of air movement during flight. Locations and physical
extent of defined sources (each with emission rate of 0.1 m3s−1) are shown as crosses with overlaid black circles whose
radii represent physical extent of the sources.
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Figure 7: Simulated methane concentrations along flight path as a function of time for the synthetic problem.
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Figure 8: Plume concentrations for the synthetic problem: (a) Detail of central region of figure 6 showing simulated
concentrations along flightpath as black dots, size proportional to concentration. Blue dots are also used to indicate
source locations. Background concentration is 1.8ppm. Mean direction of air movement shown by the blue arrow.
(b) Simulated concentration as a function of relative northing for left–hand pass. (c) Simulated concentration as a
function of relative northing for right–hand pass.
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Figure 9: Source emission rate maps for the synthetic problem: (a) Estimate from initial optimisation, (b) Median
estimate from mixture model, (c) Marginal 2.5% credible value from mixture model, and (d) Marginal 97.5% credible
value from mixture model. For ease of comparison the mixture model results are presented on the same grid cell size
as the optimsation solution. The locations of defined sources (each with emission rate of 0.1m3s−1) are shown as
black crosses. The locations and emission rates of estimated sources are colour–coded according to the scale. The
synthetic flight path is shown as a red line.
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Figure 10: Diagnostics for the synthetic problem: (a) Estimated background concentrations along the flight path as
a function of time. The initial optimisation is shown in red and the mixture model is shown in black; median (solid),
2.5% and 97.5% credible values (both dashed) shown. (b) Residual versus simulated methane concentrations from
initial optimisation (red) and median from mixture model (black).
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Figure 11: The estimated source emission rate maps for the landfill application: (a) Estimate from initial optimisation,
(b) Median estimate from the mixture model, (c) Marginal 2.5% credible value from the mixture model, and (d)
Marginal 97.5% credible value from the mixture model. All dimensions in km. Emission rates in m3s−1. Each panel
shows a common subregion of the original 40km× 40km domain (referenced with respect to the origin) within which
all sources are estimated. For ease of comparison the mixture model results are presented on the same grid cell size
as the optimsation solution. Polygons indicate the perimeters of the landfills. The flight path is shown as a red line.
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Figure 12: Diagnostics for the landfill application: (a) Estimated background concentrations along the flight path as
a function of time. The initial optimisation is shown in red and the mixture model result is shown in black; median
(solid), 2.5% and 97.5% credible values (both dashed) shown. (b) Residual versus measured methane concentrations
from the initial optimisation (red) and median from the mixture model (black).
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Figure 13: Estimated source emission rate maps for the flare stack application: (a) Estimate from the initial optim-
isation, (b) Median estimate from the mixture model, (c) Marginal 2.5% credible value from the mixture model, and
(d) Marginal 97.5% credible value from the mixture model. All dimensions in km. Emission rates in m3s−1. Each
panel shows a common subregion of the original 15km× 15km domain (referenced with respect to the origin) within
which all sources are estimated. For ease of comparison the mixture model results are presented on the same grid
cell size as the optimsation solution. The black annulus indicates the location of the flare stack, a point source. The
flight path is shown as a red line.
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Figure 14: Diagnostics for the flare stack application: (a) Estimated background concentrations along the flight path
as a function of time. The initial optimisation is shown in red and the mixture model result is shown in black; median
(solid), 2.5% and 97.5% credible values (both dashed) shown. (b) Residuals versus measured methane concentrations
from the initial optimisation (red) and median from the mixture model (black).
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Figure 15: Illustration of “wind–linked” points along the flight trajectory for the landfill application
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Parameter Value

Fixed parameters
Plume model reflections, nRfl 2

Background parameter, cT 3× 10−15

Background parameter, cD 10−12

Prior measurement error, σε 1ppb
Optimisation Laplace prior weight, λ 0.5

Optimisation Laplace prior precision, Q Identity matrix
Optimisation background tolerance, τ 3ppb

Optimisation maximum source strength, smax 0.16m3s−1

Maximum number of sources, mmax 25
Starting value for m 15

Starting value for wind direction bias 0
Starting value for plume opening angle scale factor 1

MH Gaussian random walk proposal standard deviations
Source location component (x- and y-) 50m

Source half width 10m
Emission rate 0.0016m3s−1

Wind direction bias 0.05 degrees
Measurement error 0.05 log(ppb)

Plume opening angle scale factor 0.01

Reversible jump uniform proposal domains
Ez1 100m
Ez2 100m
Ew 10m
Es 0.1m3s−1

Iz1 Eastings–interval of survey area
Iz2 Northings–interval of survey area
Rw 500m
Rs 0.16m3s−1

Table 1: Parameter values used.
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