
Bayes Linear Analysis for Ordinary Differential Equations

Matthew Jonesa,c,∗, Michael Goldsteina, David Randellb, Philip Jonathanc,d

aDepartment of Mathematical Sciences, Durham University, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, UK
bShell Global Solutions International B.V., Grasweg 31, 1031 HW Amsterdam, NL

cShell Global Solutions UK, Shell Centre, York Road, London, SE1 7NA, UK
dDepartment of Mathematics and Statistics, Lancaster University, Lancaster, LA1 4YF, UK

Abstract

Differential equation models are used in a wide variety of scientific fields to describe the behaviour of
physical systems. Commonly, solutions to given systems of differential equations are not available in closed-
form; in such situations, the solution to the system is generally approximated numerically. The numerical
solution obtained will be systematically different from the (unknown) true solution implicitly defined by
the differential equations. Even if it were known, this true solution would be an imperfect representation
of the behaviour of the real physical system that it was designed to represent. A Bayesian framework is
proposed which handles all sources of numerical and structural uncertainty encountered when using ordinary
differential equation (ODE) models to represent real-world processes. The model is represented graphically,
and the graph proves to be useful tool, both for deriving a full prior belief specification and for inferring
model components given observations of the real system. A general strategy for modelling the numerical
discrepancy induced through choice of a particular solver is outlined, in which the variability of the numerical
discrepancy is fixed to be proportional to the length of the solver time-step and a grid-refinement strategy
is used to study its structure in detail. A Bayes linear adjustment procedure is presented, which uses
a junction tree derived from the originally specified directed graphical model to propagate information
efficiently between model components, lessening the computational demands associated with the inference.
The proposed framework is illustrated through application to two examples: a model for the trajectory of
an airborne projectile moving subject to gravity and air resistance, and a model for the coupled motion of
a set of ringing bells and the tower which houses them.

1. Introduction

An ordinary differential equation (ODE) model implicitly defines a set of functions through specification
of their derivatives with respect to a single input variable. ODE models are widely used in a range of
different scientific fields: for example, in classical mechanics, Newton’s second law relates the forces acting
on a collection of objects to their acceleration. The resulting ODE model can then be integrated in time to
produce a description of the velocities and positions of the objects.
When modelling using ODEs, the system of equations must be solved in order to generate predictions.
Exact solution is possible in a limited range of cases, but, in most instances, the solution cannot be obtained
directly, and so must be approximated numerically. A variety of different approximation methods exists:
broadly, these work by dividing the input domain into a set of intervals, and using a simple approximation to
the integral over each of these. Choosing to use a particular numerical scheme to approximate the solution
introduces a corresponding systematic discrepancy between the unknown, true solution and the numerical
approximation, referred to as the numerical discrepancy. When a numerical solution to an ODE system is
used to represent a real physical system, uncertainty about this numerical discrepancy should be accounted
for; failure to do so can result in biased and over-confident estimates for any model parameters, and similar

∗Corresponding Author: m.j.jones@durham.ac.uk

Preprint submitted to Elsevier March 5, 2021

inaccuracies in predictions for new states (Brynjarsdottir and O’Hagan [5]).
Recently, much effort has been devoted to development of methods which account for uncertainty about the
solution of a system of differential equations. Suldin [44], Larkin [28] and later Skilling [41] lay some of the
foundations for the field now known as probabilistic numerics. O’Hagan [35], Diaconis [12] and O’Hagan [36]
propose Gaussian processes (GPs) as a tool for numerical integration, generating uncertainty specifications
for the results of intractable integrals. Oates and Sullivan [33] provide a review of the development of the
field of probabilistic numerics, and highlight future research challenges. Hennig et al. [20] and Cockayne
et al. [9] are other useful reviews.
Authors following Skilling [41] view solution of a differential equation as an inverse problem. Graepel [18]
applies the differential operator corresponding to a given ODE to a GP and samples the forcing function at
a number of locations, using the relationship between the process and its derivatives to infer the solution.
Chkrebtii et al. [7] develops an approach to uncertainty quantification in ODE models in which a Gaussian
process is fitted to the derivative function and integrated over each time-step, and an MCMC routine is
used to estimate model parameters. Schober et al. [39] proposes probabilistic ODE solvers using Runge-
Kutta means. Schober et al. [40] discuss a probabilistic model for the solution of initial value problems,
seeking to leverage the best of standard numerical analysis and probabilistic algorithms for the solution
of ODEs. Cockayne et al. [8] presents a probabilistic numerical method for solution of partial differential
equations (PDEs) and application to PDE-constrained inverse problems, and considers optimal choice of
PDE solver. Kersting and Hennig [26] discuss convergence rates for Gaussian ODE filters. Teymur et al. [45]
investigate GP regression for linear multistep solution of ordinary differential equations, and provide proof
of the convergence. Teymur et al. [46] consider implicit probabilistic integrators for initial value problems
(IVPs) movitated by multistep methods of Conrad et al. [10] and Teymur et al. [45]. Tronarp et al. [47]
considers probabilistic numerical approximations to ODEs using GP regression with nonlinear measurement
functions and nonlinear Bayesian filtering.
Conrad et al. [10] represent the numerical discrepancies introduced through numerical solution using a
sequence of uncorrelated, additive random variables, and demonstrate convergence to the true underlying
solution as the time-step length tends to zero. Lie Cheng et al. [31] extend this convergence analysis. Abdulle
and Garegnani [1] present a novel probabilistic numerical method for quantifying the uncertainty induced by
the time integration of ordinary differential equations (ODEs) by introducing suitable random time steps in a
classical time integrator. In the current work, we also propose a statistical model for numerical discrepancy.
Mohammadi et al. [32] consider GP emulation of non-linear deterministic simulators such as climate models
with multivariate time series outputs. Oates et al. [34] applies probabilistic numerics to governing physical
equations of industrial equipment, facilitating improved process monitoring.
Also relevant for the remainder of this article is the large literature on Bayesian uncertainty analysis for
linking the output of complex computer models with the real-world systems that they are designed to
represent. Craig et al. [11] and Kennedy and O’Hagan [25] both consider aspects of this problem. In the
former, a Bayes linear emulator is developed as a surrogate for a large, complex reservoir model, which takes
a long time to run: this emulator is used to identify pressure inputs which could explain measurements
taken from the real reservoir. In the latter, a similar probabilistic Bayesian model is developed for an
atmospheric dispersion model, and this model is used to do inference for a set of model inputs, and then to
generate calibrated predictions. In both cases, a structural discrepancy model is used to represent systematic
differences between the computer model and the real-world system that it is designed to represent.
In this article, we develop a model which accounts for all important sources of uncertainty encountered
when using a set of ODEs to represent the behaviour of a real-world system. The systematic variation of
the numerical discrepancy as a function of the input state is accounted for, as is the structural discrepancy
between the predictions generated from solution to the ODEs and the real-world system, along with any
measurement error. Belief specification and inference for the model components can be carried out in either
the fully probabilistic or Bayes linear settings; we consider both cases, favouring the computational simplicity
of the Bayes linear analysis. We carry out an initial simulation for a limited number of points in the model
input space, refining the solver grid and using the refined solution to quantify uncertainty in the numerical
discrepancy as a function of the solver inputs. A graphical representation of the model is used, and proves
useful in two respects: it is an efficient way of constructing and representing our prior beliefs about the

2

model components, and converting the original directed graphical model to a junction tree provides a means
of efficiently adjusting beliefs about all model components, allowing for the consideration of problems with
a large number of time-steps.
The novel contributions of this article are: a) An inference framework for handling both numerical and
structural discrepancies together in a coherent manner; b) Incorporation of systematic variation of the
numerical discrepancy as a function of state, time-step and parameter setting; c) A scalable second-order
(Bayes linear) framework for analysis in combination with a junction tree representation, enabling efficient
local computation and therefore allowing application to larger problems.
The remainder of the article is structured as follows. In Section 2, we outline the structure of a general
numerical scheme, and investigate the structure of the corresponding numerical discrepancy. Then, in
Section 3, we introduce a general, graphical framework for linking uncertainties about each of the model
components. In Section 4, we introduce a modelling strategy for the numerical discrepancy, and derive a full
joint prior specification for all components. In Section 5, we consider a simple example, in which we predict
the trajectory of a projectile launched with an unknown initial velocity and subject to an uncertain level of
air resistance, and in Section 6, we consider a more complex example, in which we account for discrepancies
introduced through numerical solution of a coupled bell-tower model. Section 7 provides discussion and
considers topics which could be the subject of future research in this area. Supplementary technical details
are provided in the appendices.

2. Numerical solution of ODEs

We consider the following initial value problem; we specify that the functions u = {u1, . . . , unu}, which
depend on scalar input t (usually time), satisfy

d

dt

(
ui (t)

)
= fi (u (t) , t, ξ (t)) ,

ui (t0) = ui(t0) ,

where f = {f1, . . . , fnu} is a set of functions which govern the first-order derivatives of the solution
surface, ξ (t) = {ξ1 (t) , . . . , ξnξ (t) } is a set of parameters which determine the behaviour of f, and
u(t0) = {u1(t0), . . . , unu(t0)} is the initial state. The general solution to this system can be written as

ui (t) = ui (t0) +

∫ t

t0

fi (u (s) , s, ξ (s)) ds . (1)

In general, this integral cannot be evaluated directly, though, in some cases, an algebraic solution can be
found by alternative means (e.g. separation of variables, integrating factors; see e.g. Iserles [22]). In cases
where an algebraic solution cannot be found, numerical methods can be used to approximate the solution
surface. In Section 2.1, we consider the general structure of numerical approximation techniques for systems
of ODEs, and in Section 2.2, we consider the structure of the discrepancy between such a solver and the
true solution to the system.

2.1. General one-step numerical scheme

Under a general numerical scheme, the solution is approximated at a set of fixed input settings t0 ≤ t1 ≤
. . . ≤ tnt ; the approximation at point tk is denoted by û (tk) . Fixing û (t0) = u(t0), the approximation at
time point tk+1, k = 0, 1, . . . , (nt − 1) is determined by feeding the approximation at time tk back into a
suitably-chosen numerical solution function

ûi (tk+1) = φi (û (tk) , tk+1, tk, ξ) .

Many different choices for the function φ are possible, corresponding to different types of numerical scheme.
Two of the most common choices, the Euler and Runge–Kutta schemes, are discussed below.

3

Euler scheme. The simplest approximation strategy is the Euler scheme; the integral (1) is approximated
by assuming that the derivative is constant across the time-step [tk, tk+1]

φi (û (tk) , tk+1, tk, ξ) = û (tk) + hkfi (û (tk) , tk, ξ) , (2)

where hk = (tk+1− tk). This scheme is equivalent to the first order Taylor expansion of the solution around
the point tk, evaluated at {û (tk) , tk+1}, and therefore has a local truncation error of order (hk)2. Euler
schemes are easy to implement, and for sufficiently small time-steps can provide a good approximation to
the true solution. Euler schemes will we used for the development of the modelling framework in Section 3.

Runge–Kutta scheme. A Runge–Kutta scheme of order q gives the following numerical solution function

φi (û (tk) , tk+1, tk, ξ) = ûi (tk) + hk

q∑
l=1

blwil ,

where wi1 = fi (û (tk) , tk, ξ) , and wi2, . . . , wiq are computed as

wil = fi

((
û (t) + hk

l−1∑
p=1

alpwp

)
,
(
tk + clhk

)
, ξ

)
,

for l = 2, 3, . . . , q, (Butcher [6]), where wp = (w1p, w2p, . . . , wnup)
T is a vector of coefficients. Different

choices of the coefficients {alp, bl, cl} give rise to different schemes. The 4th order Runge–Kutta scheme
(known as the RK4 scheme) is a popular choice; this has a local truncation error of order (hk)5.

2.2. Numerical discrepancy

Suppose that the solution u (tk) at time tk is known, and that the system is evolved numerically to time
tk+1; the discrepancy between the true solution and the numerical approximation at tk+1 (often referred to
as the local truncation error) is denoted by

ηi (u (tk) , tk+1, tk, ξ) = ui (tk+1) − ûi (u (tk) , tk+1, tk, ξ) . (3)

While η is unknown (if η were known, u would be known), a lot can be learnt about its structure from
further analysis. Taylor expanding the solution around tk gives

ui (tk+1) = ui (tk) + (tk+1 − tk)
du

dt
(tk) +

1

2
(tk+1 − tk)2

d2u

dt2
(tk) +O((tk+1 − tk)3)

= ui (tk) + hk
du

dt
(tk) +

1

2
h2k
d2u

dt2
(tk) +O(h3k) .

Choosing to approximate the solution at tk+1 using an Euler scheme (2) therefore gives the following nu-
merical discrepancy

ηi (u (tk) , tk+1, tk, ξ) =
1

2
h2k
d2u

dt2
(tk) +

1

6
h3k
d3u

dt3
(tk) +O(h4k) .

This is the sum of the higher-order terms in the Taylor expansion of the solution around tk. Since most
numerical schemes are based around series expansions of the solution evaluated at successive time points,
similar analysis is possible in many other cases.
It is clear that for general schemes, η is a systematic function of the input solution state u (tk) , parameters
ξ and time-step hk = (tk+1 − tk). Additionally, for small hk, the behaviour of η will be mainly determined
by the leading-order components of the remaining Taylor expansion components of the solution. This
information can be built into any prior specification of our uncertainty about the numerical discrepancy for
a particular scheme. In Section 4.1, we develop a suitable form for the numerical discrepancy model using
this structural knowledge.

4

3. Building a model

When using an ODE model for the behaviour of a real physical system, discrepancies between model
predictions and measurements of the system arise in two main ways:

• the use of a numerical solver to approximate the solution of the ODE model induces a discrepancy
between the solution that was implicitly defined and the approximation that can actually be evaluated
(see e.g. Conrad et al. [10]);

• even if the true solution to the ODE model were known, this would still generally give an inadequate
representation of the real world due to e.g. inadequate description of the physics driving the process,
or lack of knowledge about the settings of any model parameters which give an acceptable match to
the real world (see, e.g., Goldstein and Rougier [15]).

In this section, we develop a model which represents our uncertainties about these discrepancies for a
given ODE model. First, we link the true (unknown) solution to the ODE model to the system that it
represents through means of a ‘best input’ assumption and a structural discrepancy model (Section 3.1.1),
and we represent this unknown true solution as the sum of a numerical approximation and an unknown
numerical discrepancy component (Section 3.1.2). We then develop a directed graphical representation of
the full model, and describe how this representation can be used to efficiently store the prior uncertainty
specification for the model components (Section 3.2.1). Finally, we describe how this directed graphical
model can be converted into a type of undirected representation known as a junction tree, and how this
representation can be exploited to design efficient inference algorithms (Section 3.2.2).
The model presented here is quite a complex one, and the directed graphical model gives a convenient way
of simplifying the uncertainty specification which must be made. Direct inference on the directed graphical
model is hard, and so conversion to a junction tree representation provides a mechanism for carrying out
efficient inference given observation of some of the model components. Section 5 shows a simple example
which describes the complete approach taken; additionally, the code used to run the analysis described in
Section 5 is available on Github (Jones [23]).

3.1. Model structure

3.1.1. Relating the solution to the system

The set of real-world quantities represented by the model is denoted by y (t) = {y1 (t) , . . . , ynu (t) }. We
assume that noise-corrupted measurements of these quantities are available at times {t1, . . . , tnz}, denoting
the set of measurements at time tk by zk = {z1k, . . . , znuk}, where

zik = yi (tk) + εik , (4)

and εik is an additive measurement error term, which is assumed to be uncorrelated with y. When linking
the ODE solution u with the real-world quantities y, we adopt the strategy outlined in e.g. Goldstein and
Rougier [15] and Vernon et al. [49], assuming that there is a ‘best input’ setting ξ∗ such that if we were to
evaluate u at this setting, we would obtain all of the information available from the model about the real
world. At this point, we relate the solution to the system as

yi (tk) = ui (tk, ξ
∗) + δi (tk) , (5)

where δ = {δ1, . . . , δnu} is the discrepancy between the solution evaluated at the parameter setting ξ∗ and
the real world-quantities y. δ is assumed to be uncorrelated with {u, ξ∗}.
In a Bayesian uncertainty analysis, we make a joint prior uncertainty specification for all components of the
expressions (4) and (5), and then use data collected on the system to update these prior beliefs. In Section
3.2, we represent the structure of our model for u through a graph, before using this graph to make a prior
specification for the solution.

5

3.1.2. Relating the numerical approximation to the solution

With the numerical discrepancy defined as in (3), our representation of the solution at time tk+1 is

ui (tk+1, ξ
∗) = ûi (u (tk) , tk, tk+1, ξ

∗) + ηi (u (tk) , tk, tk+1, ξ
∗) . (6)

The numerical solution û is a known function of the solution at time tk, the parameters ξ∗ and the initial
and final times. As discussed in Section 2.2, the numerical discrepancy η is an unknown function of all these
components which exhibits strongly systematic behaviour across its input space.

3.2. Graphical representation

u (t0)

η (u (t0) , ξ∗) û (u (t0) , ξ∗) δ (t1) ε1

ξ∗ u (t1, ξ
∗) y (t1) z1

η (u (t1) , ξ∗) û (u (t1) , ξ∗) δ (t2) ε2

u (t2, ξ
∗) y (t2) z2

. . .

. . .

u (tk, ξ
∗)

η (u (tk) , ξ∗) û (u (tk) , ξ∗) δ (tk+1) εk+1

u (tk+1, ξ
∗) y (tk+1) zk+1

Figure 1: Directed graphical representation of the components of the model, and their relationship to the system
values y and the observed data z. The dashed lines correspond to edges to model components not explicitly displayed
on the diagram.

Graphs provide a useful visual representation of the structure of a statistical model, and can be used
to facilitate computationally efficient inference through local computation. Graphical models are useful for
both fully-probabilistic (Lauritzen [29]) and Bayes linear (Goldstein and Wilkinson [16]) inference. In a
fully probabilistic inference, a full joint prior distribution is specified for all model components; application
of Bayes’ theorem upon observation of a subset of some of the components leads to a corresponding joint
posterior distribution. In a Bayes linear (or second-order) inference, only a second-order specification,
consisting of means, variances and covariances for all components, is required; beliefs are then updated in
light of observations through Bayes linear adjustment. An introduction to Bayes linear methods is provided
in Appendix A, and an introduction to Bayes linear graphical models is provided in Appendix B.1: we
recommend the unfamiliar reader to consult these appendices before proceeding. A detailed introduction to
the Bayes linear framework is provided by Goldstein and Wooff [17].
The model specification is first made through a directed graphical model (Section 3.2.1), before being
converted to a junction tree representation (Section 3.2.2). The advantage of converting the model to the
junction tree representation comes from the fact that an efficient procedure is available for Bayes linear
belief updating on a junction tree: this procedure is described in Section 4.3, and more detail is given in
Appendix B.3. The whole process of starting from a belief specification on a directed graph, converting the

6

directed representation to a junction tree, and iteratively computing adjusted moments for the individual
components is illustrated for a simple model in Appendix B.4.

3.2.1. Directed graphical model

Combining the specifications made in equations (4), (5) and (6) suggests the graphical representation
shown in Figure 1. This is a directed acyclic graph (DAG), and when supplemented with a consistent
node ordering and an appropriate prior belief specification, gives rise to a directed graphical model. This
directed graphical model can be used to make a joint prior belief specification for all model components;
this prior specification can either be fully probabilistic or second-order (Bayes linear). Using {G1, . . . , GnG}
to denote the (consistently ordered) full set of nodes, in the fully probabilistic case, our full joint prior
specification would consist of probability distributions p (Gk|Pa (Gk)) for each node Gk conditional on
its parent nodes Pa (Gk) . The conditional independence structure of the DAG then determines our full
joint prior specification over all components. In the second-order case, our prior specification consists of
expectations E [Gk] and variances Var [Gk] for each node Gk, and covariances Cov [Gk, Gl] for all pairs
of nodes {Gk, Gl} connected by an edge; in this case, the belief separation structure implied by the DAG
determines the full prior covariance structure for the whole node collection.
In the remainder of this article, we focus on the second-order case, because of its attractive computational
properties. In Section 4.1 and Appendix C, we describe a procedure for generating a second-order prior
specification on the DAG in Figure 1 for general choices of numerical scheme and numerical discrepancy
model. In Section 3.2.2, we describe the conversion of the DAG into a junction tree, which enables efficient
inference in the second-order case.

. . .

u (tk−2, ξ
∗)

η (u (tk−2) , ξ∗) û (u (tk−2) , ξ∗) δ (tk−1) εk−1

ξ∗ u (tk−1, ξ
∗) y (tk−1) zk−1

η (u (tk−1) , ξ∗) û (u (tk−1) , ξ∗) δ (tk) εk

u (tk, ξ
∗) y (tk) zk

η (u (tk) , ξ∗) û (u (tk) , ξ∗) δ (tk+1) εk+1

u (tk+1, ξ
∗) y (tk+1) zk+1

. .

Figure 2: Triangulated moral graph corresponding to a modified version of the DAG shown in Figure 1, in which
links between all {δ (tk) } components have been dropped. The colour of an edge indicates its origin: green edges
were present in the original DAG 1, red edges were introduced through moralization, and blue edges were introduced
through triangulating the graph (see Appendix B.2).

7

3.2.2. Junction tree

Appendix B.3 describes a procedure for generating a junction tree from a general directed graphical
model. A junction tree is an undirected graphical model which is formed from the cliques of the triangu-
lated moral graph of the original DAG; by construction, the conditional independence structure (or belief
separation structure in the second-order case) implied by the junction tree is valid for the original directed
graph. Its tree structure means that information obtained by observing the values of certain nodes can be
passed easily between the cliques. This property of junction trees allows for the implementation of efficient
inference procedures, particularly in the second-order case.
Any junction tree corresponding to the DAG in Figure 1 would be complex, and would be difficult to identify
manually. We therefore illustrate the procedure from Appendix B.3 for converting a DAG to a junction
tree using a slightly modified version of the DAG in Figure 1, in which all edges between the structural
discrepancy components {δ (tk) } have been eliminated.

1. Construct the moral graph. The moral graph is obtained from the modified form of the DAG in Figure
1 by performing the following steps:

• Retaining all edges from the original graph, dropping the associated directions.
These edges are shown in green in Figure 2.

• Introducing an undirected edge between all pairs of unconnected nodes with a common child in the
original DAG:

– Each numerical discrepancy η (u (tk−1) , ξ∗) is joined to the corresponding numerical solution
û (u (tk−1) , ξ∗) ;

– Each solution component u (tk, ξ
∗) is joined to the numerical discrepancy components

η (tk−2, ξ
∗) , η (tk−3, ξ

∗) , . . . , η (t1, ξ
∗) at all earlier times;

– Each solution component u (tk, ξ
∗) is joined to the parameters ξ∗;

– Each solution component u (tk, ξ
∗) is joined to the discrepancy δ (tk) at the corresponding time

step;

– Each measurement error k is joined to the system value y (tk) at the corresponding time-step.

These edges are shown in red in Figure 2.

2. Triangulate the graph. Inspecting the moral graph from step 1, we identify the need for additional edges
to triangulate the graph. Attempting the maximum cardinality search procedure on the moral graph from
step 1 (starting from ξ∗; Appendix B.3), we see that when labelling the nodes u (tk) for k = 2, 3, . . . , nt,
the condition that the all the previously labelled neighbours form a complete graph is not satisfied since
û (u (tk−1) , ξ∗) is not connected to any of the η variables at times before tk. Therefore, we triangulate the
graph by adding edges between û (u (tk−1) , ξ∗) and η (u (tl) , ξ

∗) for all l = 0, . . . , (k − 2).
These additional edges are shown in blue in Figure 2.

3. Perform a maximum cardinality search. We assign labels to the nodes using the maximum cardinality
search procedure outlined in Appendix B.3, confirming as we go that the graph is triangulated. The labels
assigned to the nodes in this step will determine the edge structure of the junction tree in step 5.

4. Identify and label the cliques. The undirected graph in Figure 2 is a triangulated moral graph correspond-
ing to the modified DAG from Figure 1. We identify the full set of cliques corresponding to this triangulated
moral graph: in this case, this set of cliques can be written as {Q1 (tk) , Q2 (tk) , Q3 (tk) , Q4 (tk) }ntk=1, where:

• Q1 (tk) = {ξ∗, η (u (t0) ξ∗) , η (u (t1) , ξ∗) , . . . , η (u (tk) , ξ∗) , u (tk−1, ξ
∗) , û (u (tk−1) , ξ∗) };

• Q2 (tk) = {ξ∗, η (u (t0) ξ∗) , η (u (t1) , ξ∗) , . . . , η (u (tk) , ξ∗) , û (u (tk−1) , ξ∗) , u (tk, ξ
∗) };

• Q3 (tk) = {u (tk, ξ
∗) , y (tk) , δ (tk) };

8

• Q4 (tk) = {y (tk) , zk, εk}.

The ordering of the cliques implied by the node ordering obtained from the maximum cardinality search is

{Q1 (t1) , Q2 (t1) , . . . , Q1 (tnt) , Q2 (tnt) , Q3 (t1) , Q4 (t1) , . . . , Q3 (tnt) , Q4 (tnt) } .

5. Create the junction tree. Having identified the cliques, we use them to construct the junction tree. Using
the clique ordering identified by the maximum cardinality search, we join each clique to one of the pre-
ceding cliques which contains the intersection between this clique and all preceding cliques. For example,
clique Q3 (tk) consists of {u (tk, ξ

∗) , y (tk) , δ (tk) }. y (tk) and δ (tk) do not feature in any of the preceding
cliques, and therefore do not form part of the intersection between Q3 (tk) and its predecessors. Therefore,
the intersection between Q3 (tk) and all preceding cliques must be u (tk, ξ

∗) , which occurs in Q2 (tk) and
Q1 (tk+1) (for k < nt). We can therefore choose either to link Q3 (tk) to Q2 (tk) or to Q1 (tk+1) ; we are
free to choose either option, and we choose the former. Following this procedure for all cliques produces the
junction tree shown in Figure 3.

The cliques Q1 (tk) and Q2 (tk) for each time step tk are linked together to form a chain in the final junction
tree (Figure 3), with the cliques Q3 (tk) and Q4 (tk) for each time step linked together to form a series of
branches from this main chain (attached to it at Q2 (tk)). The system measurement zk is only found in the
clique Q4 (tk) , which is at the end of the branch of the tree corresponding to time tk. This means that,
when using the junction tree to update beliefs given observation of zk, information is propagated along the
branch corresponding to time tk (through Q3 (tk) and Q2 (tk)), then in both directions along the main
clique chain (backwards through Q1 (tk) , Q2 (tk−1) , . . . , and forwards through Q1 (tk+1) , Q2 (tk+1)), and
along the branches corresponding to the other time steps tl, l 6= k. Further detail relating to this procedure
in the second-order case is provided in Appendix B.3 and in Section 4.3.
In a complex graph, it will be challenging in general to identify a useful junction tree manually. In such
problems (e.g. similar to the DAG in Figure 1, with links between both numerical discrepancy components
{η (tk) } and structural discrepancy components {δ (tk) } across time-steps), a junction tree can be identified
algorithmically. The original DAG is represented as an adjacency matrix, and moralization is relatively
simple to implement. Various different algorithms for triangulating graphs exist; a summary is provided by
Heggernes [19]. In the examples in Sections 5 and 6, the LB-triang algorithm is adopted. From the resulting
triangulated moral graph, the cliques are identified using the Bron-Kerbosch algorithm (Bron and Kerbosch
[4]). Once the cliques have been listed, the junction tree structure is relatively easy to identify.

. Q1 (tk−1) Q2 (tk−1) Q1 (tk) Q2 (tk) Q1 (tk+1) Q2 (tk+1) .

Q3 (tk−1) Q3 (tk) Q3 (tk+1)

Q4 (tk−1) Q4 (tk) Q4 (tk+1)

Figure 3: Segment of a junction tree corresponding to the triangulated moral graph in Figure 2. The set of model
components contained in each of the cliques Q1 (tk) to Q4 (tk) at each time tk is listed in Section 3.2.2.

4. Bayes linear analysis

We outline a general procedure for making a second-order prior specification corresponding to the DAG
in Figure 1. In Section 4.1, we discuss the specification of a prior model for the numerical discrepancy
components η, using a grid refinement strategy to investigate its behaviour. In Section 4.2, we combine this
prior model for η with our prior beliefs about all other components to construct a full joint prior specification
over the DAG in Figure 1.

9

4.1. Numerical discrepancy model

Using ψ (tk) = {u (tk−1) , tk−1, tk, ξ} as an abbreviation for the solver inputs at time tk, our model for
the numerical discrepancy at time tk has the common regression plus residual form

ηi (ψ (tk)) =
∑
j

βijbj (ψ (tk)) + ri (ψ (tk)) , (7)

where b (ψ (tk)) = {b1 (ψ (tk)) , . . . , bnb (ψ (tk)) } is a set of known basis functions, β = {βij} (i = 1, . . . , nu,
j = 1, . . . , nb) is a corresponding set of unknown coefficients, and r (ψ (tk)) = {r1 (ψ (tk)) , . . . , rnu (ψ (tk)) }
is a set of unknown residual components. We assume that β and r are a priori uncorrelated. Where possi-
ble, the basis functions {bj} should be chosen to reflect important aspects of the leading-order structure of
the numerical discrepancy; for example, where an Euler scheme is chosen for the numerical ODE solution,
higher-order terms in the Taylor expansion of the solution would generally work well.

4.1.1. Generating approximate numerical discrepancy data

As discussed in Section 2.2, the discrepancy between the unknown true solution and the numerical
approximation obtained is completely determined by the choice of solver. While we cannot evaluate the
numerical discrepancy directly (if we could, it would imply that we knew the true solution), we can perform a
prior analysis to investigate its structure further. By choosing a set of initial points which is representative of
solution behaviour over the time domain and parameter input space (e.g. using a Latin hypercube design),
refining the solver grid, and then representing the numerical discrepancy on the refined grid as a simple
random process which is uncorrelated between time steps, we can obtain a set of more accurate estimates
of η, and use these to update the components of the model (7).
To emphasise: since we cannot evaluate η (ψ (t)) directly, we use differences between solver runs on the
original time grid (i.e. the grid used for the analysis outlined in Section 3), and solver runs on a refined
grid (e.g. with 100 time-steps on the refined grid for every individual step on the original grid, such that
we expect the magnitude of the numerical discrepancy to be considerably smaller) to approximate the true
numerical discrepancy corresponding to one time step on the original time grid. On the refined grid, we
assume that the numerical discrepancy is zero-mean Gaussian and uncorrelated between solver time-steps.
Repeating this simulation a large number of times allows us to generate numerical estimates for the mean
and covariance of the numerical discrepancy, which we then use for parameter estimation in the model (7).
The procedure used is as follows: we denote the estimates for the discrepancy mean and covariance by
Ẽ [ηi (ψ (t))] and C̃ov [ηi (ψ (t)) , ηj (ψ (t))] , with the tilde indicating that these estimates were calculated
using the numerical procedure. Specifically, we perform a single time step on the original grid, and n∗ time
steps on a refined grid corresponding to the same time interval h. On the refined grid, we assume that the
numerical discrepancy components {ηi} are uncorrelated with each other and across time-steps, with mean
zero and variance {(σηis(h))2}, for some function s(.) of the time-step h. Then for a range of different values
of ψ (t) = {u (t) , t, t + h, ξ}:

1. We first evolve the numerical solver to some time point t at the original temporal resolution (including
uncorrelated, stochastic η, as described in step 1), obtaining an initial state u (t) .

2. We evolve from time t to time (t + h) on the original time-scale, obtaining û (ψ (t)) .

3. We also evolve from t to (t+h) using the refined temporal resolution: we choose n∗ knots {τ0, τ1, . . . , τn∗}
with τ0 = t and τn∗ = t + h, obtaining u∗(ψ (t)).

4. We repeat step 3 a large number of times for different randomly-sampled discrepancies on the refined
grid in order to estimate {Ẽ [u∗i (ψ (t))] } and {C̃ov

[
u∗i (ψ (t)), u∗j (ψ (t))

]
}.

5. Using these empirically-generated expectations and covariances, we characterise the moments of the
numerical discrepancy for a given input setting ψ (t) as

Ẽ [ηi (ψ (t))] = Ẽ [u∗i (ψ (t))] − ûi (ψ (t)) ,

C̃ov [ηi (ψ (t)) , ηj (ψ (t))] = C̃ov
[
u∗i (ψ (t)), u∗j (ψ (t))

]
.

10

4.1.2. Estimating the parameters of the numerical discrepancy model

The moments {Ẽ [ηi (ψ (t))] } and {C̃ov [ηi (ψ (t)) , ηj (ψ (t))] } generated using the procedure in Section
4.1.1 are used for an initial Bayes linear adjustment of the model (7); since η cannot be evaluated directly,
the expectations {Ẽ [ηi (ψ (t))] } at particular input settings are used as the data for the adjustment, with

the covariances {C̃ov [ηi (ψ (t)) , ηj (ψ (t))] } being treated as the covariances of the measurement error. The
resulting adjusted moments are then used as the prior specification for the numerical discrepancy for the
purposes of characterising the full joint prior specification (see Section 4.2). Combining the numerical ODE
solver with this prior analysis for the numerical discrepancy generates a more accurate mean prediction and
a tighter uncertainty range for the true solution at any given time step, which in turn reduces uncertainty
about the starting point for the next evaluation of the numerical solver.
This approach is adopted in the examples in Sections 5 and 6, where the basis functions are simply the
leading-order terms of the approximation error induced by truncating the Taylor series. The fitting of this
initial model for the numerical discrepancy is described in detail for the projectile example (Section 5) in
Appendix D.

4.2. Second-order prior specification

We describe a procedure for computing a full, second-order prior specification for all model components
from the prior specification for the initial state, the parameters, and the numerical discrepancy function.
The individual steps of the procedure are summarised below, with further details in Appendix C.

Prior uncertainty specification for initial state and numerical discrepancy model. We begin by making a
prior specification for only those components that are not determined by the solution trajectory. First, we
specify expectations {E [ui(t0)] } and covariances Cov [ui(t0), uj(t0)] for the components of the initial state,
and expectations {E [ξ∗i] } and covariances Cov

[
ξ∗i , ξ

∗
j

]
for the ‘best input’ setting of the model parameters.

We choose a form for the numerical discrepancy model and, if appropriate, use the procedure outlined in
Section 4.1 to inform out prior belief specification for {β, r}.

Full prior uncertainty specification. We convert this initial prior specification into a full prior specification
for all components by working along the solution trajectory and computing component moments at each
time-step. We can do this in either of two ways: either algebraically, or by sampling trajectories. If choos-
ing to proceed algebraically, we work through the time-steps of the solution, computing the expectation
and variance of each component from the prior moments of its parents and the covariance between it and
its parent nodes. In almost all cases, the solver function and the numerical discrepancy moments will be
non-linear functions of their inputs; therefore, assumptions must be made about the higher-order moments
of the model components in order to compute this full specification (e.g. that the higher-order moments
correspond to those of a Gaussian distribution). Details of the moments that must be computed in order to
characterise the full prior specification are given in Appendix C.
For the sampling approach, we simply make an appropriate distributional assumption for the uncertain
components at each time-step, and characterise node expectations, variances and covariances by sampling
corresponding numerical solution and numerical discrepancy components at the next time-point. The sam-
pling approach is adopted for the examples presented in Sections 5 and 6, since in both cases, attempting
to evaluate the moments of all model components algebraically would be a significant effort, and additional
assumptions would have to be made for the higher-order moments in any case.

4.3. Adjusting moments

Once the joint prior specification for all components has been characterised (as outlined in Section 4.2),
beliefs about the model components can be adjusted given observations of a subset of the measurements
{zk} on the real system. The most basic approach that can be taken for adjustment is to simply compute
covariances between all pairs of model components (either by making distributional assumptions and sam-
pling on the graph, or by using the DAG 1 to compute the full covariance structure), and to perform a Bayes
linear adjustment as outlined in Appendix A.1. For large problems, this approach will quickly prove to be

11

impractical, since it requires the computation and storage of a large covariance matrix; for very large prob-
lems, it may not even be possible to hold all of the relevant covariances in memory simultaneously, leading
to the need to re-compute these from the graph as they are required, further adding to the computational
burden.
The graph can also be a useful tool when carrying out the adjustment, particularly for problems with a
large number of time-steps. The DAG corresponding to a particular model can be converted to a junction
tree using the procedure outlined in Appendix B.3; Figure 2 illustrates the conversion procedure for the
DAG in Figure 1. On a junction tree, the covariance between any individual node and the observed node
can be computed by sequentially propagating covariances between adjacent cliques; the intersection between
the sets of nodes in any pair of adjacent cliques is also a separating subset, imposing Bayes linear belief
separation properties which can be exploited when performing the inference (see Appendix B.3 for details,
and Appendix B.4 for an illustrative example of this procedure).
Propagating the adjustment through the junction tree in this manner means that only the covariances be-
tween the nodes in the cliques need to be computed and stored. We begin by adjusting beliefs for all of the
nodes belonging to the same clique as the observed data. We then compute the covariance of the data with
the nodes in the adjacent cliques through the separating subset, as described in Appendix B.3. Knowledge
of these covariances allows us to adjust beliefs for all nodes in these adjacent cliques. Iterating the same
procedure allows us to work through all cliques in the junction tree in turn, adjusting beliefs about the
nodes in each clique as we reach it. This procedure is used for the adjustment in the bell-tower example
presented in Section 6.

5. Example: projectile trajectory

We illustrate the model developed in Sections 3 and 4 through application to an example from classical
kinematics, taken from Kibble and Berkshire [27]. A projectile of mass m is launched from a point u(t0) =
(0, 0, 0) in three-dimensional space at time t0, with initial velocity u̇(t0) = (u̇1(t0), 0, u̇3(t0)) = (ẋ0, 0, ż0),
and is subject to gravity and air resistance, quantified in terms of the acceleration due to gravity g and
the coefficient of linear drag λ respectively. We denote the position of the projectile at time t by u (t) =
(u1 (t) , u2 (t) , u3 (t)) = (x(t), y(t), z(t)); application of Newton’s second law gives the following second-order
ODE system

d2u1
dt2

(t) = −γ du1
dt

(t) ,

d2u2
dt2

(t) = 0 ,

d2u3
dt2

(t) = −γ du3
dt

(t) − g ,

where γ = λ/m. There are no forces acting in the y-direction, and so we have u2 (t) = y(t) = 0 for all times
t. Integrating the x and z equations once, we obtain

du1
dt

(t) = −γu1 (t) + u̇1(t0) ,

du3
dt

(t) = −γu3 (t) − gt + u̇3(t0) .

As this is a simple model, a solution is available in closed-form

u1 (t) = x(t) =
u̇1(t0)

γ

(
1− e−γt

)
, u3 (t) = z(t) =

(u̇3(t0)

γ
+

g

γ2

)(
1− e−γt

)
− gt

γ
. (8)

In the coming sections, we develop a model for the solution within the framework outlined in Sections 3 and
4. In what follows, we consider only the solution component u3 (t) in the z-direction, so that u (t) = u3 (t)
only; the same approach could be taken to modelling u1 (t) .
The code used to implement the analysis described in this section is available on GitHub (Jones [23]).

12

5.1. Model

We outline the structure of the model that will be used for the solution to this equation, and describe
the procedure used to generate a corresponding prior uncertainty specification.

Numerical scheme. For this problem, we choose a first-order Euler solver

φ (u (tk) , tk, tk+1, ξ) = u (tk) + (tk+1 − tk)f (u (tk) , tk, ξ)

= u (tk) + (tk+1 − tk)
(
− γu (tk) − gtk + u̇(t0)

)
.

Numerical discrepancy model. As discussed in Section 2.2, choosing a first-order Euler scheme means that
the numerical discrepancy function is simply the sum of the higher-order components of the Taylor expansion
of u around tk. We exploit this information by choosing the second-order term as our sole basis function

b (ψ (tk)) =
1

2
(tk+1 − tk)2

d2u

dt2
(tk) ,

where ψ (tk) = {u (tk) , tk+1, tk, ξ} is the input set (and ξ = {γ, u̇(t0)}), and where the second derivative is

d2u

dt2
(tk) = −γ du

dt
(tk) − g

= −γf (u (tk) , tk, ξ) − g .

We assume that the residual component r has mean zero, and that the covariance between function values
at different input settings is

Cov [r (ψ) , r (ψ′)] = Vρ (ψ,ψ′) ,

where V is the marginal variance parameter, and ρ (ψ,ψ′) is a correlation function

ρ (ψ,ψ′) = min (hk, h
′
k)× exp

[
− 1

2

(
νt(tk − t′k)2 + νh(hk − h′k)2 + νu(u (tk) − u (tk) ′)2

+ νγ(γ − γ′)2 + νu̇(u̇(t0)− u̇(t0)′)2
)]

,

where ν = {νt , νh , νu , νγ , νu̇} is a set of correlation parameters.

System relationship. For the purposes of this simple example, we assume that there is no systematic dis-
crepancy between u and y, so that δ (tk) = 0 for all k = 1, 2, . . . , nt. We assume that measurements of y
are, however, made with error, and we specify that Var [εk] = (0.01)2 for all k = 1, . . . , nt.

Prior specification. We consider the trajectory of a projectile in the time-interval [0, 10]; nt = 50 knots for
the solution are selected by specifying that t0 = 0 and t50 = 10, and then randomly selecting the knots
{t1, . . . , t49} according to a Latin hypercube design. Our initial prior specification is that E [γ] = 0.55 and
Var [γ] = (0.2)2, that E [ż0] = 40 and Var [ż0] = (10)2, and that E [u (t0)] = 0 and Var [u (t0)] = (0.0001)2.
The first modelling step is to generate an initial fit of the numerical discrepancy model. This is achieved as
outlined in Section 4.1, by refining the solver grid, and using samples of the fine-scale solution to generate
approximate samples of η. First, a random time-step is generated on the interval [mink hk,maxk hk]. Then,
the solution value at the start of this interval is fixed by running the deterministic coarse solver to a random
initial point. Expectations and covariances for the numerical discrepancy are then generated as outlined in
Section 4.1, by refining the interval into 500 equal intervals, running the solver on the fine grid 100 times
and computing moments from this sample of discrepancies.
An initial set of 100 numerical discrepancy samples generated as described above is used to perform an
initial regression: the prior moments of the regression parameter E [β] and Var [β] are fixed to the posterior
mean and variance parameters resulting from this fit, and the marginal variance of the residual process
Var [r] is fixed to the variance of the regression residuals. An additional set of 500 numerical discrepancy

13

samples is then used to jointly update the regression and residual components. A final set of 100 numerical
discrepancy samples is used to check the fitted model, confirming that less than 5% of the samples lie
outside 3 standard deviation predictive error bars (Pukelsheim [37]). In this example, the parameters ν
of the correlation function are simply manually set to values which give reasonable predictive performance
whilst ensuring that this condition is satisfied: in more complex cases, it may be more practical to use
automatic hyperparameter tuning methods (see e.g. Rasmussen and Williams [38], Chapter 5).

Computing the covariance structure. Using the limited prior specification outlined above, and the initial
numerical discrepancy model fit, we characterise the covariances between all model components as outlined
in Section 4.2. In this example, we do this by sampling the solution trajectory 2000 times, assuming a
Gaussian distribution for all stochastic components. These samples are used to empirically estimate the
covariances corresponding to all edges on the graph.

5.2. Adjustment

For 5 different settings of the model parameters, we generate data from the real solution (8), add
on synthetic Gaussian noise, and examine the effect of adjustment by a subset of these values. For each
trajectory, we make 3 observations, at times selected to give good coverage of the the region of the trajectory
where u (t) > 0. The prior moments are used to construct a DAG representation of the model, which is
then converted to a junction tree representation, using the method outlined in Appendix B.3.
For simplicity in this example, we assume that each numerical discrepancy term is connected only to the
numerical discrepancy at the previous time-point in the DAG (dropping the edges to all earlier time points
seen in Figure 1). This assumption gives rise to a slightly different junction tree structure form that presented
in Section 3.2.2: the four cliques corresponding to each time step are now:

• Q1 (tk) = {ξ∗, η (tk) , û (tk) , u (tk) } (for k = 1, . . . , nt);

• Q2 (tk) = {ξ∗, η (tk) , u (tk) , η (tk+1) } (for k = 1, . . . , (nt − 1));

• Q3 (tk) = {ξ∗, u (tk) , η (tk+1) , û (tk+1) } (for k = 0, . . . , (nt − 1));

• Q4 (tk) = {u (tk) , zk, εk} (for k = 1, . . . , nt);

where here (and in the rest of this section), we use the notation η (tk) = η (u (tk−1) , ξ∗) and û (tk) =
û (u (tk−1) , ξ∗) for simplicity. The junction tree obtained by connecting these cliques together is similar
to the one shown in Figure 3: the main chain of cliques is formed by linking the cliques Q1 (tk) , Q2 (tk) ,
Q3 (tk) together in order, and linking Q3 (tk) to Q1 (tk+1) to generate the links between time steps, with
the branch to each Q4 (tk) attached to the main chain at Q3 (tk) (though Q1 (tk) or Q2 (tk) could also have
been chosen). The main clique chain begins with Q3 (t0) and ends with Q1 (tnt) .
The prior moments are updated by propagating the adjustment through the junction tree using the properties
outlined in Appendix B.3 and illustrated in Appendix B.4. For clarity, the first steps of the procedure for
adjustment given observation of a single zk (k < nt) are now described in detail.

• Identify the clique which contains zk:

– In this instance, it is the clique Q4 (tk) = {u (tk) , zk, εk}.

• Adjust moments of the other members of the clique:

– The covariances Cov [u (tk) , zk] and Cov [εk, zk] are directly available from the junction tree
specification.

– The adjusted expectation for e.g. u (tk) is therefore

Ezk [u (tk)] = E [u (tk)] + Cov [u (tk) , zk] Var [zk]−1[zk − E [zk]] ,

with the adjusted variance Varzk [u (tk)] calculated similarly.

14

• Identify the neighbouring cliques; compute the intersections between the current clique
and its neighbours; move to the neighbours:

– In this instance, the sole neighbouring clique is Q3 (tk) = {ξ∗, u (tk) , η (tk+1) , û (tk+1) }.
– The intersection with the current (initial) clique is simply {u (tk) }.
– We now move to consider adjustment of Q3 (tk) .

• Compute the covariance between elements of the current cliques and the data:

– Using the junction tree property, the covariance between zk and any element in Q3 (tk) is e.g.

Cov [η (tk+1) , zk] = Cov [η (tk+1) , u (tk)] Var [u (tk)]−1Cov [u (tk) , zk] ,

where the covariances Cov [η (tk+1) , u (tk)] etc. between elements of the same clique are available
from the junction tree specification.

• Compute the adjusted moments for the current cliques:

– Once the covariances of all nodes in Q3 (tk) with zk have been identified, adjustments can be
carried out in the usual way, e.g.

Ezk [η (tk+1)] = E [η (tk+1)] + Cov [η (tk+1) , zk] Var [zk]−1[zk − E [zk]] ,

and e.g.

Covzk [η (tk+1) , û (tk+1)] = Cov [η (tk+1) , û (tk+1)]−Cov [η (tk+1) , zk] Var [zk]−1Cov [zk, û (tk+1)] .

• Identify the neighbouring cliques (not already visited); compute the intersections between
the current cliques and their neighbours; move to the neighbours:

– We are at Q3 (tk) ; neighbours in the junction tree that we have not yet visited are
Q2 (tk) = {ξ∗, η (tk) , u (tk) , η (tk+1) } and Q1 (tk+1) = {ξ∗, η (tk+1) , û (tk+1) , u (tk+1) }.

– Considering Q2 (tk) , the intersection between this node and Q3 (tk) is the set
S = {ξ∗, u (tk) , η (tk+1) }.

– The covariance of any node in Q2 (tk) with zk can be computed as e.g.

Cov [η (tk) , zk] = Cov [η (tk) , S] Var [S]−1Cov [S, zk] ,

where Cov [S, zk] was already computed for all elements of S when considering adjustment of the
previous clique (Q3 (tk)), and Var [S] is the covariance matrix for the variables in S.

– Having obtained the covariance of all nodes in Q2 (tk) with zk, adjusted moments can now be
computed for all of these variables.

– Covariances with zk and corresponding adjusted moments are computed for all elements of the
other neighbour, Q1 (tk+1) , in the same way.

This process of adjusting moments for all nodes in a given clique, then identifying unvisited neighbouring
cliques and propagating the covariance with the data zk out to these neighbours is repeated until all cliques
on the junction tree have been visited and adjusted. If other points zl (l 6= k) on the trajectory have also
been observed, then we adjust moments further by simply repeating the above procedure for subsequent
data points, treating the moments obtained after adjustment by zk as the prior moments for adjustment by
the next data point, and so on.
Figure 4 shows the effect of the adjustment on beliefs about the trajectory and parameter settings in each
case. Figure 4(a) shows the prior and adjusted moments of the trajectory for each of the 5 parameter
settings used to generate the original data. Our uncertainties about the parameter settings and the build-up

15

of uncertainty about the state induced by the numerical discrepancy cause the prior error bars to widen over
time, meaning that our prior specification allows for a wide range of possible trajectories. Because of the
rich covariance structure encoded in the graph, making only 3 observations allows us to make confident and
accurate predictions for the remainder of the trajectory. Figure 4(b) shows the prior and adjusted moments
of the parameters ξ∗ for the same adjustment cases as in Figure 4(a): in the same way, we see that even
a small number of observations are enough to do a good job of estimating the parameter settings which
generated the trajectory.

16

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-20

0

20

40

60

80

100

z(
t)

 (
m

)
gam = 0.80, u

t
(t

0
) = 25

gam = 0.70, u
t
(t

0
) = 30

gam = 0.60, u
t
(t

0
) = 40

gam = 0.40, u
t
(t

0
) = 45

gam = 0.30, u
t
(t

0
) = 50

(a)

0 0.2 0.4 0.6 0.8 1 1.2

 (s-1)

10

20

30

40

50

60

70

du
/d

t(
t 0

)
(m

/s
)

(b)

Figure 4: Prior and adjusted moments for the components of the model presented in Section 5.2. Figure 4(a) shows
the moments of the solution trajectory u (t) : the prior expectations E [u (tk)] (k = 1, 2, . . . , nt) are shown as a solid
cyan line, and prior error bars E [u (tk)] ± 3Var [u (tk)] 1/2 are shown in dashed magenta; adjusted expectations
ED [u (tk)] and error bars ED [u (tk)] ± 3VarD [u (tk)] 1/2 given different sets of trajectory observations (generated
using different parameter settings) are shown as solid and dashed coloured lines respectively; the true trajectory in
each case is shown as a black line (largely hidden behind the corresponding adjusted expectation), and the points on
the trajectory which are observed are shown as black markers. Figure 4(b) shows the prior and adjusted moments
of the parameters ξ∗ = {u̇∗

0, γ
∗}: the magenta marker shows the prior expectation, and the magenta dashed ellipses

show the 1, 2 and 3 standard deviation contours of the prior; the coloured markers and ellipses show the moments
after each of the adjustments (colours correspond to those in Figure 4(a)); the true parameter setting in each case is
shown as a black marker.

17

6. Example: coupled bell-tower model

Churches around the world have towers which are equipped with sets of bells; these are sounded (rung)
to advertise services and to mark important occasions. Sound is generated either by striking a fixed bell
with a hammer, or by attaching a clapper to the interior of the bell and allowing the bell to swing in such
a way that this clapper strikes its internal surface. In the UK, and in some other countries, it is common
to find bells which are hung for ‘English style’ change ringing (also known as ‘full circle’ ringing); bells are
mounted on a rigid headstock, which is attached using bearings to a rigid frame, allowing it to swing through
360 degrees. A wheel is then attached to the headstock, and the bell is swung using a rope attached to this
wheel.
In some towers, the largest bell hung for full circle ringing can weigh more than 1000 kg, and other bells
in the ring are generally cast in proportion to the largest bell. The total force exerted on the tower when
bells of this size are being rung can be large. It is not uncommon for these forces to induce tower movement
which alters the trajectories of the bells, making them difficult to ring. In extreme cases, tower movement
can induce structural damage over time. Various authors have used mathematical models to study the effect
of change-ringing bells on the tower which houses them: Smith and Hunt [42] derive equations of motion for
the tower and the bells, and then use a solution for the tower forced by the solution for the bells to study
the response of the tower to different ringing regimes.
In this section, we use the framework outlined in Sections 3 and 4 to handle uncertainties encountered
when numerically solving the equations described by Smith and Hunt [42]. The remainder of the section is
structured as follows: in Section 6.1, a Lagrangian description of the coupled motion of the tower and the bells
is introduced, and the equations of motion are derived. Then, in Section 6.2, a corresponding statistical
model is defined through choice of a numerical scheme, discrepancy model and graphical representation.
Finally, in Section 6.3, ‘observations’ of the system are generated through deterministic solution of the
system on a finer mesh, and the effect of adjustment by observations of a subset of the (noise-corrupted)
solution values is discussed.

6.1. Lagrangian bell-tower model

We use a Lagrangian mechanical model for the motion of the bell-tower system, taken from Smith and
Hunt [42]. We denote the displacement of the tower at time t by x (t) = (x1 (t) , x2 (t))T, where x1 (t) is
the horizontal (East-West) displacement of the tower, and x2 (t) is its vertical (North-South) displacement.
Neglecting the effect of the bells, the Lagrangian for the tower motion is

LT =
2∑
i=1

[1

2
Mẋ2i −

1

2
κix

2
i

]
,

where M is the mass of the tower and κi is the spring constant in the ith direction. Applying the Euler-
Lagrange equation and allowing for damping of the motion, we obtain the equation of motion ẍi + 2λiẋi +
ω2
i xi = 0 independently for each direction i = 1, 2, where λi is the damping constant and ω2

i = κi/M the
natural frequency for the ith direction.
Independently of the tower, the Lagrangian for the motion of the bells is

LB =

nθ∑
j=1

[1

2
mjr

2
gj θ̇

2
j +

1

2
mjr

2
cj θ̇

2
j +mjg cos θj

]
,

where mj is the mass of the jth bell, rcj is the distance from the pivot to the centre of mass for bell j, and rgj
is the jth radius of gyration. In this instance, applying the Euler-Lagrange equations yields lj θ̈j+g sin θj = 0,
where lj = (r2gj + r2cj)/rcj .
We combine these Lagrangians, modifying the kinetic energy of each bell to include a horizontal forcing due
to the motion of the tower, to obtain the following Lagrangian for the coupled bell-tower system

L =

2∑
i=1

[1

2
Mẋ2i −

1

2
κix

2
i

]
+

2∑
i=1

nθ∑
j=1

[
dijmjrcj θ̇j ẋi cos θj

]
+

nθ∑
j=1

[1

2
mj ljrcj θ̇

2
j +mjg cos θj

]
, (9)

18

where dj = (d1j , d2j)
T is a unit vector along the swing direction of bell j. Applying the Euler-Lagrange

equations to (9), we obtain the following equations of motion

ẍi + 2λiẋi + ω2
i xi = −

nθ∑
j=1

dij
mjrcj
M

[
θ̈j cos θj − θ̇2j sin θj

]
, (10)

lj θ̈j + g sin θj = −
2∑
i=1

dij ẍi cos θj . (11)

m
Bell cwt qr lb rc (mm) l (mm) Swing (handstroke)

1 6 1 27 407 628 N-S
2 7 0 8 405 665 S-N
3 7 3 10 417 665 S-N
4 7 3 14 429 712 S-N
5 9 3 25 417 752 S-N
6 11 0 8 428 790 W-E
7 12 2 8 403 856 W-E
8 15 3 1 438 887 W-E
9 21 2 9 451 984 W-E
10 28 0 6 559 1027 S-N

Table 1: Fixed bell parameters (mass m, distance rc from pivot to centre of mass and parameter l, computed as in
Section 6.1) used as input to equations (10) and (11). The weights and layout correspond to those of the bells at
Durham Cathedral (Dove [13]), and the other bell parameters are those of the old bells at Great St Mary, Cambridge
(taken from Smith and Hunt [42])

6.2. Model specification

We develop a statistical model for the solution of the system (10) and (11) that fits within the framework
outlined in Sections 3 and 4.

Numerical scheme. We again choose a first-order Euler scheme for this problem. We stack the components
outlined in Section 6.1 into a 2× (2 + nθ)-dimensional solution state vector

u (t) =

ẋ (t)

θ̇ (t)
x (t)
θ (t)

 .

Combining the equations of motion (10) and (11) with the trivial equations of motion dx
dt = ẋ and dθ

dt = θ̇

gives the representation

A
du

dt
(t) = b,

where

A (u (t) , ξ) =

Aẋẋ Aẋθ̇ 0 0

Aθ̇ẋ Aθ̇θ̇ 0 0

0 0 I 0
0 0 0 I

 , b (u (t) , ξ) =

bẋ
bθ̇
bx
bθ

 ,

19

where bx = ẋ, bθ = θ̇, and the elements of the remaining components are

Aẋiẋj = Iij , Aẋiθ̇j = dij
mjrcj
M

cos θj ,

Aθ̇iẋj = dji cos θi , Aθ̇iθ̇j = Iij ,

bẋi =

nθ∑
j=1

dij
mjrcj
M

θ̇2j sin θj − 2λiẋi − ω2
i xi , bθ̇j = −g sin θj .

Using this notation, we can write the equations of motion as

du

dt
(t) = f (u (t) , ξ) = A−1b ,

where ξ = {λ, ω}, and the first-order Euler scheme for this problem is

ûi (u (tk) , tk, tk+1, ξ) = u (tk) + (tk+1 − tk)fi (u (tk) , ξ) .

Numerical discrepancy model. As in the example presented in Section 5, we use the higher-order derivatives
of f as the basis for our numerical discrepancy model

b (ψ) =

(
1
2h

2
k
d2u
dt2 (ψ)

1
6h

3
k
d3u
dt3 (ψ)

)
,

where again, ψ = {u (tk) , tk, tk+1, ξ} is an abbreviation for the set of solver inputs. The second-order
derivatives are

d

dt

(
A
du

dt

)
=
db

dt
,

dA

dt

du

dt
+A

d2u

dt2
=
db

dt
,

d2u

dt2
= A−1

[db
dt
− dA

dt

du

dt

]
,

and repeating the same procedure, we find that the third-order derivatives are

d3u

dt3
= A−1

[d2b
dt2
−
(d2A
dt2

du

dt
+ 2

dA

dt

d2u

dt2

)]
.

For the residual process, we simply specify that

Cov [ri (ψ) , rj (ψ′)] = VijI(ψ = ψ′) ,

so that the residual is uncorrelated across the input space and between outputs.

System relationship. We assume that there is a systematic discrepancy between the true solution to the
equation and the real bell-tower system (as in equation 5). We believe that E [δi (tk)] = 0 for all i, k, and
that

Cov [δi (tk) , δj (tl)] = Wij exp
[
− νt

2
(tk − tl)2

]
,

for all |k − l| ≤ 2, with Cov [δi (tk) , δj (tl)] = 0 otherwise, where νtk = 1 is a correlation parameter, and
Wii = (10−5)2 for all tower components and (1)2 for all bell-related components (with Wij = 0 for all j 6= i).
We assume that measurements on the system are made subject to error (as in equation 4), and we specify
that Var [εi] = (10−6)2 for all tower-related components and (10−2)2 for all bell-related components (we
assume that measurement errors are uncorrelated across model components).

20

In this example, we illustrate the process of belief adjustment using ‘observations’ of a numerically-generated
trajectory (obtained by running the solver at a higher temporal resolution): systematic discrepancy and
measurement error contributions are therefore also generated using the above specifications and added to
the synthetic trajectories. The above parameters are therefore treated as known and fixed, and are not
estimated from the data as part of the analysis. For analyses using real data, it will be necessary to estimate
such parameters from the data, for example using methods similar to those outlined in Rasmussen and
Williams [38] (Chapter 5).

Prior specification. Using the components specified above, we proceed to generate a joint prior specification
corresponding to the graphical model. We solve for a grid of 500 evenly-spaced intervals between t0 = 0 and
t = 10, so that hk = 0.02 for all k. Our second-order belief specification for the components of the initial
state is as follows

E [ẋi (t0)] = 0 , E
[
θ̇i (t0)

]
= 0 , E [xi (t0)] = 0 , E [θi (t0)] = 160 ,

Var [ẋi (t0)] = (10−4)2 , Var
[
θ̇i (t0)

]
= (10−4)2 , Var [xi (t0)] = (10−4)2 , Var [θi (t0)] = (0.1)2 ,

and for the parameters ξ∗ = {λ∗, ω∗}, we specify that E [λ∗i] = 1, Var [λ∗i] = (0.1)2, E [ω∗i] = 1.5 and
Var [ω∗i] = (0.1)2 (for i = 1, 2 in both cases). An initial fit of the discrepancy model is carried out using the
grid refinement procedure outlined in Section 4.1 and described in detail in Section 5.2.
In this example, we use the junction tree for analysis; we obtain this junction tree from the initial DAG
defined by the conditional independence structure of the model. First, we sample 500 solution trajectories,
assuming a Gaussian distribution for the initial state, the numerical discrepancy, the structural discrepancy
and the measurement error. Using these samples, we empirically estimate the covariances corresponding to
the edges on the DAG. We then proceed to convert the DAG into a junction tree which encodes the same
belief separation properties, using the procedure outlined in Appendix B.3. First, we moralise the graph,
adding additional edges into the adjacency matrix between pairs of nodes with common children. Then,
we triangulate the graph, using the ‘LB-Triang’ algorithm for computing minimal triangulations presented
by Berry et al. [2]. The nodes are labelled according to a maximum cardinality search, and the cliques are
identified using the Bron-Kerbosch algorithm (see, for example Himmel et al. [21]). The identified cliques
are then joined together into a tree as described in Appendix B.3. Once the cliques of the junction tree have
been identified, the covariances corresponding to the edges within cliques are computed from the covariances
on the edges of the original graph.

6.3. Adjustment

Having represented the prior joint covariance structure using a junction tree, we proceed to use the
junction tree as a framework for updating beliefs given data, as outlined in Appendix B.3. Data observed
on a real-world bell-tower system is not available, and so we illustrate the adjustment process by adjusting
using data simulated using an Euler solver run on a refined grid. We divide each of the initial time-steps into
200 sub-intervals, generate the numerical solution on this grid, and add on a randomly-sampled (Gaussian)
structural discrepancy and measurement error term at each time-point.
We ‘observe’ all components of this synthetic solution at every 25th time-point (i.e. the collection D =
{z25, z50, . . . , t475, z500}). The junction tree is used to adjust by each of these measurements: the covariance
Cov [., zk] of each node on the graph with the observed data zk is computed by propagation of the covariance
along the tree, and these covariances are used to adjust the expectations and covariances within each clique
when it is reached. We adjust by each of the observed zk in turn, using the set of adjusted moments after
each pass through the graph as the prior for the adjustment by the next data point. After adjustment by
all observed data, we compare the data with the adjusted moments for all time points tk, and confirm that
95% of the zk lie within 3 standard deviations of the adjusted mean.
Figures 5 and 6 show the prior and adjusted moments for some of the components of the system value y (t)
for all knots tk on the solution trajectory. In the prior, there is a great deal of uncertainty about both u (t)
and the discrepancy δ (t) . While our uncertainty about the ODE solution at the start of the trajectory is

21

relatively low, it increases rapidly in time, owing to the build-up of numerical and parameter uncertainty
between time-steps. After adjustment by 20 data points observed at evenly-spaced knots, we are able to
make confident and accurate predictions for the system value y = u + δ at the remaining times, though for
later times, some of the variation in the data due to the discrepancy is incorrectly attributed to the ODE
solution.

22

0 1 2 3 4 5 6 7 8 9 10

-5

0

5

dx
/d

t(
t)

 (
m

/s
)

10-4

0 1 2 3 4 5 6 7 8 9 10

t (s)

-5

0

5

dx
/d

t(
t)

 (
m

/s
)

10-4

(a) Tower velocity components

0 1 2 3 4 5 6 7 8 9 10
-4

-2

0

2

x(
t)

 (
m

)

10-4

0 1 2 3 4 5 6 7 8 9 10

t (s)

-2

0

2

4

x(
t)

 (
m

)

10-4

(b) Tower positions

Figure 5: Prior and adjusted moments of the ẋ and x components of the solution y (t) after adjustment as outlined
in Section 6.3. In all figures, the prior expectations E [y (tk)] are shown in cyan, and prior error bars E [y (tk)] ±
3Var [y (tk)] 1/2 are shown in dashed magenta. The adjusted expectations ED [y (tk)] are shown as solid coloured
lines, and the adjusted error bars ED [y (tk)] ± 3VarD [y (tk)] 1/2 are shown as dashed coloured lines. The synthetic
solution from which the data used for the adjustment were sampled is shown in black. Figure 5(a) shows both
components of the tower velocity ẋi (tk) for i = 1, 2 (in m/s), and Figure 5(b) shows the tower positions xi (tk) (in
m) for i = 1, 2.

23

0 5 10
-20

-10

0

10

20
d

/d
t(

t)
 (

de
g/

s)

0 5 10
-20

-10

0

10

20

d
/d

t(
t)

 (
de

g/
s)

0 5 10

t (s)

-20

-10

0

10

20

d
/d

t(
t)

 (
de

g/
s)

0 5 10

t (s)

-10

-5

0

5

10

d
/d

t(
t)

 (
de

g/
s)

(a) Bell velocities

0 5 10
-10

-5

0

5

10

(t
)

(d
eg

)

0 5 10
-10

-5

0

5

10

(t
)

(d
eg

)

0 5 10

t (s)

-10

-5

0

5

10

(t
)

(d
eg

)

0 5 10

t (s)

-10

-5

0

5

10

(t
)

(d
eg

)

(b) Bell positions

Figure 6: Prior and adjusted moments of the θ̇ and θ components of the solution y (t) after adjustment as outlined in
Section 6.3. Colours schemes used for the plot components correspond to those used in Figure 5 (cyan and magenta
for priors, black for data used in adjustment, coloured lines for adjusted moments). Figure 6(a) shows the bell
angular velocities θ̇i (tk) (in deg/s) for bells i = {1, 4, 6, 10}, and Figure 6(b) shows the bell positions θi (tk) (in
deg/s) for bells i = {1, 4, 6, 10}.

24

7. Discussion

Commonly, it is not possible to directly evaluate the solution to a system of ODEs, and so a numerical
solution is used as an approximation. The discrepancy between this approximate solution and the real
solution is unknown by definition. In this article, we present a framework which represents the structure
of our uncertainty about the true solution to the system of ODEs, and which links this to the real-world
system that the ODEs are designed to represent. The framework is most naturally represented as a graph;
this way of representing the model is also useful for the design of inference algorithms. We discussed the
structure of the numerical discrepancy function, and proposed a procedure for reducing uncertainty about
this component along the solution trajectory through a grid refinement procedure.
We perform Bayes linear analysis of the model, using the graph to structure our belief specification and to
carry out updating given observations of the system at certain times. The use of a Bayes linear graphical
model provides access to tools which reduce the computational burden associated with both the prior
uncertainty specification and the inference procedure. We can store a limited prior specification on the
edges of the graph, and use this specification to efficiently re-construct the covariance between any pair
of nodes as required. Additionally, converting the originally specified DAG to a junction tree means that
inference can be performed by propagating the adjustment along the cliques of the diagram, leading to
an update procedure whose complexity scales linearly with the number of time steps (for a fixed number
of links between discrepancy components across time-steps). Structuring the model in this way allows
for a much richer description of the covariance structure of the solution trajectory than would have been
obtainable through simply fitting an emulator to the solver output, and consequently allows us to produce
more confident and accurate predictions for the system value at time points where it has not been observed,
given measurement at a particular set of time points.
Related future work will focus on two main areas. First, the framework can be extended to deal with
partial differential equation (PDE) models, in which the solution surface is implicitly defined through a
set of relationships between partial derivatives of the solution with respect to a number of input variables,
and specification of appropriate boundary conditions. PDE models commonly describe the spatio-temporal
evolution of a particular physical system; for example, the diffusion and convection-diffusion equations can
be used to describe the evolution of gas concentrations (Stockie [43]), and the Euler and Navier-Stokes
equations can be used as a model for the behaviour of fluids (see, e.g. Vallis [48], Blazek [3]). For PDE
models, it is even more common that an analytical solution to the system of equations is not available.
Numerical methods for PDEs generally approximate the solution at a fixed set of points in space, and evolve
the approximation in time using a transfer function derived from the original equation. A number of different
kinds of numerical schemes exist in this context: finite difference schemes (see, e.g. LeVeque [30]) construct
the transfer function using finite difference approximations to partial derivative terms, in much the same
way as the Euler scheme in the ODE case; finite element schemes (see, e.g., Iserles [22]) introduce a basis
representation of the solution, and find a weak solution by imposing that the integral of this approximate
solution against a class of test functions vanishes; finite volume schemes (see, e.g. Eymard et al. [14]) use
conservation laws implied by particular PDEs to to derive relationships between quantities on spatially- and
temporally-adjacent mesh elements. In the PDE case, the numerical discrepancy introduced through use of
a particular solver will be a function of both space and time, requiring the use of a more complex model.
There are also additional complexities in the case of the finite element and finite volume methods, since these
generally give rise to implicit numerical schemes, in which we must invert a model parameter-dependent
matrix in order to time-evolve the solution.
Second, further work will focus on the treatment of higher-order behaviour of the solution trajectory (or the
solution surface, in the case of a PDE). In the examples presented in Sections 5 and 6, the prior second-
order specification is derived by making a Gaussian distributional assumption for each of the numerical
discrepancy terms, sampling the solution trajectory a number of times and deriving expectations, variances
and covariances empirically from these samples. This approach was adopted because the non-linearity in
the expression for the numerical solution means that assumptions about the higher-order moments of the
model components are required; of course, this also makes the solution dependent on a particular choice
of distribution. The Bayes linear approach does not, however, limit us to consideration of only the first-

25

and second-order moments of a collection of quantities; we may make a second-order prior specification and
carry out a Bayes linear adjustment for as many integer powers of a component as we choose. The existing
framework can be adapted to accommodate beliefs about higher order components, eliminating the need to
make distributional assumptions and sample, and capturing higher order effects in the adjustment process,
all whilst retaining the attractive computational properties of the Bayes linear analysis.

Acknowledgements

Matthew Jones was supported by an EPSRC CASE Studentship in partnership with Shell Projects and
Technology.

A. Bayes linear analysis

This appendix summarises aspects of Bayes linear methodology required for the analysis performed in
the main article. Appendix A.1 details the extent of the prior specification that we must make, and details
how our beliefs should be updated on learning the values of a set of quantities; Appendix A.2 introduces
the concepts of Bayes linear sufficiency and belief separation.

A.1. Bayes linear adjustment

We are uncertain about the values of a collection of quantities C; suppose that we observe the values of a
subset D = {D1, . . . , DnD} of C. A simple way of modifying our beliefs about the subset B = {B1, . . . , BnB}
is through linear fitting; for a single element Bi, we seek the linear combination

ED [Bi] =

nD∑
k=0

hkDk ,

which minimises

E

[(
Bi −

nD∑
k=0

hkDk

)2]
,

where D0 = 1. Optimising over h = (h1, . . . , hnD)T, we find that (Goldstein and Wooff [17])

ED [Bi] = E [Bi] + Cov [Bi, D] Var [D]−1
[
D − E [D]

]
.

The quantity ED [Bi] is referred to as the adjusted expectation. For the whole collection, we have the
following definitions.

Definition A.1. The adjusted expectation of a collection B given observation of a collection D is

ED [B] = E [B] + Cov [B,D] Var [D]−1
[
D − E [D]

]
.

Definition A.2. The adjusted variance of a collection B given observation of a collection D is

VarD [B] = Var [B] − Cov [B,D] Var [D]−1Cov [D,B] .

Definition A.3. The adjusted covariance between collections A and B given observation of a collection
D is

CovD [A,B] = Cov [A,B] − Cov [A,D] Var [D]−1Cov [D,B] .

26

A.2. Belief separation

In a probabilistic analysis, conditional independence statements are of considerable importance; we say
that the collection B is conditionally independent of the collection A given the collection D if p (B|A,D) =
p (B|D) . In a Bayes linear analysis, the corresponding specification is one of Bayes linear sufficiency.

Definition A.4. The collection D is Bayes linear sufficient for A for adjusting B if

ED∪A [B] = ED [B] .

Specifying that D is Bayes linear sufficient for A for adjusting B implies that adjustment by A provides no
further information about B after adjustment by D. This is equivalent to the following specification.

Definition A.5. The collection D separates A and B, written

bA ⊥ Bc/D ,

if D is Bayes linear sufficient for A for adjusting B.

B. Bayes linear graphical models

Graphs are used as a convenient qualitative and quantitative representation of the structure of our
beliefs about the quantities in a problem. In the probabilistic case, a graph encodes a set of conditional
independence judgements that we make; in the Bayes linear case, the graph encodes our judgements about
belief separations between quantities. A detailed introduction to Bayes linear graphical models can be found
in Goldstein and Wooff [17] (Chapter 10). This section presents aspects of the treatment of Goldstein and
Wooff which are relevant to the analysis performed in the rest of the article.

B.1. Directed graphical models

A directed acyclic graph (DAG) is a collection of nodes {G1, . . . , GnG}, with each node Gi representing
a collection of quantities {Xi1, . . . , Ximi}. Some of the nodes are joined by directed edges, subject to the
condition that there can be no directed cycles. If a directed edge runs from node Gi to node Gj , we say
that node Gi is a parent of node Gj , and that node Gj is a child of node Gi; the set of parents of a node Gi
is denoted by Pa (Gi) , and the set of its child nodes is denoted by Ch (Gi) .
We assign numerical labels to the nodes as follows: we find any node with no parents and label this as node
1; then, we assign the labels 2, 3, . . . , nG in order to any node whose parents are all already numbered. Any
ordering of the nodes in which it is not possible to reach a lower-numbered node from a higher-numbered
node is referred to as an ordering which is consistent with the graph; the procedure described here allows
us to construct at least one ordering which is consistent with any given DAG.
We can now define a directed Bayes linear (second-order) graphical model as follows.

Definition B.1. A directed Bayes linear graphical model is a model in which, when G1, . . . , GnG is
a consistent node ordering, each node Gk is separated by its parent nodes from all lower-numbered nodes in
the list, i.e. that

bGk ⊥ G (k − 1) c/Pa (Gk) ,

where G (j) = G1 ∪ . . . ∪Gj is the collection of predecessor nodes.

The following belief separation property follows directly from the structure of the graph.

Theorem B.1. On the DAG with (consistently ordered) nodes G1, . . . , GnG , the covariance between the
sets of quantities Xj and Xk represented by the pair of nodes Gj and Gk, with j < k is

Cov [Xk, Xj] = Cov [Xk,Pa (Gk)] Var [Pa (Gk)]−1Cov [Pa (Gk) , Xj] .

27

B.2. Undirected graphical models

Belief separation judgements can also be represented using undirected graphical models. An undirected
graph is one in which the edges between nodes have no associated direction. While it is generally intu-
itively more difficult to specify an undirected graphical model directly, it is straightforward to construct an
undirected graph which preserves important aspects of the belief structure imposed by a given DAG. When
adjusting beliefs, it is more natural to work with the undirected graph, as its global Markov property is
preserved under belief adjustment.
On an undirected graph, we say that a collection of nodes W separates collections of nodes U and V if all
paths from nodes in U to nodes in V pass through a node in W. The undirected graphical model associated
with a particular directed graphical model is known as the moral graph, and is constructed as follows.

Definition B.2. The moral graph associated with a particular directed graphical model is constructed by:

• ‘marrying the parents’, i.e. drawing an (undirected) arc between all pairs of nodes which share a
common child node;

• dropping all edge directions.

For the moral graph, we have the following belief separation structure

Theorem B.2. If, for three collections of nodes U, V and W, W separates U from V on the moral graph
corresponding to our original DAG, then bU ⊥ Vc/W.

B.3. Junction trees

Directed and undirected trees have attractive computational properties, and it is always possible to
convert a given directed graphical model into a type of undirected tree known as a junction tree, using the
following procedure.

Definition B.3. We construct a junction tree corresponding to a particular DAG using the following
procedure:

1. Construct the moral graph corresponding to the DAG as outlined in definition B.2;

2. Triangulate the graph: add in sufficient edges to ensure that there are no cycles of length 4 or more
without a chord;

3. Perform a maximum cardinality search:

• Choose an arbitrary node and label it as node 1;

• Assign the labels 2, 3, . . . , nG sequentially to the node on the graph with the largest number of
labelled neighbours.

If and only if the graph is triangulated, then each time we label a new node, the labelled neighbours of
this node will form a complete graph (they will all be neighbours of each other).

4. Identify and label the cliques: the cliques are the maximal sets of nodes which form complete
sub-graphs. We label the cliques in order of the highest-labelled node that they contain.

5. Create the junction tree: Each clique is a node in the junction tree. The intersection of the nodes
in a clique with the nodes in all lower-numbered cliques will be contained within at least one of the
lower-numbered cliques; we draw an edge between the clique and one of the lower-numbered cliques
which contains the intersection.

Covariances between different cliques. For any two adjacent cliques A and B on the junction tree, we have
the following property: if Z = A∩B is the set of nodes belonging to both cliques, and U = A\Z, V = B \Z,
then bU ⊥ V c/Z, since Z separates U and V on the corresponding undirected graph. For nodes Ui and
Vj , therefore, we have that Cov [Ui, Vj] = Cov [Ui, Z] Var [Z]−1Cov [Z, Vj] . This property forms the basis
of an efficient algorithm for updating all nodes on the graph: when a node D is observed, we compute
Cov [Gi, D] for each node by propagating the covariance through the intersections of the cliques. Appendix
B.4 illustrates this procedure through application to a simple example.

28

Implementation. For moderately complex DAGs (e.g. the one displayed in Figure 1, with most of the links
between numerical discrepancy/structural discrepancy components retained), the operations of triangulating
the moral graph and subsequently identifying the cliques would be difficult to perform manually. When
implementing an analysis of this kind, there are a number of algorithms which can be used to perform
these tasks. For the triangulation operation, Heggernes [19] provides a survey of a number of different
triangulation algorithms, and Berry et al. [2] present some recent work in this area. For identifying the
cliques of the triangulated graph, the Bron-Kerbosch algorithm is a popular choice: Bron and Kerbosch [4]
first presented the algorithm, and more modern treatments are due to, e.g. Himmel et al. [21], Kazals and
Karande [24].

B.4. Example: adjustment on a junction tree

We illustrate the procedure for adjusting moments on a junction tree in application to a simple example.
Figure B.7 shows a DAG representing a particular belief structure for a 7-variable model. Also shown is
the corresponding moral graph, in which the parents B and C of D and the parents E and F of G have
been connected, and all edge directions have been dropped. Note that this graph happens to be already
triangulated- it can be seen that there are no cycles of length 4 or more without a chord. A schematic
of the corresponding junction tree is also shown: the 5 cliques are Q1 = {A,B,C}, Q2 = {B,C,D},
Q3 = {C,D, F}, Q4 = {D,E, F} and Q5 = {E,F,G}. One possible node labelling resulting from the
maximum cardinality search is for the nodes to be labelled in alphabetical order (or reverse alphabetical
order): in any case, the cliques will be linked together in a chain to form the junction tree, as shown in
Figure B.7. Suppose that G has been observed, and we wish to compute the adjusted moments

EG [A] = E [A] + Cov [A,G] Var [G]−1
[
G− E [G]

]
,

VarG [A] = Var [A] − Cov [A,G] Var [G]−1Cov [G,A] .

To evaluate either of these quantities, Cov [A,G] is required; this is not specified directly, and must be
computed using the graph.
G is a member of clique Q5 only, and A is a member of clique Q1 only; therefore, to obtain adjusted
beliefs about A, the adjustment is propagated along the chain of cliques from Q5 to Q1. Using the belief
separation properties of the junction tree, the covariance between G and any member of Q4 = {D,E, F}
can be computed: for example, in the case of D

Cov [D,G] = Cov [D,S45] Var [S45]−1Cov [S45, G] ,

where S45 = {E,F} is the subset of nodes which separates the cliques Q4 and Q5. In the same way, the
covariance between any node in clique Q3 = {C,D, F} and G can now be computed: for example, in the
case of C

Cov [C,G] = Cov [C, S34] Var [S34]−1Cov [S34, G] ,

and since, by definition, the members of the separating subset S34 = {D,F} are also members of clique
Q4 = {D,E, F}, from above we have that

Cov [C,G] = Cov [C, S34] Var [S34]−1Cov [S34, S45] Var [S45]−1Cov [S45, G] .

Working along the chain of cliques in the tree in this way gives the result

Cov [A,G] = Cov [A,S12] Var [S12]−1Cov [S12, S23] Var [S23]−1

× Cov [S23, S34] Var [S34]−1Cov [S34, S45] Var [S45]−1Cov [S45, G] .

29

B E

A D G

C F

B E

A D G

C F

Q1 Q2 Q3 Q4 Q5

Figure B.7: The DAG used in the example from Appendix B.4, along with the corresponding moral graph and a
corresponding junction tree. The cliques of the junction tree are Q1 = {A,B,C}, Q2 = {B,C,D}, Q3 = {C,D, F},
Q4 = {D,E, F} and Q5 = {E,F,G}.

C. Computing the full prior specification

We provide details of the moments that must be computed in order to characterise the prior corresponding
to the DAG 1. Having made the limited prior specification for the initial state u (t0) and the best input
parameters ξ∗ as described in Section 4.2, we work through the solution trajectory, computing the moments
of the solver, numerical discrepancy and solution at each stage. We cycle through the following steps for
each time tk, k = 0, 1, 2, . . . , (nt − 1)

Solver. The expectation of the solution component ûi (tk+1) = ûi (u (tk) , ξ∗) is computed as

E [ûi (tk+1)] = E
[
E
[
ûi (u (tk) , ξ∗)

∣∣∣u (tk) , ξ∗
]]

,

and the covariance between any pair of solution components is

Cov [ûi (tk+1) , ûj (tk+1)] = E
[
Cov

[
ûi (u (tk) , ξ∗) , ûj (u (tk) , ξ∗)

∣∣∣u (tk) , ξ∗
]]

+ Cov
[
E
[
ûi (u (tk) , ξ∗)

∣∣∣u (tk) , ξ∗
]
,E
[
ûj (u (tk) , ξ∗)

∣∣∣u (tk) , ξ∗
]]

.

The outer expectations and covariances are taken with respect to {u (tk) , ξ∗}. For solvers which contain
polynomial terms of order 2 or greater, or other non-linear functions, we must make assumptions about
higher-order moments of {u (tk) , ξ∗} if we are to compute theses expectations and covariances. These
moments can be specified directly, or be obtained from a suitable probability distribution p (u (tk) , ξ∗)
characterised using the second order moments of {u (tk) , ξ∗}.

Numerical discrepancy. For the numerical discrepancy ηi (tk+1) = ηi (u (tk) , ξ∗) , we have

E [ηi (tk+1)] = E
[
E
[
ηi (u (tk) , ξ∗)

∣∣∣u (tk) , ξ∗
]]

,

and the covariance between two components of the numerical discrepancy is

Cov [ηi (tk+1) , ηj (tk+1)] = E
[
Cov

[
ηi (u (tk) , ξ∗) , ηj (u (tk) , ξ∗)

∣∣∣u (tk) , ξ∗
]]

+ Cov
[
E
[
ηi (u (tk) , ξ∗)

∣∣∣u (tk) , ξ∗
]
,E
[
ηj (u (tk) , ξ∗)

∣∣∣u (tk) , ξ∗
]]

.

30

Again, the outer expectations and covariances in these expressions are taken with respect to {u (tk) , ξ∗}.
The covariances of the discrepancy components with their parent nodes are

Cov [ηi (tk+1) , uj (tk)] = E
[
E
[
ηi (u (tk) , ξ∗)

∣∣∣u (tk) , ξ∗
]
uj (tk)

]
− E [ηi (tk+1)] E [uj (tk)] ,

and

Cov [ηi (tk+1) , ηj (tl)] = E
[
Cov

[
ηi (u (tk) , ξ∗) , ηj (u (tl−1) , ξ∗)

∣∣∣u (tk) , u (tl−1) , ξ∗
]]

+ Cov
[
E
[
ηi (u (tk) , ξ∗)

∣∣∣u (tk) , ξ∗
]
,E
[
ηj (u (tl−1) , ξ∗)

∣∣∣u (tl−1) , ξ∗
]]

.

Solution. Once the moments of û (tk+1) and η (tk+1) have been computed, it is relatively straightforward
to compute the expectation and covariance of the solution u (tk+1) = û (tk+1) + η (tk+1) at time tk+1

E [ui (tk+1)] = E [ûi (tk+1)] + E [ηi (tk+1)] ,

Cov [ui (tk+1) , uj (tk+1)] = Cov [ûi (tk+1) , ûj (tk+1)] + Cov [ûi (tk+1) , ηj (tk+1)]

+ Cov [ηi (tk+1) , ûj (tk+1)] + Cov [ηi (tk+1) , ηj (tk+1)] .

The covariances of the solution components with each of the components of its parent nodes in the DAG 1
are similarly easy to compute

Cov [ui (tk+1) , ûj (tk+1)] = Cov [ûi (tk+1) , ûj (tk+1)] + Cov [ηi (tk+1) , ûj (tk+1)] ,

Cov [ui (tk+1) , ηj (tk+1)] = Cov [ûi (tk+1) , ηj (tk+1)] + Cov [ηi (tk+1) , ηj (tk+1)] .

Algorithm 1 Compute second-order prior specification corresponding to the DAG 1; details of the individual
calculations are provided in Section 4.2.

Make limited prior specification {E [ui(t0)] }, Cov [ui(t0), uj(t0)] , {E [ξ∗i] } and Cov
[
ξ∗i , ξ

∗
j

]
.

for k = 0, 1, . . . , (nt − 1) do
Solver

Compute {E [ûi (tk+1)] }, Cov [ûi (tk+1) , ûj (tk+1)] } for i, j = 1, . . . , nu
Compute {Cov [ûi (tk+1) , uj (tk)] }} for i, j = 1, . . . , nu

Numerical discrepancy
Compute {E [ηi (tk+1)] }, Cov [ηi (tk+1) , ηj (tk+1)] } for i, j = 1, . . . , nu
Compute {Cov [ηi (tk+1) , uj (tk)] }} for i, j = 1, . . . , nu
Compute {Cov [ηi (tk+1) , ηi (tl)] }} for i, j = 1, . . . , nu, l = 1, . . . , k

Solution
Compute {E [ui (tk+1)] }, Cov [ui (tk+1) , uj (tk+1)] for i, j = 1, . . . , nu
Compute {Cov [ui (tk+1) , ηj (tk+1)] } for i, j = 1, . . . , nu
Compute {Cov [ui (tk+1) , ûj (tk+1)] } for i, j = 1, . . . , nu

end for

D. Numerical discrepancy modelling

This appendix gives details relating to the numerical discrepancy fitting procedure (Section 4.1) as
applied to the projectile trajectory example presented in Section 5. Each of the steps outlined in Section
4.1 is described below:

1. We specify that s(h) = h and that σηi = 1, so that the standard deviation of the numerical discrepancy
is h, the time-step length. This value of σηi is selected manually to ensure that the refined solution
u∗ lies within the error bars û (ψ) ± 2h for all input settings and sampled trajectories.

31

2. We generate a set of 500 inputs ψ = {u (t) , t, t+h, ξ} for data-generation by using a Latin hypercube
in {t, t + h, ξ}, and by evolving from u (0) = 0 to t on the time scale of the coarse grid.

3. For each setting of ψ generated in step 2, we obtain the corresponding numerical solution û (ψ (t))
using the Euler scheme.

4. For each setting of ψ from step 2, we also sub-divide the interval [t, t + h] into n∗ = 500 evenly-
spaced intervals, and obtain samples of u∗(ψ (t)) for each input setting by evolving from t to t + h
on the refined grid, at each step including a mean-zero Gaussian numerical discrepancy with standard
deviation as specified in 1.

5. For each input setting, we sample u∗ 100 times by repeating step 4.

6. The samples generated in 5 are used to empirically determine the moments Ẽ [η (ψ (t))] and

Ṽar [η (ψ (t))] at each of the input settings fixed in 2.

The moments Ẽ [η (ψ (t))] and Ṽar [η (ψ (t))] generated for specific input settings ψ using this procedure
are then used as data to adjust beliefs about the numerical discrepancy over the whole space of possible
inputs. The expectations obtained in step 6 are treated as observations of the numerical discrepancy at the
corresponding inputs, with the variances from step 6 treated as measurement error variances.
In more detail, the data generated using the above procedure are used to adjust the moments of the numerical
discrepancy model (7). First, a set of 50 points is used to generate the prior moments for the regression
coefficients {βj} and an estimate of the marginal variance V of the residual process. Then, a set of 500
points is used to jointly adjust the moments of the regression coefficients and the residual process. Denoting
the set of calculated Ẽ [η (ψ (t))] values by D, the resulting adjusted expectation for an evaluation of the
numerical discrepancy η at any input point ψ is

ED [η (ψ)] =
∑
j

ED [βj] bj (ψ) + ED [r (ψ)] ,

and the covariance between evaluations of η at inputs ψ and ψ′ is

CovD [η (ψ) , η (ψ′)] =
∑
j,l

CovD [βj , βl] bj (ψ) bl (ψ
′) +

∑
j

CovD [βj , r (ψ′)] bj (ψ)

+
∑
l

CovD [r (ψ) , βl] bl (ψ
′) + CovD [r (ψ) , r (ψ′)] .

Recall from Section 4.1 that the {bj (ψ (t)) } are the (deterministic) basis functions (generally chosen to be
higher-order terms from the Taylor expansion of the solution). Once the moments of the model have been
adjusted, a final set of 100 data points is used to test the quality of the model predictions. The adjusted
moments are used as input to the sampling procedure used to characterise the moments for the full model,
detailed in Section 4.2.
Aspects of the fitted numerical discrepancy model are illustrated in Figure D.8. Figure 8(a) demonstrates
how the model for η is used to apply a correction to the numerical solution at successive time-steps, in
order to generate more accurate predictions for the true solution. Figure 8(b) shows the mean prediction
generated by the fitted model for a grid of values of t and h.

32

1.65 1.7 1.75 1.8 1.85 1.9

t (s)

16.9

16.92

16.94

16.96

16.98

17

17.02

17.04

17.06

17.08

u(
t)

 (
m

/s
)

(a)

0 0.5 1 1.5 2 2.5 3

t (s)

0.05

0.1

0.15

0.2

h
(s

)

-0.25

-0.2

-0.15

-0.1

-0.05

E
[

]

(b)

Figure D.8: Illustration of the numerical discrepancy model for the projectile trajectory example presented in Section
5 and referred to in Appendix D. Figure 8(a) demonstrates the relationship between the true solution, the numerical
approximation and the numerical discrepancy model. The true solution (for γ = 0.15 and u̇(t0) = 20) in this time
interval is shown in black; numerical approximations û are generated at intervals of h = 0.1 seconds are generated
(starting from the true solution in each case), and the corresponding trajectories are shown in blue; the mean
correction E [η] applied by the numerical discrepancy model is shown in dashed green; and 10 trajectories generated
by sampling numerical discrepancy values from a Gaussian distribution are shown as red dashed lines. Figure 8(b)
shows the expectation E [η] of the numerical discrepancy for a range of different {t, h} values (assuming evolution
begins from the true solution in each case).

33

References

[1] A. Abdulle and G. Garegnani. Random time step probabilistic methods for uncertainty quantification in chaotic and
geometric numerical integration. Statistics and Computing, 2020. ISSN 15731375. doi: 10.1007/s11222-020-09926-w.
URL https://doi.org/10.1007/s11222-020-09926-w.

[2] A. Berry, E. Dahlhaus, P. Heggernes, and G. Simonet. Sequential and parallel triangulating algorithms for elimination
game and new insights on minimum degree. Theoretical Computer Science, 409:601–616, 2008.

[3] J. Blazek. Computational Fluid Dynamics: Principles and Applications. Elsevier Science, 2005. ISBN 9780080445069.
doi: doi.org/10.1016/B978-008044506-9/50004.

[4] C. Bron and J. Kerbosch. Algorithm 457: finding all cliques of an undirected graph. Communications of the ACM, 16:
575–577, 1973. doi: 10.1145/362342.362367.

[5] J. Brynjarsdottir and A. O’Hagan. Learning about physical parameters: the importance of model discrepancy. Inverse
Problems, xx:1–21, 2014. ISSN 13616420. doi: 10.1088/0266-5611/30/11/114007.

[6] J.C. Butcher. Coefficients for the study of Runge-Kutta integration processes. Journal of the Australian Mathematical
Society, 3:185–201, 1963. doi: doi.org/10.1017/S1446788700027932.

[7] O. A. Chkrebtii, D. A. Campbell, B. Calderhead, and M. A. Girolami. Bayesian solution uncertainty quantification for
differential equations. Bayesian Analysis, 11(4):1269–1273, 2016. ISSN 19316690. doi: 10.1214/16-BA1036.

[8] J. Cockayne, C. J. Oates, T. Sullivan, and M. Girolami. Probabilistic meshless methods for partial differential equations
and Bayesian inverse problems. arXiv preprint arXiv:1605.07811, pages 1–52, 2016.

[9] J. Cockayne, C. Oates, T. Sullivan, and M. Girolami. Bayesian probabilistic numerical methods. Forthcoming, 2017. URL
https://arxiv.org/pdf/1702.03673.pdf.

[10] P. R. Conrad, M. Girolami, S. Särkkä, A. Stuart, and K. Zygalakis. Statistical analysis of differential equations: introducing
probability measures on numerical solutions. Statistics and Computing, 27(4):1065–1082, Jul 2017. ISSN 1573-1375. doi:
10.1007/s11222-016-9671-0. URL https://doi.org/10.1007/s11222-016-9671-0.

[11] P. S. Craig, M. Goldstein, J. C. Rougier, and A. H. Seheult. Bayesian forecasting for complex systems using computer
simulators. Journal of the American Statistical Association, 96(454):717–729, 2001. ISSN 0162-1459. doi: 10.1198/
016214501753168370.

[12] P. Diaconis. Bayesian numerical analysis. In S. Gupta J. Berger, editor, Statistical Decision Theory and Related Topics
IV, pages 163–175. Springer-Verlag, 1988.

[13] Dove. Dove’s Guide: Durham Cathedral, 2015. URL http://dove.cccbr.org.uk/detail.php?searchString=Durham+

Cath{&}Submit=+Go+{&}DoveID=DURHAM.
[14] R. Eymard, T. Gallouet, and R. Herbin. Finite Volume Methods: Schemes and Analysis. Technical report, 2008.
[15] M. Goldstein and J. C. Rougier. Probabilistic formulations for transferring inferences from mathematical models to physical

systems. SIAM Journal on Scientific Computing, 26(0):467–487, 2004. ISSN 1064-8275. doi: 10.1137/S106482750342670X.
URL http://dx.doi.org/10.1137/S106482750342670X.

[16] M. Goldstein and D.J. Wilkinson. Bayes linear analysis for graphical models: The geometric approach to local computation
and interpretive graphics. Statistics and Computing, 10:311–324, 2000. doi: https://doi.org/10.1023/A:1008977409172.

[17] M. Goldstein and D. Wooff. Bayes Linear Statistics: Theory and Methods. Wiley, Chichester, 2007.
[18] T. Graepel. Solving noisy linear operator equations by Gaussian processes: application to ordinary and partial differential

equations. In Proceedings of the Twentieth International Conference on International Conference on Machine Learning,
ICML’03, page 234–241. AAAI Press, 2003. ISBN 1577351894.

[19] P. Heggernes. Minimal triangulations of graphs: A survey. Discrete Mathematics, 306:297–317, 2006. doi: https:
//doi.org/10.1016/j.disc.2005.12.003.

[20] P. Hennig, M.A. Osborne, and M. Girolami. Probabilistic numerics and uncertainty in computations. Proceedings of the
Royal Society of London A: Mathematical, Physical and Engineering Sciences, 471, 2015.

[21] A.S. Himmel, H. Molter, R. Niedermeier, and M. Sorge. Enumerating maximal cliques in temporal graphs. pages 337–344,
2016.

[22] Arieh Iserles. A first course in the numerical analysis of differential equation. 2008. ISBN 9780521734905.
[23] M.J. Jones. bayes-linear-odes. https://github.com/mjj89/bayes-linear-odes, 2020.
[24] F. Kazals and C. Karande. A note on the problem of reporting maximal cliques. Theoretical Computer Science, 407:

564–568, 2008.
[25] M C Kennedy and A O’Hagan. Bayesian calibration of computer models. J. R. Stat. Soc. Ser. B, 63:425–464, 2001. URL

http://dx.doi.org/10.1111/1467-9868.00294.
[26] H. Kersting and P. Hennig. Active uncertainty calibration in Bayesian ODE solvers. In Proceedings of the Thirty-Second

Conference on Uncertainty in Artificial Intelligence, UAI’16, page 309–318, Arlington, Virginia, USA, 2016. AUAI Press.
ISBN 9780996643115.

[27] T. W. B. Kibble and F. H. Berkshire. Classical Mechanics. Imperial College Press, London, 2004. ISBN 978-1-86094-435-2.
[28] F . M . Larkin. Gaussian measure in Hilbert space and applications in numerical analysis. The Rocky Mountain Journal

of Mathematics, 2:379–421, 1972.
[29] S.L. Lauritzen. Graphical Models. Oxford Statistical Science. Clarendon Press, 1996. ISBN 9780191591228.
[30] R.J. LeVeque. Numerical Methods for Conservation Laws. Birkhauser, 1992. ISBN 0-8176-2723-5.
[31] H. Lie Cheng, A. M. Stuart, and T. J. Sullivan. Strong convergence rates of probabilistic integrators for ordinary differential

equations. Statistics and Computing, 29(6):1265–1283, 2019. ISSN 15731375. doi: 10.1007/s11222-019-09898-6.
[32] H. Mohammadi, P. Challenor, and M. Goodfellow. Emulating dynamic non-linear simulators using Gaussian processes.

34

https://doi.org/10.1007/s11222-020-09926-w
https://arxiv.org/pdf/1702.03673.pdf
https://doi.org/10.1007/s11222-016-9671-0
http://dove.cccbr.org.uk/detail.php?searchString=Durham+Cath{&}Submit=+Go+{&}DoveID=DURHAM
http://dove.cccbr.org.uk/detail.php?searchString=Durham+Cath{&}Submit=+Go+{&}DoveID=DURHAM
http://dx.doi.org/10.1137/S106482750342670X
https://github.com/mjj89/bayes-linear-odes
http://dx.doi.org/10.1111/1467-9868.00294

Computational Statistics and Data Analysis, 139:178–196, 2019. ISSN 01679473. doi: 10.1016/j.csda.2019.05.006. URL
https://doi.org/10.1016/j.csda.2019.05.006.

[33] C. J. Oates and T. J. Sullivan. A modern retrospective on probabilistic numerics. Statistics and Computing, 29(6):1335–
1351, 2019. ISSN 15731375. doi: 10.1007/s11222-019-09902-z. URL https://doi.org/10.1007/s11222-019-09902-z.

[34] C. J. Oates, J. Cockayne, R. G. Aykroyd, and M. Girolami. Bayesian probabilistic numerical methods in time-dependent
state estimation for industrial hydrocyclone equipment. Journal of the American Statistical Association, 114(528):1518–
1531, 2019. ISSN 1537274X. doi: 10.1080/01621459.2019.1574583. URL https://doi.org/10.1080/01621459.2019.

1574583.
[35] A. O’Hagan. Monte Carlo is fundamentally unsound. Journal of the Royal Statistical Society. Series D, 36(2):247–249,

1987.
[36] A. O’Hagan. Bayes–Hermite quadrature. Journal of Statistical Planning and Inference, 29(3):245–260, 1991.

ISSN 03783758. doi: 10.1016/0378-3758(91)90002-V. URL http://www.sciencedirect.com/science/article/pii/

037837589190002V.
[37] F. Pukelsheim. The three sigma rule. The American Statistician, 48(2):88–91, 1994. doi: 10.

1080/00031305.1994.10476030. URL http://www.jstor.org/stable/2684253{%}5Cnpapers2://publication/uuid/

9ACCD11F-DDFC-4267-84CB-68C447DC1CCC.
[38] C.E. Rasmussen and C.K.I. Williams. Gaussian processes for machine learning. The MIT Press, 2005. ISBN 026218253X.

URL http://www.gaussianprocess.org/gpml/.
[39] M. Schober, D.K. Duvenaud, and P. Hennig. Probabilistic ODE solvers with Runge-Kutta means. In Proceedings of the

27th International Conference on Neural Information Processing Systems - Volume 1, NIPS’14, page 739–747, Cambridge,
MA, USA, 2014. MIT Press.

[40] M. Schober, S. Särkkä, and P. Hennig. A probabilistic model for the numerical solution of initial value problems. Statis-
tics and Computing, Jan 2018. ISSN 1573-1375. doi: 10.1007/s11222-017-9798-7. URL https://doi.org/10.1007/

s11222-017-9798-7.
[41] J. Skilling. Bayesian solution of ordinary differential equations. In C. R. Smith, G. J. Erickson, and P. O. Neudorfer,

editors, Maximum Entropy and Bayesian Methods: Seattle, 1991, pages 23–37. Springer Netherlands, Dordrecht, 1992.
ISBN 978-94-017-2219-3. doi: 10.1007/978-94-017-2219-3 2. URL https://doi.org/10.1007/978-94-017-2219-3_2.

[42] R. Smith and H. Hunt. Vibration of bell towers excited by bell ringing — a new approach to analysis. In Interna-
tional Conference on Noise and Vibration Engineering, 2008. ISBN 9781615671915. URL http://www2.eng.cam.ac.uk/

{~}hemh1/isma2008.pdf.
[43] J. M. Stockie. The mathematics of atmospheric dispersion modeling. SIAM Review, 53:349–372, 2011. ISSN 0036-1445.

doi: 10.1137/10080991X. URL http://epubs.siam.org/doi/pdf/10.1137/10080991X{%}5Cnpapers2://publication/

uuid/75D838F0-6E28-4CFA-965F-568BCC65CA79.
[44] A. V. Suldin. The method of regression in the theory of approximation. Uchenye Zapiski Kazanskogo Universiteta (Book

6), 123:3–35, 1963.
[45] O. Teymur, K. Zygalakis, and B. Calderhead. Probabilistic linear multistep methods. In D. D. Lee, M. Sugiyama, U. V.

Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems 29, pages 4321–4328.
Curran Associates, Inc., 2016. URL http://papers.nips.cc/paper/6356-probabilistic-linear-multistep-methods.

pdf.
[46] O. Teymur, B. Calderhead, H. Cheng Lie, and T. J. Sullivan. Implicit probabilistic integrators for ODEs. Advances in

Neural Information Processing Systems, 2018-December(NeurIPS):7244–7253, 2018. ISSN 10495258.
[47] F. Tronarp, H. Kersting, S. Särkkä, and P. Hennig. Probabilistic solutions to ordinary differential equations as nonlinear

Bayesian filtering: a new perspective. Statistics and Computing, 29(6):1297–1315, 2019. ISSN 15731375. doi: 10.1007/
s11222-019-09900-1. URL https://doi.org/10.1007/s11222-019-09900-1.

[48] G. K. Vallis. Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, Cambridge, U.K., 2006.
[49] I. Vernon, M. Goldstein, and R. G. Bower. Galaxy formation: a Bayesian uncertainty analysis. Bayesian Analysis, 5(4):

619–669, 2010. ISSN 1936-0975. doi: 10.1214/10-BA524. URL http://projecteuclid.org/euclid.ba/1340110846.

35

https://doi.org/10.1016/j.csda.2019.05.006
https://doi.org/10.1007/s11222-019-09902-z
https://doi.org/10.1080/01621459.2019.1574583
https://doi.org/10.1080/01621459.2019.1574583
http://www.sciencedirect.com/science/article/pii/037837589190002V
http://www.sciencedirect.com/science/article/pii/037837589190002V
http://www.jstor.org/stable/2684253{%}5Cnpapers2://publication/uuid/9ACCD11F-DDFC-4267-84CB-68C447DC1CCC
http://www.jstor.org/stable/2684253{%}5Cnpapers2://publication/uuid/9ACCD11F-DDFC-4267-84CB-68C447DC1CCC
http://www.gaussianprocess.org/gpml/
https://doi.org/10.1007/s11222-017-9798-7
https://doi.org/10.1007/s11222-017-9798-7
https://doi.org/10.1007/978-94-017-2219-3_2
http://www2.eng.cam.ac.uk/{~}hemh1/isma2008.pdf
http://www2.eng.cam.ac.uk/{~}hemh1/isma2008.pdf
http://epubs.siam.org/doi/pdf/10.1137/10080991X{%}5Cnpapers2://publication/uuid/75D838F0-6E28-4CFA-965F-568BCC65CA79
http://epubs.siam.org/doi/pdf/10.1137/10080991X{%}5Cnpapers2://publication/uuid/75D838F0-6E28-4CFA-965F-568BCC65CA79
http://papers.nips.cc/paper/6356-probabilistic-linear-multistep-methods.pdf
http://papers.nips.cc/paper/6356-probabilistic-linear-multistep-methods.pdf
https://doi.org/10.1007/s11222-019-09900-1
http://projecteuclid.org/euclid.ba/1340110846

	Introduction
	Numerical solution of ODEs
	General one-step numerical scheme
	Numerical discrepancy

	Building a model
	Model structure
	Relating the solution to the system
	Relating the numerical approximation to the solution

	Graphical representation
	Directed graphical model
	Junction tree

	Bayes linear analysis
	Numerical discrepancy model
	Generating approximate numerical discrepancy data
	Estimating the parameters of the numerical discrepancy model

	Second-order prior specification
	Adjusting moments

	Example: projectile trajectory
	Model
	Adjustment

	Example: coupled bell-tower model
	Lagrangian bell-tower model
	Model specification
	Adjustment

	Discussion
	Bayes linear analysis
	Bayes linear adjustment
	Belief separation

	Bayes linear graphical models
	Directed graphical models
	Undirected graphical models
	Junction trees
	Example: adjustment on a junction tree

	Computing the full prior specification
	Numerical discrepancy modelling

