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Motivation

Rational and consistent design and assessment of marine structures

Reduce bias and uncertainty in estimation of structural integrity
Quantify uncertainty as well as possible

Non-stationary marginal, conditional and spatial extremes

Multiple locations, multiple variables, time-series
Multidimensional covariates

Improved understanding and communication of risk

Incorporation within established engineering design practices
Knock-on effects of improved inference

Other current applications in Shell

Earthquake hazards
Corrosion and fouling
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Motivation

Environmental extremes vary smoothly with multidimensional covariates

Model parameters are functions of covariates

Uncertainty quantification for whole inference

Data acquisition (simulator or measurement)
Data pre-processing (storm peak identification)
Extreme value threshold
Model form (marginal measurement scale effect, spatial extremal dependence)

Statistical and computational efficiency

Slick algorithms
Parallel computation
Bayesian inference

Copyright of Shell Statistics and Data Science Covariate effects in oceanographic extremes February 2017 9 / 55



Motivation: storm model
HS ≈ 4× standard deviation of ocean surface time-series at specific location corresponding to a specified period (typically three hours)
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Outline

Covariate effects in:

Marginal models

Simple introductory example (directional model)
Storm peak HS with 2D, 3D and 4D covariates

Conditional extremes models

Associated values of other wave field parameters given extreme stork peak HS

Spatial extremes models

Directional dependence in max-stable process parameters for storm peak HS

North Sea example used as “connecting theme”; other examples to embellish
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Outline: North Sea application
Storm peak HS from gridded NEXTRA winter storm hindcast for North Sea locations; directional variability in storm severity; “strips” of locations
with different orientations; central location for directional model
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Marginal: simple gamma-GP model

Copyright of Shell Statistics and Data Science Covariate effects in oceanographic extremes February 2017 13 / 55



Marginal: simple gamma-GP model

Sample of peaks over threshold y , with covariates θ
θ is 1D in motivating example : directional
θ is nD later : e.g. 4D spatio-directional-seasonal

Below threshold ψ
y follows truncated gamma with shape α, scale 1/β
Hessian for gamma better behaved than Weibull

Above ψ
y follows generalised Pareto with shape ξ, scale σ

ξ, σ, α, β, ψ all functions of θ
ψ for pre-specified threshold probability τ

Generalise later to estimation of τ

Frigessi et al. [2002], Behrens et al. [2004], MacDonald et al. [2011]

Randell et al. [2016]
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Marginal: simple gamma-GP model

Density is f (y |ξ, σ, α, β, ψ, τ)

=

{

τ × fTG (y |α, β, ψ) for y ≤ ψ

(1− τ)× fGP(y |ξ, σ, ψ) for y > ψ

Likelihood is L(ξ, σ, α, β, ψ, τ |{yi}
n
i=1)

=
∏

i :yi≤ψ

fTG (yi |α, β, ψ)
∏

i :yi>ψ

fGP(yi |ξ, σ, ψ)

× τnB (1− τ)(1−nB) where nB =
∑

i :yi≤ψ

1.

Estimate all parameters as functions of θ
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Marginal: count rate c

Whole-sample rate of occurrence ρ modelled as Poisson process given counts c of
numbers of occurrences per covariate bin

Chavez-Demoulin and Davison [2005]
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Marginal: P-splines

Physical considerations suggest α, β, ρ, ξ, σ, ψ and τ vary smoothly with
covariates θ

Values of η ∈ {α, β, ρ, ξ, σ, ψ, τ} on some index set of covariates take the form
η = ❇βη

For nD covariates, ❇ takes the form of tensor product
❇θn

⊗ ...⊗ ❇θκ
⊗ ...⊗ ❇θ2 ⊗ ❇θ1

Spline roughness with respect to each covariate dimension κ given by quadratic
form ληκβ

′
ηκPηκβηκ

Pηκ is a function of stochastic roughness penalties δηκ

Brezger and Lang [2006]
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Marginal: P-splines

Kronecker product
Periodic P-splines
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Marginal: Bayesian inference on a page
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Marginal: priors and conditional structure

Priors

density of βηκ ∝ exp

(

−
1

2
ληκβ

′
ηκPηκβηκ

)

ληκ ∼ gamma

( and τ ∼ beta, when τ estimated )

Conditional structure

f (τ |② ,Ω \ τ) ∝ f (② |τ,Ω \ τ)× f (τ)

f (βη|② ,Ω \ βη) ∝ f (② |βη,Ω \ βη)× f (βη|δη,λη)

f (λη|② ,Ω \ λη) ∝ f (βη|δη,λη)× f (λη)

η ∈ Ω = {α, β, ρ, ξ, σ, ψ, τ}
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Marginal: inference
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Marginal: inference

Elements of βη highly interdependent, correlated proposals essential for good
mixing

“Stochastic analogues” of IRLS and back-fitting algorithms for maximum
likelihood optimisation used previously

Estimation of different penalty coefficients for each covariate dimension

Gibbs sampling when full conditionals available

Otherwise Metropolis-Hastings (MH) within Gibbs, using suitable proposal
mechanisms

mMALA where possible

Roberts and Stramer [2002], Girolami and Calderhead [2011], Xifara et al. [2014]
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Marginal: posterior parameter
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Marginal: posterior roughness penalty
Different scales so must be careful : rate is roughest, GP shape is smoothest
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Marginal: validation
Compare sample with simulated values on partitioned covariate domain
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Marginal: return values
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Marginal: extension to 2D
Directional-seasonal model for location in northern North Sea; τ estimated; land-shadow effect of Norway obvious; Randell et al. [2016]

=

0.4 0.5 0.6 0.7 0.8

D
e

n
s
it
y

0

5

10

15

20

25
NEP: =

TW Shape .

Direction

0 90 180 270 360

0.8

1

1.2

1.4

1.6

S
e

a
s
o

n

J

F

M

A

M

J

J

A

S

O

N

D

GP Shape 9

0 90 180 270 360

-0.15

-0.148

-0.146

-0.144

-0.142

-0.14

Poisson Rate ;

0 90 180 270 360

0.5

1

1.5

2

TW Scale ,

Direction

0 90 180 270 360

0.5

1

1.5

2

2.5

3

S
e

a
s
o

n

J

F

M

A

M

J

J

A

S

O

N

D

GP Scale <

0 90 180 270 360

0.5

1

1.5

2

Copyright of Shell Statistics and Data Science Covariate effects in oceanographic extremes February 2017 27 / 55



Marginal: extension to 2D
Summary statistics for return value distributions
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Marginal: extension to 4D
Spatio-directional-seasonal model for location in South China Sea; ML/CV/BS estimation; bootstrap median estimate after integration over season;
clear spatial and directional effects; Raghupathi et al. [2016]
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Marginal: extension to 4D
Bootstrap median estimate after integration over direction; clear spatial and seasonal effects
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Conditional and spatial extremes
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Conditional: summary

Heffernan and Tawn [2004] and derivatives

Evidence for covariate effects in conditional extremes of sea-state and storm peak
variables

Marginal non-stationary extreme value model
Marginal transformation to standard scale removing marginal covariate dependence
Conditional dependence structure showing covariate effects

Examples

Wave peak period | Significant wave height
Ocean current at one depth | Current at another depth
Significant wave height | Wind speed
Storm surge | Significant wave height
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Conditional: TP |HS example

On Laplace scale, extend with covariates θ

(Y2|Y1 = y , θ) = αθy + yβθ(µθ + σθZ ) for y > ψθ(τ)

ψθ(τ) is a high non-stationary quantile of Y1 on Gumbel scale, for non-exceedance
probability τ , above which the model fits well

αθ ∈ [0, 1], βθ ∈ (−∞, 1], σθ ∈ [0,∞)

Z is a random variable with unknown distribution G , assumed Normal for
estimation

Application

Estimate spectral peak wave period TP for storm sea states with extreme severity
(energy) HS

In TP ,HS case, ψ = θj = θk
Jonathan et al. [2014]
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Conditional: Surge |HS example
100-year storm peak HS together with marginal and conditional surge characteristics

Pre-print (Ross et al. 2018)
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Spatial extremes
Storm peak HS from gridded NEXTRA winter storm hindcast for North Sea locations; directional variability in storm severity; “strips” of locations
with different orientations; central location for directional model

Copyright of Shell Statistics and Data Science Covariate effects in oceanographic extremes February 2017 35 / 55



Modelling extremal spatial dependence : why bother?

Improved inference for the characteristics of extremes at one location exploiting
data from multiple locations in a spatial neighbourhood

Improved estimation of risk for spatially-distributed structures (coastal defences,
multiple installations) from spatially spread storm events

Can we estimate spatial extremes models usefully from typical metocean hindcast
data?

Can we see evidence for covariate effects in extremal spatial dependence for ocean
storm severity?

Pre-print (Ross et al. 2017)
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Modelling extremal spatial dependence : mathematically

Locations j = 1, 2, ..., p, continuous random variables {Xj} and values {xj}

Spatial distribution of storm peak HS

f (x1, x2, ..., xp) = [f (x1)f (x2)...f (xp)] C(x1, x2, ..., xp)

{f (xj)} are marginal densities, C(x1, x2, ..., xp) is dependence “copula”

Interested in estimating things like “the shape of an extreme storm”

f (x1, x2, ..., xp|Xk = xk > uk) for large uk

We know how to estimate extremes marginally, but what about extremal
dependence?

⇒ study spatial extremes, i.e. sensible models for C(x1, x2, ..., xp)
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Modelling extremal spatial dependence : procedure

Sample of peaks over threshold {x} at p locations, with covariates {θ}

Simple marginal gamma-GP model

Sample transformed (“whitened”) to standard Fréchet scale per location

Spatial extremes (“max-stable model”) to estimate extremal spatial dependence

Bayesian inference estimating joint distributions of parameters, uncertainties
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Extremes basics : marginal

Block maxima Yk at location k have distribution FYk
which is max-stable in the

sense that F n
Yk
(b′kn + a′knyk) = FYk

(yk) for some sequences {a′kn > 0} and {b′kn}

Only possible limiting distribution for FYk
is generalised extreme value (GEV)

FYk
(yk) = exp[− exp{(yk − η)/τ}] for ξ = 0

= exp[−{1 + ξ(yk − η)/τ}
−1/ξ
+ ] otherwise

For peaks over threshold, the equivalent asymptotic distribution is the generalised
Pareto distribution.
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Extremes basics : spatial

Similarly, FY for block maxima Y at p locations “max-stable” when
F n
Y (b

′
1n + a′1ny1, b

′
2n + a′2ny2, ..., b

′
pn + a′pnyp) = FY (y1, y2, ..., yp)

Transform to unit Fréchet Zk = {1 + ξ(Yk − η)/τ}1/ξ, FZk
(zk) = exp(−1/zk), for

zk > 0. Then

FZ (z1, z2, ..., zp) = FZ (nz1, nz2, ..., nzp)
n

Only choices of FZ exhibiting this homogeneity correspond to finite-dimensional
distributions from max-stable processes (MSPs), and are hence valid for spatial
extreme value modelling
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Spatial : basic theory

Max-stable process (MSP) : a means of extending the GEV for modelling maxima
at one location, to multivariate extreme value distributions for modelling of
component-wise maxima observed on a lattice

On unit Fréchet scale, only choices of FZ exhibiting homogeneity are valid for
spatial extreme value modelling

Terminology : exponent measure VZ

FZ (z1, z2, ..., zp) = exp{−VZ (z1, z2, ..., zp)}

Terminology : extremal coefficient θp

FZ (z , z , ..., z) = exp (−VZ (z , z , ..., z))

= exp
(

−z−1VZ (1, 1, ..., 1)
)

from the homogeneity property

= exp (−θp/z)
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Spatial : data
Fréchet scale observations of the spatial distribution of storm peak HS over the North Sea spatial grid for 8 typical events (a)-(h). The spatial
maximum for each event is given as a white disc, and the spatial minimum as a black disc (with white outline). The white → yellow → red → black
colour scheme indicates the spatial variation of relative magnitude of storm peak HS
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Spatial : data
Fréchet scale scatter plots of storm peak HS for different pairs of locations. Panel (a) for the central location and its nearest neighbour to the West
along the approximate West-East transect with angle φ = 4.6; panel (b) for the end locations of the same transect. Panel (c) for the central location
and its nearest neighbour to the North along the approximate North-South transect with angle φ = −72.2; panel (d) for the end locations of the
same transect
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Spatial : VZ for Smith, Schlather and Brown-Resnick processes

Smith : For two locations sk , sl in S, Vkl for Smith process given by

Vkl(zk , zl ; h(Σ)) =
1

zk
Φ(

m(h)

2
+

log(zl/zk)

m(h)
) +

1

zl
Φ(

m(h)

2
+

log(zk/zl)

m(h)
)

h = sl − sk , m(h) is Mahalanobis distance (h′Σ−1h)1/2 between sk and sl

Σ is 2× 2 covariance matrix (2-D space) to be estimated. Σ scalar in 1-D

Vkl(1, 1; h(Σ)) = 2Φ(m(h)/2) by construction

Schlather : similar likelihood, parameterised in terms of Σ only

Brown-Resnick : identical likelihood, parameterised in terms of Σ and scalar
Hurst parameter H (estimated up front)
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Spatial : constructive representation

MSP is maximum of multiple copies {Wi} (i ≥ 1) of random function W

Each Wi weighted using Poisson process {ρi} (i ≥ 1)

The MSP Z (s) for s in spatial domain S is Z (s) = µ−1maxi{W
+
i (s)/ρi}

W+
i = max{Wi (s), 0}, µ = E (W+(s)) = 1 by construction typically

ρi = ǫi for (i = 1), ρi = ǫi + ρi−1 for (i > 1), and ǫi ∼ Exp(1)

Different choices of W (s) give different MSPs

Smith : Wi (s; si ,Σ) = ϕ(s − si ; Σ)/fS(si ), with si sampled from density fS(si ) on
S, with ϕ representing standard Gaussian density

Schlather, Brown-Resnick : Similar
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Spatial : constructive representation

Copyright of Shell Statistics and Data Science Covariate effects in oceanographic extremes February 2017 46 / 55



Spatial : illustrations
Illustrative realisations of Smith (a,e), Schlather (b,f), and Brown-Resnick (c,d,g,h) processes for different parameter choices. The first row
corresponds to parameter settings (Σ11,Σ22,Σ12) = (300, 300, 0) for all processes, and the second row to (30,20,15). For Brown-Resnick processes
(c,g), Hurst parameter H = 0.95. For Brown-Resnick processes (d,h), H = 0.65. Each panel can be considered to show a possible spatial realisation
of storm peak HS , similar to those shown earlier
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Spatial : estimation approximations

Theory applies for (Fréchet scale) block maxima ZY , but we have (Fréchet scale)
peaks over threshold ZX . For zk , zl > u for large u, approximate

Pr [ZXk ≤ zk ,ZXl ≤ zl ] ≈ Pr [ZYk ≤ zk ,ZYl ≤ zl ]

Theory gives us models for pairs of locations. Cannot write down full joint
likelihood ℓ(Σ; {zj}). Approximate with composite likelihood ℓC (Σ; {zj})

ℓ(Σ; {zj}) ≈ ℓC (Σ; {zj}) =
∑

{k,l}∈N

wkl log fkl(zk , zl ; h(Σ))

Need fkl(zk , zl ; h(Σ)) for non-exceedances of u also, so make censored likelihood
approximation
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Spatial : estimation

Estimate joint distribution of Ω = [Σ11,Σ22,Σ12] (2-D space, or Ω = Σ in 1-D)

MCMC using Metropolis-Hastings

Current state Ωr−1, marginal posterior fM(βM), original sample D of storm peak HS .
Draw a set of marginal parameters βMr from fM , independently per location.
Use βMr to transform D to standard Fréchet scale, independently per location,
obtaining sample DFr .
Execute “adaptive” MCMC step from state Σr−1 with sample DFr as input, obtain
Σr .

Adaptive MCMC candidates generated using Ωc
r = Ωr−1 + γǫ1 + (1− γ)ǫ2

γ ∈ [0, 1], ǫ1 ∼ N(0, δ21 I3/3), ǫ2 ∼ N(0, δ22SΩr−1
/3)

SΩr−1 estimate of variance of Ωr−1 using samples to trajectory to date
Roberts and Rosenthal [2009]
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Spatial : σ̂(φ) for Smith
For all transects with a given orientation φ estimated using 1-D (box-whisker) and 2-D (black) Smith processes. φ is quantified as the transect angle
anticlockwise from a line of constant latitude. The first (second) row: marginal threshold non-exceedance probability 0.5 (0.8). The first (second)
column: censoring threshold non-exceedance probability 0.5 (0.8). For 1-D estimates with a given φ, box centres = median, box edges = 0.25 and
0.75 quantiles across all parallel transects; whisker edges = 0.025 and 0.975 quantiles. For 2-D estimates, the 0.025, 0.5 and 0.975 quantiles are
shown as a function of φ. Note that the colour coding of box-whisker plots corresponds to that of transect orientation
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Spatial : extremal coefficient θ̂(φ)
Estimated extremal coefficient θ̂(φ) for all transects with a given orientation φ, estimated using 1-D Smith (black), Schlather (dark grey) and
Brown-Resnick (light grey) processes. The first (second) row corresponds = marginal threshold with non-exceedance probability 0.5 (0.8). The first
(second) column = censoring threshold with non-exceedance probability 0.5 (0.8)
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Spatial : spatial dependence parameter σ̂(φ, s) for individual transects
Smith process with marginal and censoring thresholds = non-exceedance probability of 0.8. (b)-(g): σ̂(φ, s) for fixed orientation φ (given in the
panel title) as a function of transect locator s. (a): transects with s = 1 for different orientations φ. (b)-(g): abscissa values for transect locators are
scaled to physical perpendicular distances between parallel transects
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Summary

Evidence for covariate effects in marginal, conditional and spatial extremes of
ocean storms

Modelling non-stationarity essential for understanding extreme ocean storms, and
estimating marine risk well
Non-parametric P-spline flexible basis for covariate description
Essential that non-stationary models are used for marginal, conditional and spatial
extremes inference of ocean environment
Cradle-to-grave uncertainty quantification

Further investigation of covariate effects in spatial ocean extremes needed

Anisotropy in North Sea hindcast, maybe absolute location (or fetch) effect?
Currently examining satellite altimeter measurements
Asymptotic independence?

Goal : Bayesian inference for whole-basin spatial models with 4D covariates
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