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A B S T R A C T

Environmental contours are used to simplify the process of design response analysis. A wide
variety of contour methods exist; however, there have been a very limited number of compar-
isons of these methods to date. This paper is the output of an open benchmarking exercise, in
which contributors developed contours based on their preferred methods and submitted them
for a blind comparison study. The exercise had two components—one, focusing on the robust-
ness of contour methods across different offshore sites and, the other, focusing on characterizing
sampling uncertainty. Nine teams of researchers contributed to the benchmark. The analysis of
the submitted contours highlighted significant differences between contours derived via different
methods. For example, the highest wave height value along a contour varied by as much as a
factor of two between some submissions while the number of metocean data points or obser-
vations that fell outside a contour deviated by an order of magnitude between the contributions
(even for contours with a return period shorter than the duration of the record). These differences
arose from both different joint distribution models and different contour construction methods,
however, variability from joint distribution models appeared to be higher than variability from
contour construction methods.
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1. Introduction

The environmental contour method is often used to aid in the design and analysis of marine structures. It is a
simplified approach that derives extreme environmental conditions, which can be used to estimate theN-year structural
response (with N corresponding to a target reliability for an ultimate limit state; for example N = 50 years). A
more accurate approximation of the true N-yr structural response can be computed by integrating the product of
the short-term response distribution, conditional on the environmental state, and the long-term joint distribution of
the environment. This approach is usually referred to as “full long-term analysis” (see, for example, Guedes Soares
(1993); Muliawan, Gao and Moan (2013)). Because a full long-term analysis can be computationally expensive, the
environmental contour method is commonly used to get a first estimate of the response or as an entire replacement for
performing a full long-term analysis.

It is important to understand that the typical two-dimensional contour method ignores response variability condi-
tional on the sea state (or more generally the “environmental state”) conditions and response computations are later
made only for points on the contour that represent a subset of environmental conditions of interest for design. For each
design condition on the environmental contour a number of stochastic time-domain simulations are run and the peak
response in each simulation is recorded. The peak response in the environmental state is then defined as the median or
– to indirectly account for short-term variability – a higher percentile (Baarholm, Haver and Økland, 2010; Muliawan
et al., 2013) of the peak values over each simulation. Alternatively, short-term variability can also be accounted for by
inflating the contour by using a higher return period or by applying an additional safety factor that is multiplied with
the environmental load (NORSOK, 2007). Finally, the design value is taken as the largest response over all sea states
along the contour. There are two limitations with this approach to design—first, many environmental states are not
checked and, second, the short-term variability of the response is not fully assessed. Any full long-term response-based
analysis (see, for example Vanem, Guo, Ross and Jonathan, 2020) makes neither of these approximations but can be
prohibitively expensive.

Note that the environmental contour method is a special case of more general inverse reliability approaches that can
expand the dimension space by one variable to include the response conditional on the environment as an additional
variable. An advantage is that more environmental states can be checked than were included in the contour method
but a disadvantage is that points on the hypersphere for the target reliability require quantiles of response conditional
on the environment that are far from median levels and require considerable amount of simulations, albeit less than
with the all sea states approach and, of course, a greater number of environmental states must be evaluated than with
the environmental contour method. This has been demonstrated in the seminal work (Winterstein, Ude, Cornell,
Bjerager and Haver, 1993) and explicit inclusion of response variability has been employed in the design of fixed and
floating offshore wind turbines (Rendon and Manuel, 2014; Liu, Thomas, Goyal and Manuel, 2019). It is important to
emphasize that contour methods and other inverse reliability methods are acknowledged as approximate methods; they
were founded on principles of structural reliability with a view toward limiting computation that can be prohibitive
with a full long-term analysis.

Deriving an environmental contour from a metocean dataset generally involves two steps: estimating the joint
distribution of the environmental variables of interest, for example, wave height and period, and constructing the envi-
ronmental contour based on that joint distribution (Figure 1). For both steps, various approaches have been proposed.
The joint distribution can be estimated using different model structures such as global hierarchical models (for example,
Mathisen and Bitner-Gregersen, 1990; Bitner-Gregersen, 2015; Horn, Bitner-Gregersen, Krokstad, Leira and Amdahl,
2018; Cheng, Svangstu, Moan and Gao, 2019), copula models (for example, Vanem, 2016; Fazeres-Ferradosa, Taveira-
Pinto, Vanem, Reis and das Neves, 2018; Manuel, Nguyen, Canning, Coe, Eckert-Gallup and Martin, 2018; Zhang,
Kim, Beer, Dai and Guedes Soares, 2018; Heredia-Zavoni and Montes-Iturrizaga, 2019; Lin, Dong and Tao, 2020), ker-
nel density estimates (for example, Ferreira and Guedes Soares, 2002; Eckert-Gallup and Martin, 2016; Haselsteiner,
Ohlendorf and Thoben, 2017a) or conditional extremes models (Jonathan, Flynn and Ewans, 2010; Jonathan, Ewans
and Flynn, 2014). Another consideration relates to how the model parameters are estimated – even if the same model
structure is used, parameter values estimated using, for example, maximimum likelihood estimation or the method of
moments, can strongly deviate from each other (Guedes Soares and Henriques, 1996; Vanem, 2015).

For the second step, namely construction of the contour, various methods have been proposed that differ in their
definition of which regions in the variable space are considered exceedances (Figure 2). They include Haver’s con-
stant exceedance method (Haver, 1985, 1987), the inverse first-order reliability method (IFORM; Winterstein et al.
(1993)), the inverse second-order reliability method (ISORM; Chai and Leira (2018)), inverse directional simulation
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Figure 1: Deriving an environmental contour from a metocean dataset requires two consecutive steps: estimating the
environment’s long-term joint distribution ("statistical modelling") and constructing a contour based on that joint distri-
bution ("contour construction"). In the lower part of the figure the types of metocean datasets, statistical models and
environmental contours that have been used in this benchmark are shown.

(Dimitrov, 2020), the direct sampling contour method (Huseby, Vanem and Natvig, 2013), direct IFORM (Derbanne
and de Hauteclocque, 2019), joint exceedance contour methods (Jonathan et al., 2014) and the highest density contour
method (Haselsteiner, Ohlendorf, Wosniok and Thoben, 2017b). Due to contrasting definitions, even for the same un-
derlying joint distribution, for any target exceedance probability, �, different constructed contours will result from each
of the methods. Broadly, the contour construction methods can be classified by two criteria: i) whether the contour is
constructed in the original (physical) variable space (as with the direct sampling, direct IFORM and highest density
method) or in a standard normal space (as with IFORM, ISORM and inverse directional simulation) and ii) whether
the contour definition is based on one or more regions in the variable space associated with the target (�) exceedance
probability: In IFORM, direct IFORM and the direct sampling contour method, the failure surface is approximated as
a hyperplane, which is equivalent to defining the contour exceedance probability as a marginal exceedance probability
under a rotation of the axis. During contour construction, all axis rotations are considered such that there are many
regions in the variable space that contain probability �, however, only one of these regions is assumed to match the
failure surface of the structure of interest. In ISORM, inverse directional simulation and the highest density contour
method, a single region that covers the complete variable space outside the contour, contains a probability of �. These
two classes of contours can therefore be summarized as contours based on marginal exceedance probabililty and con-
tours based on total exceedance probability. A study on the properties of these two classes of contours was presented
by Mackay and Haselsteiner (2021).

The different definitions for the exceedance region are related to an important approximation of the environmental
contour method: For a deterministic response, the method assumes that if a structure is designed using environmental
conditions that have a joint exceedance probability of � = 1∕(TR × nyr) (where TR is the return period in years and nyr
is the number of environmental states per year), the resulting structure will have a probability of failure, pf , that is less
than, but close to �. Consequently, it is desired that the contour’s exceedance region is a conservative approximation
of the structure’s failure region. Note, however, that the goal of conservatism in the approximation of the failure
surface is not absolute: A slightly unconservative approximation can be compensated by choosing an appropriate
safety factor, which is later multiplied with the design load. Studies on different constructed contours for the same
joint distribution have been published by Leira (2008); Vanem and Bitner-Gregersen (2015); Vanem (2017); Huseby,
Vanem and Eskeland (2017); Haselsteiner et al. (2017b); Chai and Leira (2018); Wang, Wang and Woo (2018); Vanem
et al. (2020). A broad recent review on the environmental contour method was provided by Ross, Astrup, Bitner-
Gregersen, Bunn, Feld, Gouldby, Huseby, Liu, Randell, Vanem and Jonathan (2019) and a recent effort presenting a
comparison framework for environmental contours was published by Eckert, Martin, Coe, Seng, Stuart and Morrell
(2021).

To provide a common basis to compare proposed environmental contour methods, a benchmarking exercise was
proposed at the International Conference on Ocean, Offshore & Arctic Engineering (OMAE 2019; Haselsteiner, Coe,
Manuel, Nguyen, Martin and Eckert-Gallup (2019)). This benchmark exercise involved two components—one focused
on analyzing the robustness of contour methods across different sites (“Exercise 1”) and the other focused on charac-
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Figure 2: Contour construction methods differ in how the exceedance region associated with a probability � is defined.
(a) An environmental contour, its associated marginal exceedance probabilities and its total exceedance probability. (b)
Exceedance regions in the contour methods used in this benchmark. The shown failure surfaces are simple examples,
illustrating that contours defined using marginal exceedance were proposed for convex failure regions and contours defined
using total exceedance were proposed for non-convex failure regions. Hatched area = exceedance region, �=exceedance
probability used to construct the contour, x1 and x2 = environmental variables in the original variable space, u1 and u2
= environmental variables transformed into standard normal space, �F and �S = reliability index of the inverse first- and
second-order reliability method, f = probability density.

terizing sampling uncertainty (“Exercise 2”). Six datasets were provided, each involving two environmental variables.
Three datasets comprised time series of significant wave height and zero-up-crossing period while three other datasets
included wind speed and significant wave height data. Participants were asked to compute environmental contours
with return periods of 1, 20 and 50 years. These two-dimensional contours of wave and wind variables were chosen
for comparison because they represent common cases required in practice for design. The use of sea state contours
is recommended in guidelines and standards such as DNV GL’s recommended practice on environmental conditions
and environmental loads (RP-C205; DNV GL, 2017) and NORSOK’s standard on actions and action effects (N-003;
NORSOK, 2007). The use of wind-wave contours is required when following IEC’s standard on the design of offshore
wind turbines (International Electrotechnical Commission, 2019). Studies on sea state environmental contours include
the works of Haver (1985); Winterstein et al. (1993); Eckert-Gallup, Sallaberry, Dallman and Neary (2014); Velarde,
Vanem, Kramhøft and Dalsgaard (2019) and studies on wind speed wave height contours have been published, for ex-
ample, by Saranyasoontorn and Manuel (2006) and Karmakar, Bagbanci and Guedes Soares (2016). Some researchers
combined these three variables to construct wave height, wave period and wind speed “contours”, for example, Li, Gao
and Moan (2015, 2016); Li, Yuan, Gao, Zhang and Tezdogan (2019); Vanem (2019).

Nine teams of researchers participated in the exercise and this paper presents the results. The benchmarking study
was designed as an open, systematic comparison, allowing for both different models for the joint distribution and dif-
ferent methods for contour construction. The study’s design did not aim to rank the appropriateness or accuracy/quality
of any participant’s submitted contours or methods used to derive them, but rather to provide a comparison of the wide
range of contour methods that have been proposed in recent years.

The benchmark’s results highlight and quantify some significant differences between contours derived via the
different methods. For example, the highest wave height value along the contour varied by as much as a factor of
two between some submissions while the number of metocean data points or observations that fell outside a contour
deviated by an order of magnitude between the contributions (even for contours with a return period shorter than
the duration of the record). While not covered by the originally scoped benchmark exercise proposal (Haselsteiner
et al., 2019), the paper by de Hautecloque, Mackay and Vanem provides further comparisons of the nine submitted
contributions (de Hauteclocque, Mackay and Vanem, in preparation).

AF Haselsteiner et al.: Preprint submitted to Elsevier Page 4 of 37



A benchmarking exercise for environmental contours

Figure 3: Locations of the six used datasets. Datasets A, B and C represent measurements from moored buoys. The data
were downloaded from the website of the National Data Buoy Center (NDBC). Datasets D, E and F were obtained from
the hindcast coastDat-2 (Groll and Weisse, 2017). Both types of datasets represent hourly time series. The provided buoy
datasets cover 10 years and the provided hindcast datasets cover 25 years. Time periods of equal length were retained for
evaluation.

The next section, section 2, describes the contour methods that were employed in the nine submitted contributions.
It first provides a high-level overview and, then, a single sub-section for each contribution that offers additional details.
Then, section 3 describes all the results using the methods and metrics that were stipulated in the paper that announced
the exercise (Haselsteiner et al., 2019). Finally, section 4 contains a discussion and section 5 provides some conclusions.

2. Exercises and contributions

Nine teams submitted contributions for Exercise 1 and four of those teams submitted for Exercise 2. A high-level
overview of the details of each contribution is presented in Table 2. In addition, Table 2 references code and stand-alone
papers for each method, where available.

The two exercises were described in detail in the paper that announced the benchmark (Haselsteiner et al., 2019).
They were based on six provided datasets (Figure 3). Three datasets, dataset A, B, and C , contained hourly buoy
measurements from three sites off the US coast. They contained hourly time series of significant wave height, Hs, and
zero-up-crossing period, Tz. The other three datasets, dataset D, E and F , were obtained from the hindcast coastDat-2
(Groll and Weisse, 2016, 2017) and covered three locations in the North Sea. They contained hourly time series of a
10-minute mean wind speed, U10, at 10 m above sea level, and a 1-hour significant wave height, Hs. The organizers
provided 10 years of data of sea state measurements (datasets A, B, and C) and 25 years of wind-wave data (datasets
D, E and F ) to the participants. For evaluation of the submitted contours, another 10 years of sea state data and
25 years of wind-wave data were retained by the organizers until after all the participants’ results were received. To
distinguish between the different parts of the datasets, we refer to the parts that were made available to the participants
as “provided”, to the parts that were not made available as “retained”, and to the entire set as “full”.

In Exercise 1, participants were required to compute 1-yr and a 20-yr sea state contours and 1-yr and 50-yr wind-
wave contours. The exercise focused on the robustness of a contour method across different offshore sites. This
robustness is mainly affected by the type of model used to represent the joint distributions. Three types of comparisons
were outlined for Exercise 1 in the OMAE 2019 paper:

• plotting all submitted contours in an overlay for visual comparison,

• reporting the maximum values along the contour in each dimension and

• counting the number of points (measured environmental conditions) outside each contour.

To provide perspective to the number of points outside the contours, here, we also calculate the expected number of
points outside a contour, assuming that measurement data represent independent observations (the impact of serial
correlation in the data on this metric is discussed in section 4). This number varies with the contour’s return period
and the method that was used to construct the contour (Table 1). It is important not to overly weight the importance
and reliability of this metric. Since environmental contours are generally used in engineering analyses in predicting
extreme responses, only points that fall outside the contour that elicit large responses are generally of practical concern.

AF Haselsteiner et al.: Preprint submitted to Elsevier Page 5 of 37



A benchmarking exercise for environmental contours

Table 1
Calculating the expected number of points outside a contour. Contour construction methods define the exceedance
region that contains probability � differently such that the total exceedance probability outside the contour, �t, varies
(Figure 2). Assuming independent observations, the expected number of points outside a contour can be calculated as
E[noutside] = n × �t; where � is the exceedance probability used to construct the contour, �t is the probability that the
contour is exceeded anywhere, n is the number of data points in the sample, �2

n
is the chi-square distribution function,

and Φ−1 is inverse normal distribution function.

Contour construction method �t (total exceedance prob.) E[noutside] for a 1-yr contour
and a 50-yr hourly sample

IFORM (Winterstein et al., 1993) 1 − �2
n
([Φ−1(1 − �)]2)* 492

ISORM (Chai and Leira, 2018) � 50
Inverse directional simulation (Dimitrov, 2020) � 50
Direct sampling (Huseby et al., 2013) ca. similar to IFORM* ca. 492
Direct IFORM (Derbanne and de Hauteclocque, 2019) ca. similar to IFORM* ca. 492
Highest density (Haselsteiner et al., 2017b) � 50

* See Mackay and Haselsteiner (2021) for additional background on this equation.

For this reason, in addition to reporting the number of points outside each contour alongside the analytically expected
result, we also present the number of points outside each contour above a certain threshold.

Exercise 2 focused on characterizing sampling uncertainty. Participants were asked to sample 1-, 5- and 25-yr
subsets from the provided dataset D and to compute environmental contours based on these subsets. For each of
the three time periods, 1000 such subsets were required such that 1000 environmental contours per time period were
calculated. To compare the contributions, it was described that an uncertainty overlay of these 1000 contours should
be plotted and that confidence intervals should be calculated.

The following subsections describe the individual contributions. To keep overall paper length in balance, the
subsections are relatively brief, however, for some contour methods further details are provided in individual papers.

2.1. Contour method 1
by Wei Chai and Bernt Leira

The environmental contours are constructed by application of the inverse second-order reliability method (ISORM).
For calculation of the failure probability, the FORM approximation will underestimate the result for cases with a
concave failure surface in the standard normal space (i.e. the U -space), see Fig. 4(b) for a two-dimensional example.
Correspondingly, the IFORM contour will yield non-conservative results for design purposes.

In order to address such a shortcoming of the traditional IFORM contour, Chai and Leira (2018) proposed a specific
second-order approximation to the failure surface in the U -space. Generally, the SORM approximation may provide
better approximations to the failure probability than the FORM approach. The failure surface of the specific SORM
approximation is assumed to be a circle in U -space for the two-dimensional case. Therefore, the estimated failure
probability and the corresponding contour are generally conservative.

Similar to the development of n-dimensional contour for a given return period by the IFORM method, in the process
of establishing the corresponding ISORM contours, an n-dimensional sphere with the radius �S is first created, with
the value of �S being determined by the following equation:

1 − Pf = ∫∑n
i=1 u

2
i
≤�2

S

�U (u)du (1)

where u represents an n-dimensional vector in the normalized U -space and �U (u) denotes the standard multivariate
normal probability density function (PDF).

It is seen from Eq. (1) that, in the normalized U -space, the probability content outside the sphere with radius �S is
Pf . Moreover, the sum of n independent standard normal variables, follows a Chi-squared distribution with n degrees
of freedom. Therefore, the radius �S can be determined from the following equation:

�2
n
(�2

S
) = 1 − Pf (2)
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Table 2
Exercises contributions. Some participants provided open-source code to reproduce their results or wrote stand-alone papers
describing their contributions. DIFORM: Direct IFORM with de-clustering, DSCM: direct sampling contour method, GHM:
global hierarchical model, HDCM: highest density contour method, IDSCM: inverse directional simulation contour method,
IFORM: inverse first-order reliability method, ISORM: inverse second-order reliability method, PPOTM: projected peak
over threshold model, SRM: Storm resampling with non-stationary model for storm peaks.

Contr. Authors

Model for

sea state

data

Model for

wind wave

data

Contour

construc-

tion

Exc. 1 Exc. 2 Code Paper

1 W. Chai, B. Leira GHM GHM ISORM x

2 G. Clarindo, C. Guedes Soares GHM GHM DSCM x x

3 Á. Hannesdóttir, N. Dimitrov GHM GHM IDSCM x x x3

4
A. F. Haselsteiner, A. Sander,
J.-H. Ohlendorf, K.-D. Thoben

GHM GHM HDCM x x x4 x5

5 G. de Hauteclocque PPOTM PPOTM DIFORM x

6 E. Mackay, P. Jonathan SRM SRM IFORM x x6

7 C. Qiao, A. Myers GHM GHM IFORM x

8
A. Rode, A. Hildebrandt, B.
Schmidt

GHM GHM IFORM x

9 E. Vanem, A. B. Huseby GHM GHM
IFORM
and DSCM

x x x7

3 https://github.com/ec-benchmark-organizers/ec-benchmark/tree/master/participants-code/contribution-3
4 https://github.com/ahaselsteiner/2020-paper-omae-hierarchical-models
5 Haselsteiner et al. (2020)
6 Mackay and Jonathan (2020)
7 Vanem and Huseby (2020)

Subsequently, the n-dimensional sphere with radius �S in the normalized U -space is transformed into the ISORM
contour in the original parameter space by application of the Rosenblatt transformation if the joint distribution of
environmental parameters is described by the conditional modelling approach. The Nataf transformation is applied
if the marginal PDFs of the environmental parameters (in combination with corresponding correlation coefficients)
are applied in order to describe the joint distribution of environmental parameters. In present exercise, we used the
baseline joint distribution models that were provided in the paper that proposed this benchmark (Haselsteiner et al.,
2019). They were established by following the conditional modelling approach.

2.2. Contour method 2
by Guilherme Clarindo and C. Guedes Soares

Participant 2 used the models for the joint distributions that were provided as baseline results by the benchmark
organizers. However, while the baseline results then constructed IFORM contours, here, direct sampling contours
were constructed.

The joint distribution of metocean variables was obtained by applying the conditional modelling approach (see
Guedes Soares, Lopes and Costa (1988); Bitner-Gregersen and Haver (1991)). The model structure consists of a
marginal PDF for Hs and a conditional PDF for co-variables Tz and U10. The marginal distribution of Hs is assumed
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Figure 4: Illustration of failure probability approximated by the FORM and proposed specific SORM in the normalized
U -space.

Table 3
Contribution 2 statistical scheme for datasets.

Datasets A-C D-F

Structure Marginal Conditional Marginal Conditoinal
Variables Hs (m) Tz (s) Hs (m) U10 (m/s)
Statistical model Weibull 3p Lognormal Weibull 3p Weibull 2p

to follow a three-parameter Weibull distribution in all dataset, while a conditional lognormal distribution is assumed
for Tz in A, B and C , as, for example, in Lucas and Guedes Soares (2015). For the remaining dataset D, E and F ,
the U10 distribution is now conditioned by two parameters of a Weibull distribution and the statistical dependence is
based on scale and shape parameters, whereas the lognormal distribution was conditioned by the mean and variance
respectively.

The applied approach for contour construction is based on direct methods presented by Huseby et al. (2013);
Huseby, Vanem and Natvig (2015) as an approach to establish environmental contours directly in the original space
of the environmental variables based on Monte Carlo simulations of the fitted joint metocean observations, thus not
requiring any transformation. The initial inaccuracies due to insufficient number of Monte Carlo samples can be
improved by a reject sampling scheme explained by Huseby, Vanem and Natvig (2014). The understanding of this
approach was extended to three dimensions by Vanem (2019).

Contours were constructed using 10° as the angular intervals, thus generating 35 points of intersection, which can
be defined as coordinates. The number of samples generated by Monte Carlo simulation were five hundred thousand
for each dataset.

2.3. Contour method 3
by Ásta Hannesdóttir and Nikolay Dimitrov

In this contribution the inverse directional simulation (IDS) was used to construct the environmental contours
(Dimitrov, 2020). As shown in section 2.1 and in Figure 4, the classical IFORM approach is formulated to compute
the probability of failure behind a linear limit state surface. This formulation is suitable for classical reliability analysis,
where one assumes that the failure region is convex and the goal is to find a single design point (the most likely point of
failure). Then it is sufficient to evaluate the probability behind the limit state surface in the close vicinity of the design
point. However, for other types of problems, multiple points with equal return periods forming an entire contour or
a segment (a part of contour) could be considered equally critical. In such situation it is required that the exceedance
probability accounts for all events outside any part of the contour or segment. Using IFORM for such problems would
lead to underestimation of the failure probability and a non-conservative result. The IDS method provides an exact
solution for computing the total probability outside the return period contour or outside a contour segment of arbitrary
size. This is achieved by replacing the linear IFORM failure boundary by a hyper-sphere in standard normal space. As
with the IFORM, the reliability index (�) defines the radius of the sphere (or circle in 2D) which equals the L2 norm
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of the variable vector u:

� =

√∑

i

ui, i = 1, ..., n (3)

Here ui are the environmental variables in standard normal space and n is the number of dimensions in the variable
space. Because the variables in U -space are independent and normally distributed, their sum follows by definition a
chi-squared distribution. In a n-dimensional variable space, the radius (reliability index) may be defined by

� =

√
�−1
n

(1 − Pf ) (4)

where �−1
n

is the inverse cumulative distribution function (CDF) of the chi-square distribution with n degrees of free-
dom and Pf is the probability of failure.

With the above formulation, it is straightforward to determine the radius of a contour segment where only ex-
ceedances within a certain range of variable combinations are relevant (for example, for a contour of wind speed
vs. wave heights, we may be interested only in the segment where high wind speeds are combined with large wave
heights). This procedure is described in Dimitrov (2020). For the case when the full contour length is considered, the
IDS method is equivalent to the ISORM method (Chai and Leira (2018)).

Apart from how the reliability index is defined, the implementation of the IDS in the present study follows the
general steps of the IFORM procedure as performed in for example Hannesdóttir, Kelly and Dimitrov (2019) for 10-
minute mean- and standard deviation of wind speed measurements. The reliability index is estimated with equation 4
for exceedance probability corresponding to the entire space outside the contour. For datasets A, B and C we model
the joint distribution assuming that the marginal distributions of both the significant wave height and the conditional
distribution of zero up-crossing periods follow a log-normal distribution. For datasets D, E and F we model the joint
distribution where we assume the marginal distribution of significant wave height to follow a 3-parameter Weibull
distribution and the conditional distribution of wind speed to follow a 2-parameter Weibull distribution. The marginal
distributions are fitted with the maximum likelihood method and the parameters of the conditional distribution are
estimated with a least squares fit.

2.4. Contour method 4
by Andreas Haselsteiner, Aljoscha Sander, Jan-Hendrik Ohlendorf and Klaus-Dieter Thoben

We fitted novel types of global hierarchical models to the datasets and constructed highest density contours. Our
model for the joint distribution of sea states assumes that the marginal distribution of significant wave height follows
an exponentiated Weibull distribution and that zero-up-crossing period follows a conditional log-normal distribution.
The model for the wind-wave joint distribution assumes that wind speed follows an exponentiated Weibull distribution
and that significant wave height follows a conditional exponentiated Weibull distribution.

Recently, we analyzed how well the exponentiated Weibull distribution fits significant wave height data and we
proposed a method that prioritizes high wave heights over low waves when the distribution’s parameters are estimated
(Haselsteiner and Thoben, 2020). This weighted least squares estimation method was used here as well. The depen-
dence structure between the variables was designed to yield simple relationships between U10, Hs and Tz that can be
interpreted physically,

The models assume that the median significant wave height follows the relationship

ℎ̃s = c1 + c2u
c3
10

(5)

and that the median zero-up-crossing period follows the relationship

t̃z = c4 + c5

√
ℎs∕g, (6)

where ci are parameters that are estimated and g is Earth’s gravity constant. Benefits of these dependence functions
are that the parameter c3 enables simple interpretation of how wave heights increase with wind speeds and that the
dependence of t̃z on ℎs is expressed in physically consistent units (unfortunately, the exponent c3, which is estimated
as a float, does not allow for physically consistent units in the relationship between ℎ̃s and u10). Additionally, the
relationship between t̃z and ℎs requires only two estimated parameters.
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Figure 5: D-IFORM (contribution 5) illustration, Dataset A. (a) Effect of de-clustering. (b) Contour construction from
tangents (transformed back in physical plane).

The complete biviarate models for Hs − Tz and U10 −Hs required the estimation of 8 and 10 parameters, respec-
tively. These fitted joint distributions were used to construct highest density environmental contours. A highest density
contour contains 1−� probability content within the environmental contour and has constant probability density along
its path (Figure 2). Thus, for a given joint distribution it leads to more conservative design conditions than IFORM
or direct sampling contours (see Mackay and Haselsteiner (2021) for an analysis of the differences and application
examples). Further details on this contribution are given in a conference paper (Haselsteiner et al., 2020).

2.5. Contour method 5
by Guillaume de Hauteclocque

The environmental contours are calculated using the method presented in Derbanne and de Hauteclocque (2019).
Compared to all other approaches used in the benchmark, this method does not rely on the inference of a joint distri-
bution. Extending the direct sampling method, the two original variables (Hs and Tz for instance) are projected on a
search direction � (eq. 7) and univariate fit is performed on each X(�).

X(�) = v̄1 cos � + v̄2 sin � (7)

For each direction �, distribution parameters �(�) for X(�) are estimated (by MLE or other means). Those pa-
rameters are used to interpolate/extrapolate Xext(�) at desired probability. The contour is then constructed from the
tangents (or hyper-plane for n > 3) defined by � and Xext(�) as with the tangent method described in Huseby et al.
(2013) and illustrated on Figure 5b. In practice, the construction of a contour from tangents works better if data are
convex. Thus a variable change is often necessary. Additionally, the data are also scaled so that the two variables have
comparable dimension. v̄1 and v̄2 in equation 7 thus correspond to the transformed and scaled variables. In the current
benchmark, [Hs, Tz] is, for instance, transformed to [Hs, Steepness].

One benefit of this direct IFORM approach is its ability to straightforwardly plug any state-of-the-art method with
respect to the univariate fit. Here, this possibility is used to get rid of the "independent and identically distributed
events" (IID) assumption, by using standard peak over threshold (POT) approach together with de-clustering. On
each search direction � data are de-clustered, using threshold up and down crossing as cluster boundaries, with an
additional minimum interval of 48 hours between clusters. Threshold exceedances are then fitted with generalized
Pareto distribution (see Coles (2001) for further details). Figure 5a illustrates the de-clustering, effect on Hs (i.e.
� = 0.) for dataset A. The effect is dramatic for TR = 1 yr, while, at TR = 20 yrs, conclusion are not obvious due to
large sampling uncertainties. Contour construction from tangents is presented on Figure 5b.

Note: Confidence intervals in Figure 5 are calculated using the delta method (Coles, 2001), and are not displayed
when using all data because of the dependence of sea states (the effective number of independent observations is
reduced, which strongly biases the uncertainty calculation by delta method).

2.6. Contour method 6
by Ed Mackay and Philip Jonathan
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The joint distribution of environmental parameters was estimated using the storm resampling method presented in
Mackay and Jonathan (2020) and contours were derived from the joint distribution using the standard IFORM method.
In the block resampling method, it is assumed that the time series of environmental variables can be divided into blocks
where the peak values in adjacent blocks can be considered independent. The peak values of each variable within the
block are not required to coincide in time, but the blocks are assumed to be sufficiently short so that the peak values
of each variable are related in some way. A model for the joint distribution of the peak values is then estimated. The
distribution of all data is recovered by simulating block-peak values from the joint model and resampling and rescaling
the measured blocks so that the peak values from the resampled blocks match the simulated peak values. As the
data that the model is fitted to are approximately independent, this gives a better justification for the use of asymptotic
extreme value models. The approach also has the advantage that much of the complex short-term dependence structure
in the data is resampled rather than modelled explicitly.

The block resampling approach only preserves the distribution of the peak values in the block. For contours of Hs

and Tz we are interested in both the maximum and minimum values of Tz for a given Hs. To get around this problem
we work with the significant steepness, s = 2�Hs∕gT

2
z

, and a distance variable defined as d = (H2
s
+T 2

z
∕2)1∕2. Lines

of constant d are orthogonal to the lines of constant s in the Hs-Tz plane (see Figure 6). Moreover, the peak values of
s and d correspond to the frontiers of interest for Hs-Tz contours. The marginal distributions of the block-peak values
of s and d were modelled using a composite approach, with a kernel density model for the body and a generalized
Pareto (GP) model for the tail. The joint distribution was also modelled using a composite approach, with a kernel
density model for the body and the Heffernan and Tawn (2004) (HT) model for the tail.

A similar approach was used for estimating the marginal distributions of block-peak Hs and wind speed, U10.
However, for the joint distribution a piecewise-linear GP model was used for the distribution of Hpeak

s conditional
on U

peak

10
for intermediate values of Upeak

10
and the HT model was used for estimating the joint distribution for higher

values of U peak

10
. Further details are provided in Mackay and Jonathan (2020).

2.7. Contour method 7
by Chi Qiao and Andrew Myers

When calculating environmental contours with a return period longer than the measurement period, the joint prob-
ability distribution must be extrapolated beyond the available data. Such an extrapolation brings two challenges for
the global hierarchical models (expressed in a general form as fX ⋅ fY |X), where fX indicates the distribution of the
independent variable X and fY |X indicates the conditional distribution of the dependent variable Y ). First, tail extrap-
olation is required for both fX and fY |X , but extreme value theory cannot be applied directly, since the IID assumption
is not satisfied. Second, fY |X needs to be parameterized as fY |X(�), where � represents the parameters (e.g., shape,
scale, and location) of the distribution, and � needs to be fitted as a function of the independent variable, �(X), so
that fY |X is estimated at the tail of X where little or no data is available. It is challenging in practice to find such a
prescribed distribution (for example, a Weibull distribution) for the dependent variable that is both accurate within its
tail and shows a good fit of �(X).
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Dataset A-C D-F

Structure Marginal Conditional Marginal Conditional
Parameter Hs Tz Hs U10

Distribution 2-parameter Weibull 2-parameter Weibull 2-parameter Weibull 2-parameter Weibull

Table 4
Models for the joint distribution that were used in Contribution 8.

A new framework is proposed to improve the performance of global hierarchical models in constructing the joint
probability distribution. The framework is designed to be as flexible as possible to fit many types of environmental
variables. A dedicated manuscript is submitted to this special issue to provide more details. In brief, two novel
approaches are used to resolve the aforementioned challenges respectively. The first approach provides a method to
extrapolate the tail of dependent measurements (for example, hourly sampled wind speed, which does not satisfy IID).
This method makes use of the results from the extreme value theory and accounts for the dependency exhibited in
the measurements. The resulting probability is a hybrid expression, with six parameters describing the tail (three
for the generalized extreme value distribution, and three describing the dependency) and a prescribed distribution (or
even empirical estimations) for the non-tail part. In the second approach, the conditional distribution with the hybrid
expression is re-parameterized using a prescribed distribution, which avoids the need to fit a large number of parameters
in the hybrid expression. Only the quantiles related to the desired return period are used for the re-parameterization,
which allows almost any type of prescribed distribution to construct environmental contours regardless of the goodness-
of-fit for irrelevant quantiles. As such, the optimal prescribed distribution for the dependent variable is selected based
on the goodness-of-fit of �(X). The joint probability distribution is then used to construct the environmental contours
presented in this paper via the IFORM approach.

2.8. Contour method 8
by Anna Rode, Arndt Hildebrandt and Boso Schmidt

The parameters of all statistical models were estimated with maximum likelihood estimation (MLE) and subse-
quently the contours were derived with the classical IFORM approach (Winterstein et al., 1993).

For the three datasets A-C the significant wave height Hs was opted as the marginal distribution, whereas the zero-
up-crossing period Tz was modelled as the conditional environmental variable (Table 4). Both the marginal and the
conditional distribution were fitted by a 2-parameter Weibull distribution. The stochastic parameters of the marginals
were estimated as above mentioned with MLE. The dependence functions of the conditional distributions for Tz were
estimated by using a linear regression of the previously classified Weibull parameters.

Datasets D-F provide data of the significant wave height Hs and the wind speed U10. As with the datasets A-C ,
the environmental variable Hs is assumed to be the marginal distributed variable for these three hindcast datasets. In
these cases, the wind speed is the conditional environmental variable. The environmental variable Hs and U10 were
both assumed to follow a 2-parameter Weibull distribution. For constructing the environmental contours, the classical
inverse first-order method (IFORM) as presented in Winterstein et al. (1993) was used.

2.9. Contour method 9
by Erik Vanem and Arne Bang Huseby

A set of environmental contours were calculated in this contribution, as outlined in Vanem and Huseby (2020). All
contours were based on fitting a conditional model to the data, as a product of a marginal model for the primary variable
and a conditional model where the model parameters are modelled as parametric functions of the primary variable
(Bitner-Gregersen, 2015; Horn et al., 2018). For all datasets the marginal model for Hs were the 3-parameter Weibull
distribution. For the sea state data a conditional log-normal distribution was assumed for Tz and for the wind-wave data,
a conditional (2-parameter) Weibull distribution was assumed for U10. Based on the fitted joint models, environmental
contours were calculated by two different approaches, i.e. the IFORM approach (Haver and Winterstein, 2009) and the
direct sampling approach (Huseby et al., 2013, 2015). The main differences between these contour methods are that
the IFORM approach includes a transformation to standard normal space and assumes a convex failure region in the
transformed space (or rather, performs a linearization of the failure boundary in this space), whereas the direct sampling
approach makes the same assumption in the original parameter space, see for example (Vanem and Bitner-Gregersen,
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2015; Vanem, 2017).
The direct sampling contours were calculated based on a set of Monte Carlo simulations from the joint distributions,

and there may be numerical uncertainties due to the Monte Carlo variance. This can be reduced by increasing the
number of samples, and in this work, an efficient tail-sampling approach has been utilized in order to obtain a large
effective number of samples with reasonable computational efforts, see for example Huseby et al. (2014); Vanem and
Huseby (2018).

3. Results

This section presents the benchmark’s results, using the previously described analysis methods. First the results
of the sea state contours are reported (datasets A, B, C; subsection 3.1), then the wind-wave contours are presented
(datasets D, E, F ; subsection 3.2). Finally, the results for Exercise 2, the uncertainty characterization that was applied
to datasetD, are reported (subsection 3.3). Appendix A lists the various joint models that were fitted by the participants.

3.1. Sea state contours
A set of overlays of the sea state contours are shown in Figure 7. In each of the six plots shown in Figure 7, the eleven

contour contributions are overlayed with the full dataset (there are contributions from nine teams, but Contribution 9
contains three different contours that were calculated using the same joint distributions). The maximum Hs value as
well as the maximum and minimum Tz value along each 1-yr and 20-yr contour is plotted in Figure 8. For reference,
the empirical marginal 1-yr return value as well as the maximum and minimum of the full measured datasets are also
plotted.

The maximumHs values along the 1-yr and 20-yr contours strongly deviate between the contributions. For the 1-yr
contours, as expected, among the contributions the highest Hs value is from a contour that is based on total exceedance
(Contribution 4 in dataset A and Contribution 3 in datasets B and C). For the 20-yr contours, the highest Hs value is
from a total exceedance contour in dataset A (Contribution 4) and from a marginal exceedance contour in datasets B
and C (Contribution 7). In all datasets the highest maximum Hs value along the 20-yr contour is more than double the
lowest maximum Hs value. For example, in dataset A the lowest value is about 5 m (Contribution 2) and the highest
value is about 13 m (Contribution 4).

In dataset B and C the highest buoy-measured Hs value is within the range of the 20-yr contours’s maximum
values, but in dataset A the highest measured value is higher than all contour maxima. This effect is likely due to the
much higher Hs maximum in the retained part of dataset A compared to the provided part (ca. 12 m and ca. 7 m,
respectively). In general, differences due to the different joint models appear to be greater than differences due to
different contour construction methods, as there is no consistent order between the maxima of marginal exceedance
contours and total exceedance contours.

The counted data points outside the contours are presented in Table 5. As described in section 2, the expected num-
ber of data points outside the contours is different among the contributions, as different contour construction methods
were used (see Table 1). However, for contributions that constructed ISORM, inverse directional simulation and high-
est density contours ("total exceedance contours"), the expected number of points outside the contour, E[noutside], is the
same. For contributions that constructed IFORM, direct sampling and direct IFORM contours ("marginal exceedance
contours") E[noutside] is similar. Note that if a statistical model was fitted to declustered data such that serial correlation
is reduced, the environmental contour will have smaller dimensions and the number of expected data points outside
the contour, E[noutside], will be higher for such a contour. Contribution 5 constructed direct IFORM contours after
applying declustering.

For the first group, the total exceedance contours, the theoretical E[noutside] is 1 for a 20-yr contour, but between
13.7 and 114.0 points exceeded the constructed contours (average over datasets A, B, C). For the second group,
the marginal exceedance contours, E[noutside] is exactly (IFORM) or approximately (direct sampling, direct IFORM)
11.5, but between 16.7 and 21966.3 points exceeded the constructed contours. Contribution 5 and 9, which have the
highest points outside the 20-yr contour, contain many exceeding points at low Hs values, which are irrelevant for
structural design. If these points are excluded by only counting sea states with a significant wave height greater than
1 m, between 7.7 and 280 points exceed the constructed marginal exceedance contours. In summary, in both contour
classes the number of exceeding points varied by an order of magnitude among the submitted contributions.
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Figure 7: Exercise 1, datasets A, B, C: contour overlays. — = marginal exceedance contours, −− = total exceedance
contours, ◦ = provided data (10 years), ▿ = retained data (10 years).

Table 5
Number of points outside in datasets A, B, C (full datasets). Reported is the average over the three datasets. For the
20-yr contour, values in the paranthesis are the points outside for dataset A, B and C individually.

Contr. 1-yr contour 20-yr contour
num.
points
outside

expected
points
outside

points outside
where ℎs > 1m

num. points outside
expected
points
outside

points outside where
ℎs > 1m

1 256.3 20 241 114.0 (153, 127, 62) 1 98.7 (117, 119, 60)
2 406.7 ca. 197 389.3 286.7 (437, 236, 187) ca. 11.5 271.3 (401, 228, 185)
3 82.3 20 48.3 43.0 (68, 28, 33) 1 23.3 (14, 26, 30)
4 75 20 63 13.7 (1, 32, 8) 1 11.7 (1, 30, 4)
5 18295.3 ca. 1971 495.3 16764.0 (8503, 12573, 29216) ca. 11.51 24.7 (47, 24, 3)
6 154 197 115.3 16.7 (27, 14, 9) 11.5 13.3 (20, 12, 8)
7 281.3 197 63 35.3 (79, 4, 23) 11.5 7.7 (21, 0, 2)
8 762 197 638 322.0 (189, 368, 409) 11.5 280.0 (93, 339, 408)
9 DS 22127.3 ca. 197 130.7 21966.3 (22504, 22933, 20462) ca. 11.5 21.7 (4, 43, 18)
9 DS s. 12031.7 ca. 197 126.7 6062.7 (5096, 7716, 5376) ca. 11.5 21.0 (4, 42, 17)
9 IFORM 22207.7 197 233.7 21994.7 (22514, 22990, 20480) 11.5 47.7 (8, 100, 35)

1 Due to the applied declustering the expected number data points outside the contour will be higher than this number.
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Empirical marginal 1-yr return value calculated using all data points

Figure 8: Exercise 1, maximum values along the contour for datasets A, B, C. For zero-up-crossing period, Tz, the minima
are shown too (there is no horizontal line for the 1-yr minimum in the top right panel because the dashed lines in this figure
represent the marginal 1-yr return value). ◦ = marginal exceedance contours (IFORM, direct sampling, direct IFORM), ▿
= total exceedance contours (ISORM, inverse directional simulation, highest density).
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Figure 9: Exercise 1, datasets D, E, F : contour overlays. — = marginal exceedance contours, −− = total exceedance
contours, ◦ = provided data (25 years), ▿ = retained data (25 years).

3.2. Wind-wave contours
Overlays of all contours are plotted in Figure 9. The maximum values along the contours are plotted in Figure 10.

Similar to the sea state contours, there is a wide variability among the contributions. The spread from the highest to
the lowest maximum value is higher for the wave height values than for the wind speed values (ca. 40-50% versus ca.
20% of the empirical maximum for the 50-yr contours). For example, in dataset D the contributions have maximum
wave height values between ca. 9 m and 15 m and maximum wind speed values between ca. 25 m/s and 32 m/s. The
highest wave height maximum along the 50-yr contour is on a total exceedance contour in all datasets (Contribution
4), but the highest wind speed maximum is on marginal exceedance contours (Contributions 6 and 9). Consequently,
similar to the sea state contours, differences due to selected model types for the joint distribution seem to be bigger
than differences due to the selected contour construction methods.

The number of data points outside the wind-wave contours is presented in Table 6. For reference, the expected
number of points outside the contour, if events were independent, is also reported. For total exceedance contours, the
expected number of points outside the contour is E[noutside] = 1 for a 50-yr contour and 50 years of data, but between
3.7 (Contribution 4) and 103.7 (Contribution 1) points exceeded the constructed contours (average over datasets D, E,
F ). For marginal exceedance contours, E[noutside] is exactly (IFORM) or approximatley 12 (direct sampling, direct
IFORM), but between 8.3 (Contribution 6) and 15301 (Contribution 9 DS) points exceeded the constructed contours.
Similar as with the sea state contours, the thousands of exceeding points in Contribution 9 are at low wave heights
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Empirical marginal 1-yr return value calculated using all data points

Figure 10: Exercise 1, maximum values along the contour for datasets D, E, F . ◦ = marginal exceedance contours
(IFORM, direct sampling, direct IFORM), ▿ = total exceedance contours (ISORM, inverse directional simulation, highest
density). The empirical 1-yr return value is calculated based on the empirical distribution of the full datasets, assuming
that these events are independent and identically distributed.

and are therefore not relevant for structural design. If these points are excluded by only counting sea states with a
significant wave height greater than 1 m, and wind speeds greater than 1 m/s only 103±45 points exceed the contour
(mean ± standard deviation; n=3). In summary, similar to the sea state contours, the number of exceeding points
vary by an order of magnitude among the submitted contributions (for both groups, marginal exceedance and total
exceedance contours).

3.3. Uncertainty of the wind-wave contours
To better understand the level of sampling uncertainty in different contours, an exercise was proposed using a

bootstrap sampling approach. The procedure was based on a study, first published by Gramstad, Vanem and Bitner-
Gregersen (2018) and extended by Vanem, Gramstad and Bitner-Gregersen (2019), and was defined as follows (Hasel-
steiner et al., 2019):

1. Set the index, i = 1.
2. Resample Y (1, 5 or 25) years of data from dataset D (resulting in sample Oi).
3. Fit the model structure that you used in Exercise 1 to the sample Oi (resulting in the statistical model Xi).
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Table 6
Number of points outside in datasets D, E, F (provided and retained). Reported is the average over the three datasets.
For the 50-yr contour, values in the paranthesis are the points outside for dataset D, E and F individually.

Contr. 1-yr contour 50-yr contour
num.
points
outside

expected
points
outside

points outside
where u10 > 1m/s
and ℎs > 1m

num. points outside
expected
points
outside

points outside where
u10 > 1m/s and
ℎs > 1m

1 424.3 50 268.3 103.7 (154, 86, 71) 1 60.3 (107, 63, 11)
2 1186.3 ca. 492 744 529.7 (514, 720, 355) ca. 12 309.3 (304, 388, 236)
3 524.7 50 341.3 102.7 (154, 82, 72) 1 60.0 (106, 62, 12)
4 88 50 88 3.7 (3, 8, 0) 1 3.7 (3, 8, 0)
5 2235 ca. 492 860 156.0 (174, 112, 182) ca. 12 14.7 (7, 18, 19)
6 270.7 492 247.7 8.3 (3, 17, 5) 12 8.3 (3, 17, 5)
7 371.3 492 258 8.7 (3, 16, 7) 12 6.7 (2, 16, 2)
8 1729.7 492 1442 262.0 (509, 110, 167) 12 238.7 (449, 108, 159)
9 DS 18191.7 ca. 492 1941.3 15301.0 (17460, 17226, 11217) ca. 12 103.0 (146, 122, 41)
9 DS s. 12819.3 ca. 492 1952.3 5771.3 (5092, 6782, 5440) ca. 12 103.0 (146, 122, 41)
9 IFORM 16267.3 492 686.7 15267.0 (17415, 17184, 11202) 12 86.3 (123, 107, 29)

4. Compute a 50-yr contour with the same method that you used in Exercise 1 based on the statistical model Xi

(resulting in environmental contour Ci).
5. If i < 1000: Increase the index i and repeat steps 2-4.

This procedure leads to 1000 different environmental contours. These contours were then used to compute a 95%
confidence interval and a median contour. The methods for finding the confidence interval and median contour can be
found in Haselsteiner et al. (2019). Note that the confidence intervals from this procedure are not a true reflection of the
uncertainty due to a dataset’s typical length because they neglect the serial correlation in the data. Thus, the results from
this exercise should only be interpreted as comparative between contour methods rather than quantitative estimates of
the sampling uncertainty. The effect of serial correlation will be further discussed in section 4. Further, contours that
are based on total exceedance (Contributions 3 and 4) are expected to have greater uncertainty than contours that are
based on marginal exceedance (Contributions 2 and 9), since for a given return period, total exceedance contours are
extrapolating further in the tail of the distribution.

Overlay plots of all 1000 contours are presented in Figure 11. Each row in the figure relates to a specific contribu-
tion, from top to bottom these are Contributions 2, 3, 4, and 9 (some contributors chose not to participate in Exercise
2). The columns relate to the amount of data used in producing the contours. In the left-most column, for example,
the 50-yr contours are produced using just 1 year of data. Moving to the right within the figure, more data is used
in estimation of the contours. The overlay plots show that uncertainty decreases with increasing sample size in all
contributions.

In Contribution 3, when 1 and 5 years of data are used, two different “modes” seem to be apparent: a major mode
where the contours’ upper parts have only strong curvature at the region of ca. (u10 = 26 m/s, ℎs = 11 m) and a minor
mode where the contours additionally have strong curvature at ca. (u10 = 26 m/s, ℎs = 6 m). Possibly these different
“modes” could also be present in the estimated parameter values. In the study by Vanem et al. (2019) on sampling
uncertainty, the estimated parameter values clustered around two distinct values in a case where they resampled from
a hindcast dataset and used maximum likelihood estimation.

Confidence intervals for all contributions are plotted in Figure 12. Similar to the overlay plots, they show how
uncertainty decreases with increasing sample size. The confidence intervals for Contributions 2 and 91 were narrower
than for Contributions 3 and 4. Contributions 2 and 9 constructed contours that belong to the group of marginal
exceedance contours while Contributions 3 and 4 constructed total exceedance contours such that the latter group’s
contour required further extrapolation. This additional extrapolation should lead to greater variability among the 1000
contours. There are, however, many other differences between these four contribution such that it is not clear whether
the different contour construction methods are the main reason for the different degrees of variability.

1In Contribution 9 the confidence intervals were computed with a different procedure than the one outlined in the paper that announced the
benchmark (Haselsteiner et al., 2019) such that the results are not fully comparable. This procedure is described in the work by Vanem and Huseby
(2020) and is considered to be only negligibly different from the procedure outlined in Haselsteiner et al. (2019).
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(a) Contribution 2 using 1 yr of data. (b) Contribution 2 using 5 yr of data. (c) Contribution 2 using 25 yr of data.

(d) Contribution 3 using 1 yr of data. (e) Contribution 3 using 5 yr of data. (f) Contribution 3 using 25 yr of data.

(g) Contribution 4 using 1 yr of data. (h) Contribution 4 using 5 yr of data (i) Contribution 4 using 25 yr of data.

(j) Contribution 9 using 1 yr of data. (k) Contribution 9 using 5 yr of data (l) Contribution 9 using 25 yr of data.

Figure 11: Exercise 2, overlay plots of 1000 environmental contours based on resampling 1000 times from dataset D. As
the sample’s length increases uncertainty decreases.
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Figure 12: Exercise 2: Sampling uncertainty of the 50-yr contours. Each row of plots relates to a specific contribution (2,
3, 4, and 9); each column relates to the amount of data used to produce the 50-yr contours (1, 5, and 25 years).
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4. Discussion

A common theme that affected our interpretation of the benchmark’s results is the effect of the metocean data’s
autocorrelation or, as a synonym as we are dealing with time series, the effect of serial correlation. Thus subsection 4.1
will focus on how serial correlation affects return value estimates and measures of uncertainty. Subsection 4.2 will
compare the different types of joint distribution models used in this study, focusing on extremal dependence. Then
subsection 4.3 and subsection 4.4 will discuss the results of Exercise 1 and Exercise 2. Finally, we will suggest areas
of future research (subsection 4.5).

4.1. Variability and serial correlation in the metocean datasets
This benchmark provided datasets comprising of hourly observations of metocean variables. Consecutive data

points in such time series are not independent and identically distributed, but are strongly auto-correlated. There are
multiple scales of variability and correlation in metocean conditions that correspond to different physical effects. These
can be categorised as:

• short-term serial correlation of the order of hours to days related to passing weather systems,

• seasonal variability,

• inter-annual variability, related to longer-term climatic modes (for example NAO, ENSO, etc.) and

• longer-term, decadal-scale, climatic changes resulting from both anthropogenic influences and from naturally
occurring climatic variations.

The full time series of significant wave height are shown in Figure 13. The seasonal variability is clearly observable
because at these sites the highest Hs values typically occur in the winter months. Additionally, the time series show
some rare storm events with much higher Hs than the highest storms in typical years. These rare storm events provide
a challenge for estimating the tail of the probability distribution, because a metocean dataset might hold only one, two,
or zero such events. Among the used datasets, the difference between the provided and retained part of the dataset was
especially stark for dataset A. The maximum observed Hs in the provided portion was 7.1 m, whereas in the retained
portion there were four storms where the peak Hs exceeded 8 m, with the largest storm peak Hs being 11.8 m.

The difference between the provided and the retained datasets can also be visualized by overlaying the empirical
exceedance probability of observed storm peak Hs in both parts of the datasets (Figure 14). For this analysis, storm
peaks are defined as a local maxima within a moving window of size five days. For datasets B and C , the empirical
distributions are similar for the provided and retained portions, indicating that a model that is a good fit to the provided
data will also be a good fit for the retained data. However, for dataset A, the empirical distribution of the retained data
has a significantly longer tail. In this case, a close fit to the tail of the provided data will underestimate the slope of the
tail in the retained data.

The highest serial-correlation is in the short-term, in the order of hours to days related to passing weather sys-
tems (Figure 15). Because environmental contours were constructed based on bivariate distributions of sea states and
wind-wave states, it is implicitly assumed that these distributions represent independent events. However, most con-
tributions used the original, strongly auto-correlated time series to estimate these distributions, representing a strong
modelling simplification. Some contributions used methods to avoid the serial correlation between observations by
using a declustering method (Contribution 5) or by identifying independent storms (Contribution 6). While these
approaches remove the most short-term serial correlation, some longer-term serial-correlation likely remains in the
post-processed time series.

4.2. Types of joint models and extremal dependence
In this benchmark, participants submitted contributions based on three different kind of joint models: global hi-

erarchical models, a projected peak over threshold model and a model based on storm resampling. These types of
models make different assumptions on aspects like

• which kind of events the joint distribution represents (all environmental states or only storm peaks),

• whether and how the model accounts for serial correlation and

• how dependence is modelled (both, in the body and in the tail of the distribution).
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Figure 13: Full time series of significant wave height. The typical seasonal variability is visible, representing auto-correlation
with a delay of one year. All datasets contain some storms where Hs strongly exceeds the typical annual maximum. The
vertical dashed line denotes the seperation between the retained and provided data.

.
Because the environmental contour method deals with very high (and for some variables very low) quantiles, the

model assumptions for the distribution’s tail are especially important. Each of the models discussed in this work
makes assumptions regarding the nature of dependence between variables in their joint tail. For variables X and Y ,
this extremal dependence can be quantified in terms of the upper tail dependence (see, Coles, Heffernan and Tawn
(1999), who use the notation � instead of � for upper tail dependence),

� = lim
u→1

Pr(Y > F−1
Y

(u)|X > F−1
X

(u)). (8)

� quantifies how quickly Y becomes extreme when X becomes extreme. Often the value of � for a particular model
can be determined a priori. For example, a bivariate Gaussian distribution has � = 0 regardless of the correlation
between parameters (provided that the Gaussian correlation is <1). For some bivariate copula models, � can be related
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Figure 14: Empirical exceedance probability of observed storm peak Hs and U10. Storm peaks were defined as a local
maxima within a moving window of size five days.

to distributional summary statistics such as Kendall’s tau, and to other model parameters. The conditional extremes
model of Heffernan and Tawn (2004), which was used in Contribution 6, seeks explicitly to estimate whether the data
exhibit asymptotic dependence (�>0) or asymptotic independence (�=0).

When deciding how to model the joint tail of a bivariate distribution, and hence attempting to estimate environ-
mental contours corresponding to long return periods, the choice of bivariate distributional form and its extremal char-
acteristics is of fundamental concern, and will influence the shape of the resulting contour estimate. Table 7 presents
estimates �̂ for � values of dataset D and for some joint distribution models fitted to it for probabilities of u = 1 − �
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Figure 15: Autocorrelation function of the significant wave height, Hs, and wind speed, U10, time series.

�̂(�) = Pr(Hs > F̂ −1
Hs
(1 − �)|U10 > F̂ −1

U10
(1 − �)

Joint distribution � = 10−2 � = 10−3 � = 10−4

Empirical distribution Dp 0.55 0.57 0.81
Empirical distribution Dr 0.85 0.89 0.57
Contribution 1 & 2 (baseline) 0.48 0.38 0.33
Contribution 4 0.53 0.40 0.28

Table 7
Upper tail dependence in dataset D and in some of the joint distribution models that were fitted to it. Dp = provided part
of dataset D, Dr = retained part of dataset D.

with � = {10−2, 10−3, 10−4}. The provided part of dataset D has upper tail dependence of �̂ = 0.55 at � = 10−2 and
�̂ = 0.81 at � = 10−4. The joint distribution models used by Contributions 1, 2 and 4 have lower values of upper tail
dependence, ranging from �̂ = 0.53 to �̂ = 0.28 at � = 10−2 and � = 10−4, respectively. Note that, whereas upper
tail dependence � provides a means to quantify the extent of asymptotic dependence between variables, other statistics
have been developed to summarise the extent of asymptotic independence (� = 0, see Coles et al. (1999) for further
details).

4.3. Discussion: exercise 1
The degree of variability amongst the presented contours is noticeable for all of the comparison cases. The maxi-

mum Hs values along the 20-yr sea state contours deviate circa by a factor of two (highest Hmax
s

≈ 2× lowest Hmax
s

).
If, for example, we consider the contour for dataset A (see lower left-hand corner of Figure 7), the maximum significant
wave height ranges from ca. 5 m to 12 m. This range in maxima can also be seen in Figure 8, which shows maxima of
each contour. Consider that these different 20-yr contours are used to estimate the 20-yr extreme response of a marine
structure. If the maximum Hs values deviate by a factor of two, responses that are linear functions of Hs will also
deviate by factor of two. For example, if the motions of a vessel are analyzed in a sea keeping analysis, where often a
linear relationship between the Hs and the vessel’s movement is assumed, then design conditions from some contours
would result in, for example, roll or pitch motions that are twice as high as the motions calculated using another contour.
Some responses increases even more than linearly with Hs (see, for example, Vanem, 2017) such that responses could
deviate even more than by a factor of two. Clearly, such differences can make a design either unreliable or strongly
over-conservative.

The number of points outside of each contour presented in Tables 5 and 6 for sea state cases (datasets A, B, and C)
and the wind-wave cases (datasets D, E, and F ), respectively, provide a useful point of reference. While the number
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of points expected to fall outside of a contour can be estimated analytically when independent events are assumed,
such a measure has multiple issues: (i) Hourly observations of metocean variables are not independent and identically
distributed, but are strongly auto-correlated (Figure 15) and (ii) for the environmental contour method, it is only im-
portant whether a joint distribution model describes the true distribution at severe environmental conditions such that
points outside the contour at severe conditions are of practical importance, while points at non-severe conditions are
not.

The first issue, serial correlation, affects the metric in the sense that a single storm event might lead to one, two or
n hourly observations that are outside a computed contour. Consequently, the observed number of points outside the
contour is not the number of independent storm events, but represents a metric that could be interpreted as the number
of independent storm events weighted by their duration.

The second issue, points outside the contour at non-severe regions, is well illustrated by looking, for example, at
the results for Contribution 9 in Table 5. We can see that for the 20-yr contour there are 11.5 points expected outside of
the contour, but the three contours from Contribution 9 have between 6× 103 and 2.2× 104 points outside of the 20-yr
contour. Further inspection of the contours in Figure 7 reveals that the vast majority of the points falling outside of
the contour are at low significant wave heights. In fact, as shown in the right-most column in Table 5, if we restrict the
counting of points outside the contour to those above a threshold of Hs > 1m, the results for all of the contributions are
of more similar orders of magnitude. As these environmental contours are most often used in the analysis of extreme
condition design load cases, it is reasonable to consider points falling outside of a contour with low significant waves
heights to be immaterial. Thus, it can be a sensible model choice to accept low goodness of fit at low Hs values – and
consequently many points outside the contour at this area – to increase the goodness of fit at the distribution’s upper
tail.

4.4. Discussion: exercise 2
The uncertainty study presented in Exercise 2 (see Figure 11 and Figure 12) showed how uncertainty decreases

with the available sample size. As expected, we see relatively wide uncertainty bounds for the contours when the ratio
of the return period to period of record is large. However, the sampling variance, even if only 1 year of data was used
to construct the 50-yr contours, was smaller than the variance among different contour methods (compare Figure 11
and Figure 17).

Note that the kind of sampling uncertainty that was calculated for Exercise 2 ignores the auto-correlation of the
environmental variable’s time series. Because the points are sampled randomly from the provided dataset, each sub-
sample of, for example, 1 year represents the full sample better than any consecutive 1-yr time period. Consequently,
Exercise 2’s sampling uncertainty is lower than if samples of consecutive time series would have been used. Figure 16
shows 25 contours that were computed by sampling 1 year of data randomly from the full dataset (top left panel) and
25 contours that were computed from 25 1-yr consecutive time series (top right panel). The 25 contours based on
consecutive time series vary to a much greater degree. Some of them deviate up to 8 m/s wind speed and 8 m wave
height from the contour that was calculated using all 25 year of data. The variability apparent when consecutive time
series are used is more representative to the practical use of environmental contours, however, such an analysis can
only be performed for very small sub-sample sizes because the overall sample size of buoy or hindcast data is usually
limited to a duration in the order of 10 - 100 years. In Figure 16 the bottom right panel shows five contours that
are constructed using consecutive 5-yr time series. The variability among these five contours is already much lower
than the contour variability associated with 1-yr time series. Likely the variability would further decrease if longer
consecutive time series were used. However, at some point the variability due to a changing climate could dwarf the
inter-annual (and inter-n-year) variability associated with a theoretical stationary climate.

Exercise 2 only analyzed one kind of uncertainty. In general, the uncertainty of an environmental contour can be
attributed to multiple components:

• uncertainty associated with the quality of the metocean dataset, for example, due to systematic biases in mea-
surements or hindcast models ("dataset quality uncertainty"),

• uncertainty due to limited sample size and sampling variability ("sampling uncertainty"),

• uncertainty associated with choosing a model for the joint distribution (all statistical models that describe wave
and wind can be considered to have some degree of model misspecification, the associated uncertainty con-
tributes to overall "joint model uncertainty"),
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Figure 16: Effect of the metocean data’s autocorrelation in Exercise 2. As an example contour method 4 is used. Left:
25 contours that are constructed by randomly sampling 1, 2 and 5 years of observations from dataset D as prescribed in
Exercise 2. Right: 25 contours constructed from 1-yr, 2-yr and 5-yr consecutive sequences of dataset D. Continous lines
= contours based on 1-yr, 2-yr and 5-yr datasets, dashed line = contour based on the full consecutive 25-yr time series.

• uncertainty associated with choosing a type of parameter estimation technique (for example, maximum likeli-
hood estimation versus the method of moments or least squares estimation; contributes to "joint model uncer-
tainty"),

• uncertainty associated with setting hyper-parameters in the parameter estimation technique (for example, the
number of intervals that are used when data are binned; contributes to "joint model uncertainty"),

• uncertainty associated with how the climate will change ("climate uncertainty"),

• uncertainty associated with the numerical methods of a contour construction method, for example, due to the
used numeric integration method or due to the applied Monte Carlo method ("numeric uncertainty") and
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Figure 17: Illustration of the uncertainty associated with choosing a joint distribution model and a contour construction
method. Left: 50-yr wind-wave contours that were submitted for Exercise 1. Right: Confidence intervals for these contours,
computed using the same geometric algorithm that was proposed for Exercise 2 (0th percentile, 50th percentile and 100th
percentile). For Contribution 9, only the unsmoothed direct sampling contour was used.

• uncertainty associated with which type of contour (IFORM, ISORM, ...) shall be constructed to approximate
the failure surface to ensure that the contour’s exceedance probability and the structure’s probability of failure
will match (“contour type uncertainty”).

This study only directly analyzed the uncertainty due to limited sample size. Indirectly, it also provides insights into
joint model uncertainty and contour type uncertainty (Figure 17) because many different models for the joint distri-
bution have been fitted to the same datasets and different contour construction methods were applied. Note, however,
that among the contributions joint model structures, parameter estimation techniques and contour construction meth-
ods were varied at the same time such that the variability among the contours cannot be pinned directly to one of these
factors.

Other studies that analyzed uncertainties of environmental contours include the works of Silva-González, Vázquez-
Hernández, Sagrilo and Cuamatzi (2015), Montes-Iturrizaga and Heredia-Zavoni (2017) and Vanem (2018), which
focused on joint model uncertainty, the work of Vanem (2015) on climate uncertainty and the works of Gramstad et al.
(2018) and Vanem et al. (2019) on sampling uncertainty. In summary, Exercise 2 examined the uncertainty due to
the limited length of an available dataset. It allowed comparisons among different contour methods, however, because
Exercise 2’s methodology did not account for serial correlation, the degree of the “true, practical” sampling variability
was not directly assessed. An additional analysis based on consecutive time series suggested that the practical sampling
uncertainty is higher: The variability among contours derived from 1-yr to 5-yr consecutive time series was in the same
order of magnitude as the variability among the nine submitted contributions (compare Figure 16 and Figure 17).

4.5. Areas for future research
As with any area of research, the improved understanding of environmental contours helps to highlight a number of

areas in need of further consideration. As discussed in Section 4.1, serial correlation of sea states is a fundamental issue
for environmental contours, in that most contour methods rely on an assumption of independence between samples. It
is typical for sea state and weather data to be recorded hourly (or with intervals in the same order of magnitude, such
as 10-minute mean wind speeds or 6-hour sea states). Nonetheless, it is well understood that weather patterns and sea
states can persist for many hours and even days. From a system dynamics perspective, the ocean and atmosphere are
dynamic systems, with inertia, and cannot shift instantly without some memory of their previous state. While some
means of controlling for the serial correlation between samples have been proposed (see, for example, Contributions
5 and 6), more can be done to understand the implications of serial correlation of samples on environmental contours
and to develop means of controlling for this effect.
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Serial correlation can be categorized by the time scale, starting from short-term serial correlation caused by passing
weather systems, to seasonal changes and climatic modes on the order of years or decades. Future research could
explore the effect these different categories of serial correlation have on environmental contour methods. Short-term
serial correlation could be assessed by using a block bootstrap technique, with block lengths of the order of one week.
Similarly, the influence of inter-annual variability could be assessed by using block bootstraps with lengths of one year
(as briefly explored in Figure 16). Assessing the influence of longer-term climatic variability is more challenging as
there is usually insufficient data available to be able to accurately quantify these effects.

As discussed throughout this paper, we have not presented any definitive “correct” solution and performed a test
of contours based on this solution. In the formulation of this benchmarking exercise, we considered a number of ways
in which such a test might be constructed. One initial idea was to present data from known parametric distributions
and construct contours from this “synthetic” data. While this approach does certainly have value, it can also be said
that the distribution of environmental data varies: we observe dramatically different distributions for waves in the US
Gulf Coast versus the North Atlantic. Another practical means of providing something closer to a definitive “correct”
solution for environmental contours would be to utilize a very long climatic simulation dataset such as the 1200-yr
dataset analyzed by Jones, Gibson and Shaffrey (2018) or the recently published 700-yr dataset (Song, Bao, Zhang,
Shu, Song and Qiao, 2020) that represents a stationary preindustrial climate (Bao, Song and Qiao, 2020). In this
way, it would be possible to more directly assess the agreement between a constructed contour and the data. Of
course climatic simulations, and especially long simulations with durations such that they cannot be compared with
historical measurements, also possess model uncertainty and model error. For the purpose of comparing contour
methods, however, the errors in the model data could be assumed to be negligible and the effect of model error could
be investigated separately.

Environmental contours are generally used within a larger engineering design workflow, in which the ultimate
results are an estimate of a design response. Thus, it is logical that the most important test of an environmental
contour is not the contour itself, but its ability to provide an accurate design response estimate. However, many design
responses exist and they are typically specific to the structure. For example, one could consider maximum pitch angle
in a container vessel, deck slamming in an offshore platform, tower bending moment in an offshore wind turbine, or
mooring load in a wave energy converter. Thus, to avoid potentially favoring one engineering system over another, in
this exercise a deliberate decision was made to consider only the environmental contours themselves. However, based
on the discussions from amongst this paper’s authors, a comparison has been made of design responses using these
contours (de Hauteclocque et al., in preparation).

In this benchmarking exercise, contours of significant wave height and mean wind speed have been constructed.
These two variables represent aggregate statistics of the changing water surface elevation and of wind fluctuations over
a certain reference period. Here, significant wave height had a reference period of 1 hour, Hs,1ℎ, and mean wind speed
had a reference period of 10 minutes, U10. Using a combination of 1-hr sea states and 10-min wind speed is typical for
offshore wind turbine design (see for example the recommendations in IEC 61400-3-1; International Electrotechnical
Commission (2019)). In general, however, combining variables with different reference periods in a joint distribution
model raises the question what kind of joint environmental state the distribution represents. It is commonly assumed
that the long-term evolution of environmental conditions can be considered as a sequence of stationary processes
(Naess and Moan, 2013). That is, the random process associated with a certain environmental condition is assumed
to be stationary for fixed time intervals of equal length. To be consistent with this assumption, one would assume that
wind and wave represent a joint stationary process with a fixed length such that either wind speed should be converted
to represent a 1-hr mean value, U1ℎ, or significant wave height should be converted to represent the intensity of a
10-min sea state, Hs,10min. While there exist recommendations on how to convert wind speeds with different reference
periods using factors (International Electrotechnical Commission, 2019), future research could explore how conversion
factors change with wind conditions and how such conversions change the dependence structure of the wind-wave joint
distribution. Additionally, if different reference periods are used, they need be handled properly when time-domain
simulations are conducted. The current standard on the design of offshore wind turbines, IEC 61400-3-1 (International
Electrotechnical Commission, 2019, pp. 64-65), allows designers to either perform one continuous 1-hr simulation or
six 10-min simulations and assumes that the maximum response values in these two options are similar.
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5. Concluding remarks

Benchmark exercises were defined that sought to allow comparisons of alternative approaches for constructing
environmental contours for different metocean datasets. Three datasets comprised 10 years of National Data Buoy
Center (NDBC) buoy wave measurements gathered from three locations along the eastern coast of the United States,
off the coast of Maine (A), off the coast of Florida (B), and in the Gulf of Mexico (C). These data consisted of hourly
significant wave height and zero-up-crossing period data. Participants were asked to derive 1- and 20-yr environmental
contours of these two variables. An additional set of three coastDat-2 hindcast datasets comprised 25 years of near-
surface 10-minute wind speed and significant wave height values for offshore sites close to Germany (D), the United
Kingdom (E), and Norway (F ), respectively. Participants were asked to derive 1- and 50-yr environmental contours of
these two variables. The development of contours as defined for these six different datasets was the focus of Exercise 1
of this benchmark study. A second exercise, referred to as Exercise 2, focused on characterizing uncertainty in the
constructed contours. A total of nine teams offered contributions for Exercise 1 and four of these teams also contributed
to Exercise 2.

With respect to Exercise 1, differences in the contours provided by the contributing teams resulted mostly due to
different joint distribution models employed for the metocean variables and not as much due to the different methods for
contour construction. Additionally, given that the amount of probability content outside some types of environmental
contours is known, a discussion on the expected and observed number of “points” outside the contours was presented.
While this quantity is not a universally agreed-upon metric of performance of any contour construction and indeed
points lying outside a contour are problematic in some regions of the two-dimensional metocean space and not so
much in others, this issue was merely remarked upon and it was generally found that points outside derived contours
varied by an order of magnitude among the participants.

With regard to Exercise 2, as expected, it was found that constructed contour uncertainty decreased with increase
in sample size (or amount of data made available). The uncertainty in contours arises from multiple sources including
selecting a type of model for the joint distribution, selecting a parameter estimation technique, selecting a contour
construction method as well as the metocean dataset’s finite sample size and climate patterns that are likely changing
over time.

Several areas for further exploration have been outlined in a section of this article. The assumption of independent
and identically distributed metocean data samples requires some reflection and perhaps some consideration in future
contour construction efforts. Another issue worthy of exploration is that related to the use of contours—namely, in
design. Accuracy of a contour construction approach may well be different depending on the application and associated
limit state or performance functions involved.

Contributions

AFH, RGC and LM, along with the other authors of Haselsteiner et al. (2019), conceived the benchmarking study;
AFH, RGC, and LM led the consolidation of results and writing of this paper; participating groups of this benchmarking
exercise, listed as co-authors on this article, optionally presented results of their work and some of their work appears
in this article as well.
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A. Parameter values of the fitted models

The parameter values of the fitted joint models of each contribution are listed in tables. Table 8, Table 9, Table 10,
Table 13 and Table 14 list the parameter values of contributions that used global hierarchical models. Table 11 and
Table 12 list the parameter values of Contribution 5’s fitted generalized pareto distributions at various angles.
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Table 8
Contribution 1 & 2: Used joint distribution models. Their parameters were estimated in
Haselsteiner et al. (2019) to provide baseline results.

Dataset Significant wave height Zero-up-crossing period, log-normal distribution
Translated Weibull distribution �tz(ℎs) = c1 + c2ℎ

c3
s �tz(ℎs) = c4 + c5 exp (c6ℎs)

� (scale) � (shape)  (location) c1 c2 c3 c4 c5 c6
A 0.944 1.48 0.0981 1.47 0.214 0.641 0.00 0.308 -0.250
B 1.14 1.60 0.188 1.41 0.234 0.581 0.00 0.241 -0.200
C 1.16 1.56 0.0566 1.24 0.300 0.600 0.00 0.155 -0.161

Significant wave height Wind speed, 2-p. Weibull distribution
Translated Weibull distribution �u(ℎs) = c7 + c8ℎ

c9
s �u(ℎs) = c10 + c11ℎ

c12
s

� (scale) � (shape)  (location) c7 c8 c9 c10 c11 c12
D 1.58 1.41 0.102 0.00 7.58 0.520 0.00 3.89 0.497
E 1.86 1.49 0.122 0.00 7.40 0.525 0.00 3.89 0.398
F 2.57 1.55 0.225 0.00 5.77 0.561 1.97 0.279 1.27

Table 9
Contribution 3: Fitted joint distributions. The 3-parameter log-normal distribution was
fitted using the Python software package scipy and its probability density function reads1

f (x|�, �, ) = 1

(x − )�
√
2�

exp

(
−[ln(x − ) − �]2

2�2

)
.

Dataset Significant wave height Zero-up-crossing period, 2-p. log-normal distribution
3-p. log-normal distribution �tz(ℎs) = c1 + c2ℎ

c3
s �tz(ℎs) = c4 + c5 exp (c6ℎs)

e� (scale) � (shape)  (location) c1 c2 c3 c4 c5 c6
A 0.717 0.635 0.0634 1.38 0.302 0.517 -0.191 0.484 -0.114
B 0.972 0.572 0.0633 1.30 0.339 0.464 -0.293 0.519 -0.0596
C 0.937 0.620 -0.0318 1.15 0.389 0.512 -0.958 1.11 -0.0150

Significant wave height Wind speed, 2-p. Weibull distribution
Translated Weibull distribution �u(ℎs) = c7 + c8ℎ

c9
s �u(ℎs) = c10 + c11ℎ

c12
s

� (scale) � (shape)  (location) c7 c8 c9 c10 c11 c12
D 1.58 1.41 0.102 0.00 7.53 0.525 0.00 3.86 0.502
E 1.86 1.49 0.122 0.00 7.33 0.530 0.00 3.85 0.404
F 2.57 1.57 0.2248 0.00 5.71 0.566 1.94 0.292 1.26
1 https://nbviewer.jupyter.org/url/xweb.geos.ed.ac.uk/~jsteven5/blog/lognormal_distributions.ipynb

Table 10
Contribution 4: Fitted joint distributions.

Dataset Significant wave height Zero-up-crossing period, log-normal distribution

Exponentiated Weibull distribution �tz(ℎs) = ln

(
c1 + c2

√
ℎs

g

)
�tz(ℎs) = c3 +

c4

1 + c5ℎs

� (scale) � (shape) � (shape) c1 c2 c3 c4 c5
A 0.207 0.684 7.79 3.62 5.77 0 0.324 0.404
B 0.0988 0.584 36.6 3.54 5.31 0 0.241 0.256
C 0.227 0.697 9.85 2.71 6.51 0.0109 0.147 0.236

Wind speed Sig. wave height, exp. Weibull distribution with � = 5

Exponentiated Weibull distribution �ℎs(v) = (c6 + c7v
c8 )∕2.04451∕�ℎs(v) �ℎs(v) = c9 +

c10

1 + e−c11(v−c12)

� (scale) � (shape) � (shape) c6 c7 c8 c9 c10 c11 c12
D 10.0 2.42 0.761 0.488 0.0114 2.03 0.714 1.70 0.304 8.77
E 10.8 2.48 0.683 0.617 0.0174 1.87 0.724 2.01 0.309 9.59
F 11.5 2.56 0.534 1.09 0.0251 1.80 0.726 1.89 0.194 13.4
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Table 11
Contribution 5 for datasets A and B: Fitted generalized Pareto distributions at various
angles. A variable change has been used, v1 = Hs and v2 = HsTz. Additionally, the
variables were scaled, s1 = scale factor for transform variable 1. s2 = scale factor for
transform variable 2. ne = number of threshold exceedances per year.

Dataset A Dataset B

s1 = 5.232, s2 = 42.903 s1 = 5.192, s2 = 42.122

Angle (deg) Threshold Shape Scale ne Angle (deg) Threshold Shape Scale ne

-90.000000 -0.0172 -0.1335 0.0032 4.1994 -90.000000 -0.0291 -0.4002 0.0055 3.9994
-83.571429 -0.0127 -0.2297 0.0029 4.4993 -85.714286 -0.0242 -0.4230 0.0049 4.0994
-77.142857 -0.0068 -0.1300 0.0016 4.3993 -81.428571 -0.0188 -0.3995 0.0039 4.0994
-70.714286 0.0002 -0.6519 0.0020 4.0994 -77.142857 -0.0131 -0.3043 0.0028 4.0994
-64.285714 0.0128 -0.2958 0.0019 4.2993 -72.857143 -0.0068 -0.3090 0.0024 4.1994
-57.857143 0.0347 -0.6208 0.0041 4.0994 -68.571429 0.0010 -0.2072 0.0018 3.8994
-51.428571 0.0688 0.0376 0.0033 4.0994 -60.000000 0.0253 0.0228 0.0019 4.4994
-45.000000 0.1249 -0.1544 0.0068 3.9994 -55.714286 0.0452 -0.0474 0.0031 4.4994
-38.571429 0.2123 -0.4959 0.0216 3.8994 -51.428571 0.0721 -0.1159 0.0059 3.9994
-32.142857 0.3263 -0.4578 0.0467 3.9994 -47.142857 0.1094 -0.0755 0.0067 3.9994
-25.714286 0.4425 -0.4412 0.0849 3.9994 -42.857143 0.1545 -0.1772 0.0121 4.0994
-19.285714 0.5565 -0.3964 0.1226 3.9994 -38.571429 0.2094 0.0091 0.0170 4.1994
-12.857143 0.6622 -0.4241 0.1733 3.8994 -34.285714 0.2699 -0.0271 0.0324 3.9994
-6.428571 0.7584 -0.3979 0.2103 3.9994 0.000000 0.7304 0.3072 0.1269 3.9994
0.000000 0.8434 -0.4166 0.2586 3.9994 13.500000 0.8577 0.3355 0.1583 3.8994
13.500000 1.0078 -0.3572 0.3019 3.9994 27.000000 0.9394 0.4155 0.1609 3.9994
27.000000 1.1092 -0.3586 0.3530 3.9994 40.500000 0.9743 0.5260 0.1457 4.0994
40.500000 1.1596 -0.3267 0.3643 3.9994 54.000000 0.9548 0.4478 0.1682 3.9994
54.000000 1.1509 -0.2794 0.3457 3.9994 67.500000 0.8772 0.4001 0.1768 3.9994
67.500000 1.0792 -0.2290 0.3089 3.9994 81.000000 0.7485 0.2713 0.2005 3.9994
81.000000 0.9491 -0.1525 0.2511 3.9994 94.500000 0.5919 0.3077 0.1629 3.9994
108.000000 0.5064 -0.3332 0.2192 3.9994 108.000000 0.4164 0.4125 0.1090 3.8994
121.500000 0.2724 -0.0597 0.0983 3.9994 121.500000 0.2188 0.5171 0.0625 3.9994
135.000000 0.0488 -0.2796 0.0568 4.0994 135.000000 0.0316 0.1326 0.0553 3.9994
148.500000 -0.0103 -0.3956 0.0041 3.9994 148.500000 -0.0244 0.3415 0.0043 4.2994
162.000000 -0.0228 -0.3171 0.0056 4.1994 162.000000 -0.0403 -0.5340 0.0080 4.0994
175.500000 -0.0306 -0.3086 0.0062 3.8994 175.500000 -0.0513 -0.3806 0.0075 4.0994
189.000000 -0.0366 -0.4625 0.0079 3.8994 189.000000 -0.0589 -0.1053 0.0057 4.2994
202.500000 -0.0395 -0.3103 0.0070 4.0994 202.500000 -0.0642 -0.4043 0.0103 3.9994
216.000000 -0.0407 -0.4262 0.0085 4.1994 216.000000 -0.0643 -0.3623 0.0098 3.9994
229.500000 -0.0383 -0.3675 0.0079 4.0994 229.500000 -0.0597 -0.1953 0.0072 3.7995
243.000000 -0.0334 -0.5277 0.0087 3.6994 243.000000 -0.0532 -0.2990 0.0078 3.8994
256.500000 -0.0265 -0.3223 0.0059 4.0994 256.500000 -0.0436 -0.5041 0.0090 3.9994
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Table 12
Contribution 5 for datasets D and E: Fitted generalized Pareto distributions at various
angles. A variable change has been used, v1 = Hs∕({10 + 20 ⋅ [1 − cos(U10 ⋅ �∕60)

2]}) and
v2 = U10. Additionally, the variables were scaled, s1 = scale factor for transform variable 1.
s2 = scale factor for transform variable 2. For brevity only every second angle is reported
(for example 0◦ and 12◦, but not 6◦ and 18◦). ne = number of threshold exceedances per
year.

Dataset D Dataset E

s1 = 0.305, s2 = 21.916 s1 = 0.323, s2 = 22.992

Angle (deg) Threshold Shape Scale ne Threshold Shape Scale ne

0.0 1.0062 -0.3960 0.1245 1.6000 1.0062 -0.3960 0.1245 1.6000
12.0 1.1270 -0.3354 0.1216 1.6000 1.1270 -0.3354 0.1216 1.6000
24.0 1.2197 -0.2425 0.1177 1.6400 1.2197 -0.2425 0.1177 1.6400
36.0 1.2989 -0.2223 0.1071 1.6000 1.2989 -0.2223 0.1071 1.6000
48.0 1.3327 -0.0724 0.0804 1.6000 1.3327 -0.0724 0.0804 1.6000
60.0 1.2993 -0.0755 0.0841 1.6000 1.2993 -0.0755 0.0841 1.6000
72.0 1.2266 -0.0005 0.0739 1.6000 1.2266 -0.0005 0.0739 1.6000
84.0 1.0887 -0.0587 0.0900 1.6400 1.0887 -0.0587 0.0900 1.6400
96.0 0.9357 -0.0093 0.0810 1.6000 0.9357 -0.0093 0.0810 1.6000
108.0 0.7609 0.1624 0.0565 1.6000 0.7609 0.1624 0.0565 1.6000
120.0 0.5546 -0.0641 0.0737 1.6000 0.5546 -0.0641 0.0737 1.6000
132.0 0.3602 0.0683 0.0534 1.5600 0.3602 0.0683 0.0534 1.5600
144.0 0.1770 0.5143 0.0224 1.5600 0.1770 0.5143 0.0224 1.5600
156.0 0.0305 0.1234 0.0225 1.5600 0.0305 0.1234 0.0225 1.5600
168.0 -0.0321 -0.4437 0.0109 1.5600 -0.0321 -0.4437 0.0109 1.5600
180.0 -0.0607 -0.2366 0.0100 1.6000 -0.0607 -0.2366 0.0100 1.6000
192.0 -0.0754 -0.3358 0.0126 1.6000 -0.0754 -0.3358 0.0126 1.6000
204.0 -0.0827 -0.5789 0.0205 1.5600 -0.0827 -0.5789 0.0205 1.5600
216.0 -0.0826 -0.5009 0.0198 1.6400 -0.0826 -0.5009 0.0198 1.6400
228.0 -0.0766 -0.5970 0.0214 1.6000 -0.0766 -0.5970 0.0214 1.6000
240.0 -0.0663 -0.7225 0.0228 1.6000 -0.0663 -0.7225 0.0228 1.6000
252.0 -0.0501 -0.7629 0.0183 1.5600 -0.0501 -0.7629 0.0183 1.5600
264.0 -0.0283 -0.1749 0.0054 1.6400 -0.0283 -0.1749 0.0054 1.6400
276.0 0.0316 -0.3399 0.0114 1.5200 0.0316 -0.3399 0.0114 1.5200
288.0 0.1681 -0.3577 0.0471 1.6000 0.1681 -0.3577 0.0471 1.6000
300.0 0.3126 -0.2949 0.0826 1.6000 0.3126 -0.2949 0.0826 1.6000
312.0 0.4623 -0.2377 0.1030 1.6000 0.4623 -0.2377 0.1030 1.6000
324.0 0.6219 -0.0607 0.0868 1.6000 0.6219 -0.0607 0.0868 1.6000
336.0 0.7586 0.0424 0.0779 1.6000 0.7586 0.0424 0.0779 1.6000
348.0 0.8760 -0.1831 0.1055 1.6000 0.8760 -0.1831 0.1055 1.6000

Table 13
Contribution 8: Fitted joint distributions.

Dataset Significant wave height Zero-up-crossing period, 2-p. Weibull distribution
2-p. Weibull distribution �tz(ℎs) = c1ℎ

2
s
+ c2ℎs + c3 �tz(ℎs) = c4ℎ

2
s
+ c5ℎs + c6

� (scale) � (shape) c1 c2 c3 c4 c5 c6
A 1.0651 1.6399 -0.0245 0.4387 -0.4702 0.07056 -1.132 5.787
B 1.3654 1.8893 -0.02063 0.4798 0.5028 0.04746 -0.7643 4.963
C 5.0475 5.5633 0.135 -0.824 1.964 0.06753 -0.6624 3.637

Significant wave height Wind speed, 2-p. Weibull distribution
2-p. Weibull distribution �u(ℎs) = c7ℎ

3
s
+ c8ℎ

2
s
+ c9ℎs + c10 �u(ℎs) = c11ℎ

3
s
+ c12ℎ

2
s
+ c13ℎs + c14

� (scale) � (shape) c7 c8 c9 c10 c11 c12 c13 c14
D 1.7148 1.5292 0.01211 -0.3048 3.972 3.496 0.01414 -0.177 1.848 2.35
E 2.018 1.6249 0 -0.1399 3.412 3.621 0 -0.008746 0.9706 1.718
F 2.849 1.716 0 -0.09185 2.735 2.825 0 -0.002556 0.5414 1.327
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Table 14
Contribution 9: Fitted joint distributions.

Dataset Significant wave height Zero-up-crossing period, lognormal distribution
Translated Weibull distribution �tz(ℎs) = c1 + c2ℎ

c3
s �tz(ℎs) = c4 + c5 exp (c6ℎs)

� (scale) � (shape)  (location) c1 c2 c3 c4 c5 c6
A 0.4983 0.8573 0.4187 1.4306 0.2561 0.5556 0.0150 0.3004 -0.2884
B 0.6539 0.9710 0.5658 1.3805 0.2686 0.5254 0.0150 0.2311 -0.2339
C 0.7291 1.0134 0.3910 0.7702 0.8061 0.2624 0.0150 0.1452 -0.2069

Significant wave height Wind speed, 2-parameter Weibull distribution
Translated Weibull distribution �u(ℎs) = c7 + c8ℎ

c9
s �u(ℎs) = c10 + c11ℎ

c12
s

� (scale) � (shape)  (location) c7 c8 c9 c10 c11 c12
D 1.2528 1.1186 0.3389 2.3134 1.2987 1.0594 -1.3969 8.5546 0.5129
E 1.4836 1.1963 0.4101 2.1616 1.0011 1.1721 -0.3624 6.7912 0.6232
F 2.0550 1.2284 0.6104 1.9762 0.2397 1.3660 -1.3854 6.0949 0.5972
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Table 15
The results presented in this study can be reproduced by running the listed open-source Python files.

Object Content URL

Figure 7 E1 sea state contour overlay https://github.com/ec-benchmark-organizers/

ec-benchmark/blob/master/results/exercise-1/plot_

benchmark_contours_dataset_abc.py

Figure 8 E1 maxima along the sea
state contours

https://github.com/ec-benchmark-organizers/

ec-benchmark/blob/master/results/exercise-1/plot_

e1_maxima.py

Table 5 E1 sea state points outside https://github.com/ec-benchmark-organizers/

ec-benchmark/blob/master/results/exercise-1/create_

points_outside_table_abc.py

Figure 9 E1 wind-wave contour overlay https://github.com/ec-benchmark-organizers/

ec-benchmark/blob/master/results/exercise-1/plot_

benchmark_contours_dataset_def.py

Figure 10 E1 maxima along the wind-
wave contours

https://github.com/ec-benchmark-organizers/

ec-benchmark/blob/master/results/exercise-1/plot_

e1_maxima.py

Table 6 E1 wind-wave points outside https://github.com/ec-benchmark-organizers/

ec-benchmark/blob/master/results/exercise-1/create_

points_outside_table_def.py

Figure 12 E2 confidence intervals https://github.com/ec-benchmark-organizers/

ec-benchmark/blob/master/results/exercise-2/plot_

benchmark_contours_e2.py

Figure 15 Autocorrelation function of
Hs and U10

https://github.com/ec-benchmark-organizers/

ec-benchmark/blob/master/results/discussion/

autocorrelation_of_datasets.py

Table 7 Upper tail dependence https://github.com/ec-benchmark-organizers/

ec-benchmark/blob/master/results/discussion/extremal_

dependence.py

Figure 16 Effect of autocorrelation on
the results of E2

https://github.com/ec-benchmark-organizers/

ec-benchmark/blob/master/results/discussion/e2_

autocorrelation.py

Figure 17 Interpreting the submitted
contours as model uncer-
tainty.

https://github.com/ec-benchmark-organizers/

ec-benchmark/blob/master/results/discussion/e1_

confidence_bound.py

Provided datasets https://github.com/ec-benchmark-organizers/

ec-benchmark/tree/master/datasets

Retained datasets https://github.com/ec-benchmark-organizers/

ec-benchmark/tree/master/datasets-retained

B. Reproducing the results of this study

The figures and tables that presented the major results of this study can be reproduced by running open-source
Python scripts that are available at a dedicated Github repository. The repository is available at https://github.
com/ec-benchmark-organizers/ec-benchmark . Table 15 lists the individual scripts that were used to produce
the presented figures and tables. Additionally, a procedure for applying these benchmark exercises to a new contour are
provided in the Github repository. The steps to do so are detailed in a README.md file in the exercise-1 folder: https:
//github.com/ec-benchmark-organizers/ec-benchmark/blob/master/results/exercise-1/readme.md.
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