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Overview

This is a talk about environmental applications

Extremes (non-stationary marginal, multivariate spatial conditional extremes)

Remote sensing (airborne, line-of-sight, satellite)
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Extremes
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Non-stationary marginal extreme value analysis

Environmental extremes of Y vary continuously with multidimensional covariates Ω

Asymptotic theory gives form of distribution of exceedances of high threshold ψ

Y|(Ω, Y > ψ) ∼ GP(ξ ,σ ,ψ), generalised Pareto with parameters ξ ,σ ,ψ

Inferences should reflect sources of uncertainty fairly

Need statistical and computational efficiency

Predict extreme quantiles of Y

Assess risk (or expected loss E(L)) for system S = s0 due to Y and structural response R

E(L|S = s0) =
∫

r

∫

y

∫

ω
L(r|S = s0) fR|Y(r|y) fY|Ω(y|ω) fΩ(ω)dωdydr

Use cases: Offshore and coastal design, weather windows and alerts

Jones et al. [2018], Hansen et al. [2020] ,Towe et al. [2021]
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Directional-seasonal: Application
Storm peak significant wave height at northern North Sea location; clear directional and seasonal variability in storm severity; directional variability more dramatic at around 225◦ ;
seasonal variability more gradual.
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Directional-seasonal: The model

Density

f (y|ξ ,σ ,α,γ,ψ, τ) =

{

τ × fTW(y|α,γ) for y ≤ ψ, a truncated Weibull (or similar)

(1 − τ)× fGP(y|ξ ,σ) for y > ψ

Threshold non-exceedance probability τ to be inferred

Physics suggests parametersα,β,ρ,ξ ,σ ,ψ and τ vary smoothly with covariates θ,φ

Randell et al. [2016]

Covariate representation: B-splines

Values of η ∈ {α,β,ρ,ξ ,σ ,ψ, τ} on some index set of covariates take the form η = Bβη

B takes the form Bφ ⊗ Bθ , GLAMs provide efficient manipulation

Spline roughness penalty is quadratic form β′
ηPηβη ⇒ movitates prior for βη

Pη = ληθPηθ + ληφPηφ, includes stochastic roughness penalties {δηθ , δηφ}

Brezger and Lang [2006], Currie et al. [2006], Eilers and Marx [2010], Zanini et al. [2020]
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Directional-seasonal: DAG for size of threshold exceedances

y βξ

βν

βγ

βα

τ λξ

δξ
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Copyright of Shell Philip Jonathan & Matthew Jones Environmental decision support November 2021 7 / 28



Directional-seasonal: Inference

Sampling from full conditionals

Gibbs sampling when full conditionals available in closed form

Metropolis-Hastings (MH) within Gibbs otherwise, using suitable proposal mechanisms
(mMALA)

Roberts and Stramer [2002], Girolami and Calderhead [2011], Xifara et al. [2014]
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Directional-seasonal: Parameter estimates
Prior for τ in red, posterior in black; all parameters except ξ and τ suggest strong directional variation; seasonal variation less pronounced but clear forα, σ (and ρ); ξ effectively
constant; sample not informative about τ .
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Directional-seasonal: Return values
Predictive distribution of the 100-year maximum (in metres); directional and seasonal variability of the median estimate on lhs; seasonal variation of predictive distribution for
directional octants (2.5%, 37%, median and 97.5% values) in black; corresponding omni-seasonal estimates in red; large difference between S and SW; smooth seasonal variation.
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Multivariate extremes
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Multivariate extremes

Use cases

Rare events from multivariate distributions

Spatially-dependent rare events

Structure of a time-series near an extreme occurrence

Models

Max-stable processes (MSPs), copulas (e.g. www.lancs.ac.uk/∼jonathan/EVAN17.pdf)

Conditional extremes: Y|(X = x, x > ψ)
Spatial: Y(s)|(Y(0) = y, y > ψ), s ∈ N0

Ross et al. [2017], Tendijck et al. [2019], Tendijck et al. [2021]

A note on extremal dependence

Dependence in body and dependence in tail are different

[X, Y] ∼ N(0, [1 ρ;ρ 1]), ρ < 1, limx→∞ Pr(Y > x|X > x) = 0
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Multivariate spatial conditional extremes (MSCE)

Context for study

Motivation: Understand spatial characteristics of extremes from satellite observations and
hindcast computer model output

Application: Coastal defences, unmanning, wind farm design and maintenance

Spatial conditional extremes: Shooter et al. [2019, 2021d,b]

Competitors: MSPs, hierarchical MSPs and multivariate MSPs

Key underpinning result

Y|{X = x} = αx + xβZ

Asymptotically-motivated, Heffernan and Tawn [2004]

X ∼ Lpl, Y ∼ Lpl, and x > ψ;α ∈ [−1, 1], β ∈ (−∞, 1]

Z is unknown residual process, ∼ N(µ,σ2) for estimation
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MSCE : Methodology

{X jk}
locations j
quantities k

Condition on large value x of first quantity X01 at location j = 0

Estimate “conditional spatial profiles” for m > 1 quantities

{X jk}
p,m
j=1,k=1 at p > 0 other locations

X jk ∼ Lpl, x > ψ

X|{X01 = x} = αx + xβZ

Z ∼ DL(µ,σ2 ,δ; Σ(λ,ρ,κ))

DL is delta-Laplace, or generalised Gaussian

MCMC to estimateα, β, µ,σ , δ and ρ, κ, λ

α, β, µ,σ , δ spatially smooth for each quantity

Residual correlation Σ for conditional Gaussian field,
powered-exponential decay with distance

Shooter et al. [2021c,a]
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MSCE: Data and inference

Data sources

METOP scatterometer directional U10 (wind speed)

NORA10 hindcast directional HS and directional U10

Inference

Adaptive MCMC, Roberts and Rosenthal [2009]

Piecewise linear forms for all parameters with distance
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MSCE: Parameter estimates for North Atlantic application

Estimates forα, β, µ, σ and δ with distance, and residual process estimates ρ, κ and λ. Model fitted with τ = 0.75
StlWnd (green), HndWnd (orange), HndWav(blue)
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Remote sensing
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Remote sensing of gaseous and particulate emissions

Airborne
Hirst et al. [2013]

Line of sight
Hirst et al. [2017], Hirst et al. [2020]

Sander Geophysics Boreal Laser

Copyright of Shell Philip Jonathan & Matthew Jones Environmental decision support November 2021 18 / 28



Remote sensing of gaseous and particulate emissions

Drone Satellite

Scientific Aviation Sentinel5 TROPOMI
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Remote sensing: Examples

Airborne
Hirst et al. [2013]

Line of sight
Hirst et al. [2020]

Canadian land-fill (actual, CH4) Chilbolton Observatory (schematic)
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Remote sensing: Model specification

y = As + b + d +ϵ

y observations

b background concentrations

s source emission rates

d calibration offsets

ϵ measurement errors

λ measurement error precision (e.g. ϵ ∼ N(0, λ−2 I))

Coupling matrix A from suitable dispersion model

Gaussian plume dispersion model used in most applications (steady-state)

More complex dispersion model more appropriate in some applications

Copyright of Shell Philip Jonathan & Matthew Jones Environmental decision support November 2021 21 / 28



Remote sensing: Inversion

f (s, b, d, λ|y) ∝ f (y|s, b, d, λ) f (s) f (b) f (d) f (λ)

f (b): imposes smooth spatio-temporal evolution of b

f (s): imposes sparsity of source map

Source representation

Hirst et al. [2013]: “free” sources (⇒ RJ-MCMC)

Hirst et al. [2020]: fixed grid of candidate sources

Inference

Full conditionals where possible

MH with gradient-based (mMALA) proposals otherwise
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Remote sensing: Source estimates for airborne

observations a) starting solution, (b) posterior median
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Remote sensing: Satellite sensing of gaseous and particulate emissions

Data sources

ESA Sentinel 5P TROPOMI instrument (data publicly available)

Private by commission (e.g. GHGSat)

Pros and cons:

Daily measurements, globally

Direct quantification of column-integrated concentrations

Sensor limitations: oceans, cloud, albedo / reflection, striping

Smallest source detectable: TROPOMI ≈ 5 T/hr, GHGSat ≈ 100 kg/hr

Spatial resolution: TROPOMI ≈ 5km, GHGSat ≈ 50m
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Remote sensing: NO2 as surrogate for CH4

NO2 is a good surrogate

More easily detected, better spatial coverage than CH4

Half life of days (better temporal source identification)

Model
Observation

No
id = Nid +ϵNidσNid , d = 1, 2, ..., nDay, i = 1, 2, ..., nObs(d)

Co
id = Cid +ϵCidσCid

System

Cid = αd +βd Nid +ϵTidσTd

Bayesian inference as before
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Remote sensing: NO2 as surrogate for CH4

Left: original CH4 map. Right: inferred CH4 map (both ppb by volume)

Thanks to Clay Roberts, Oli Shorttle and Kaisey Mandel at IoA, Cambridge
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Summary

Coupling of physical and statistical knowledge within an appropriate framework for inference

Exploit growing sources of data from direct observation and physical models

Careful uncertainty quantification for better decisions

Diolch & Thank-you!
www.lancs.ac.uk/∼jonathan
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B. Hirst, P. Jonathan, F. González del Cueto, D. Randell, and O. Kosut. Locating and quantifying gas emission sources using remotely obtained concentration data. Atmospheric
Environ., 74:141–158, 2013.

B. Hirst, D. Randell, M. Jones, P. Jonathan, B. King, and M. Dean. A new technique for monitoring the atmosphere above onshore carbon storage projects that can estimate the
locations and mass emission rates of detected sources. Energy Procedia, 114:3716–3728, 2017.

B. Hirst, D. Randell, M. Jones, J. Chu, A. Kannath, N. Macleod, M. Dean, and D. Weidmann. Methane emissions: Remote mapping and source quantification using an open-path
laser dispersion spectrometer. Geophys. Res. Let., 47:e2019GL086725, 2020.

M. J. Jones, H. F. Hansen, A. R. Zeeberg, D. Randell, and P. Jonathan. Uncertainty quantification in estimation of ocean environmental return values. Coastal Eng., 141:36–51, 2018.

D. Randell, K. Turnbull, K. Ewans, and P. Jonathan. Bayesian inference for non-stationary marginal extremes. Environmetrics, 27:439–450, 2016.

G. O. Roberts and J. S. Rosenthal. Examples of adaptive MCMC. J. Comp. Graph. Stat., 18:349–367, 2009.

G. O. Roberts and O. Stramer. Langevin diffusions and Metropolis-Hastings algorithms. Methodol. Comput. Appl. Probab., 4:337–358, 2002.

E Ross, M Kereszturi, M van Nee, D Randell, and P Jonathan. On the spatial dependence of extreme ocean storm seas. Ocean Eng., 145:359–372, 2017.

R. Shooter, E. Ross, J. A. Tawn, and P. Jonathan. On spatial conditional extremes for ocean storm severity. Environmetrics, 30:e2562, 2019.

R. Shooter, E Ross, and P. Jonathan. Multivariate spatial conditional extremes. https://github.com/ygraigarw/MultivariateSpatialConditionalExtremesPublic, 2021a.

R. Shooter, E Ross, A. Ribal, I. R. Young, and P. Jonathan. Spatial conditional extremes for significant wave height from satellite altimetry. Environmetrics, 32:e2674, 2021b.

R. Shooter, E Ross, A. Ribal, I. R. Young, and P. Jonathan. Multivariate spatial conditional extremes for extreme ocean environments. Submitted to Ocean Eng., draft at
www.lancs.ac.uk/∼jonathan, 2021c.

R Shooter, J A Tawn, E Ross, and P Jonathan. Basin-wide spatial conditional extremes for severe ocean storms. Extremes, 24:241–265, 2021d.

S. Tendijck, E. Ross, D. Randell, and P. Jonathan. A non-stationary statistical model for the evolution of extreme storm events. Environmetrics, 30:e2541, 2019.

S. Tendijck, E. Eastoe, J. Tawn, D. Randell, and P. Jonathan. Modelling the extremes of bivariate mixture distributions with application to oceanographic data. Accepted for publication
in JASA, draft at www.lancs.ac.uk/∼jonathan, 2021.

R. Towe, E. Zanini, D. Randell, G. Feld, and P. Jonathan. Efficient estimation of distributional properties of extreme seas from a hierarchical description applied to calculation of
un-manning and other weather-related operational windows. Ocean Eng., 238:109642, 2021.

T. Xifara, C. Sherlock, S. Livingstone, S. Byrne, and M Girolami. Langevin diffusions and the Metropolis-adjusted Langevin algorithm. Stat. Probabil. Lett., 91(2002):14–19, 2014.

E. Zanini, E. Eastoe, M. Jones, D. Randell, and P. Jonathan. Covariate representations for non-stationary extremes. Environmetrics, 31:e2624, 2020.

Copyright of Shell Philip Jonathan & Matthew Jones Environmental decision support November 2021 28 / 28

https://github.com/ygraigarw/MultivariateSpatialConditionalExtremesPublic

	References
	References

