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Overview
m This is a talk about environmental applications
m Extremes (non-stationary marginal, multivariate spatial conditional extremes)

m Remote sensing (airborne, line-of-sight, satellite)

Copyright of Shell Philip Jonathan & Matthew Jones Environmental decision support

November 2021

2/28



Extremes
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Non-stationary marginal extreme value analysis

m Environmental extremes of Y vary continuously with multidimensional covariates )

m Asymptotic theory gives form of distribution of exceedances of high threshold 1
Y|(Q,Y > ) ~ GP(¢,0,1), generalised Pareto with parameters &, o,

m Inferences should reflect sources of uncertainty fairly

m Need statistical and computational efficiency

m Predict extreme quantiles of Y

m Assess risk (or expected loss E(L)) for system S = sy due to Y and structural response R
B(LIS =s0) = [ [ [ 1018 = s0) ey (119) frio (y1e) (o) dwdyar

m Use cases: Offshore and coastal design, weather windows and alerts

m Jones et al. [2018], Hansen et al. [2020] ,Towe et al. [2021]

Copyright of Shell Philip Jonathan & Matthew Jones Environmental decision support November 2021 4 /28



Directional-seasonal: Application

Storm peak significant wave height at northern North Sea location; clear directional and seasonal variability in storm severity; directional variability more dramatic at around 225°;
seasonal variability more gradual.
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Directional-seasonal: The model

Density
T X o, for y < 1, a truncated Weibull (or similar
m f(yl&, o0y Y,1)= frwyla,) y=w ( )
(1=1) x fep(ylé, o)  fory >
m Threshold non-exceedance probability T to be inferred

m Physics suggests parameters «, 3, p, &, 0,1 and T vary smoothly with covariates 8, ¢

m Randell et al. [2016]

Covariate representation: B-splines

m Valuesof n € {«, 3,p,&,0,9, T} on some index set of covariates take the form n = B By
B takes the form By @ By, GLAMs provide efficient manipulation
Spline roughness penalty is quadratic form g;, P, 3, = movitates prior for 3,

Py = ApoPro + ApgPrg, includes stochastic roughness penalties {5,0, 554 }

Brezger and Lang [2006], Currie et al. [2006], Eilers and Marx [2010], Zanini et al. [2020]

Copyright of Shell Philip Jonathan & Matthew Jones Environmental decision support November 2021

6/28



Directional-seasonal: DAG for size of threshold exceedances
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Directional-seasonal: Inference

m Sampling from full conditionals
m Gibbs sampling when full conditionals available in closed form

m Metropolis-Hastings (MH) within Gibbs otherwise, using suitable proposal mechanisms
(mMALA)

m Roberts and Stramer [2002], Girolami and Calderhead [2011], Xifara et al. [2014]
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Directional-seasonal: Parameter estimates

Prior for 7 in red, posterior in black; all parameters except & and T suggest strong directional variation; seasonal variation less pronounced but clear for &, o (and p); & effectively

constant; sample not informative about 7.
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Directional-seasonal: Return values
Predictive distribution of the 100-year maximum (in metres); directional and seasonal variability of the median estimate on lhs; seasonal variation of predictive distribution for

directional octants (2.5%, 37%, median and 97.5% values) in black; corresponding omni-seasonal estimates in red; large difference between S and SW; smooth seasonal variation.
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Multivariate extremes
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Multivariate extremes

Use cases
m Rare events from multivariate distributions
m Spatially-dependent rare events

m Structure of a time-series near an extreme occurrence

Models
m Max-stable processes (MSPs), copulas (e.g. www.lancs.ac.uk/~jonathan/EVAN17.pdf)
m Conditional extremes: Y|(X = x, x > )
m Spatial: Y(s)[(Y(0) = v,y > ), s € N
m Ross et al. [2017], Tendijck et al. [2019], Tendijck et al. [2021]

A note on extremal dependence
m Dependence in body and dependence in tail are different
B (X, Y]~ N, [1p;pl]),p<1, limeoPr(Y >xX>x)=0
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Multivariate spatial conditional extremes (MSCE)

Context for study

m Motivation: Understand spatial characteristics of extremes from satellite observations and
hindcast computer model output

m Application: Coastal defences, unmanning, wind farm design and maintenance
m Spatial conditional extremes: Shooter et al. [2019, 2021d,b]
m Competitors: MSPs, hierarchical MSPs and multivariate MSPs

Key underpinning result

Y{X =x} =ax+xPZ

m Asymptotically-motivated, Heffernan and Tawn [2004]
mX~LpL,Y~Lplandx > ;e [-1,1], 3 € (—o0,1]

m Z is unknown residual process, ~ N(p, 02) for estimation
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MSCE : Methodology

Condition on large value x of first quantity Xo; at location j = 0

Estimate “conditional spatial profiles” for m > 1 quantities
{Xj-k};”:"{ 1 at p > 0 other locations

Xjk ~ Lpl, x>
X|{Xo1 =x} =ax+xPZ
Z ~ DL(p, o2, §Z(A,p,K))

DL is delta-Laplace, or generalised Gaussian

5w

«, B, 1, 0, § spatially smooth for each quantity

[
m MCMC to estimate «r, 3, 4, 0, 6 and p, k, A
2w Sy 0w 5 W u
m Residual correlation X for conditional Gaussian field,

X} powered-exponential decay with distance

locations j

quantities k m Shooter et al. [2021¢,a]
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MSCE: Data and inference

Data sources
m METOP scatterometer directional Ujo (wind speed)
® NORA10 hindcast directional Hg and directional U7

Inference
m Adaptive MCMC, Roberts and Rosenthal [2009]

m Piecewise linear forms for all parameters with distance
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MSCE: Parameter estimates for North Atlantic application
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StIWnd (green), HndWnd (orange), HndWav(blue)

Copyright of Shell Philip Jonathan & Matthew Jones Environmental decision support November 2021 16 /28



Remote sensing
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Remote sensing of gaseous and particulate emissions

Airborne
Hirst et al. [2013]

Sander Geophysics
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Line of sight
Hirst et al. [2017], Hirst et al. [2020]
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Remote sensing of gaseous and particulate emissions

Satellite

Scientific Aviation Sentinel5 TROPOMI
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relative northings (km)

Remote sensing: Examples

Airborne

Hirst et al. [2013]
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Remote sensing: Model specification

y=As+b+d+e
y observations

b background concentrations

d calibration offsets

[ ]

]

B S source emission rates
]

B € measurement errors
]

A measurement error precision (e.g. € ~ N(0,A721))

Coupling matrix A from suitable dispersion model
m Gaussian plume dispersion model used in most applications (steady-state)

m More complex dispersion model more appropriate in some applications
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Remote sensing: Inversion

f(s,b,d,Aly) « f(yls,b,d,A)f(s)f(b)f(d)f(A)

m f(b): imposes smooth spatio-temporal evolution of b

m f(s): imposes sparsity of source map

Source representation
m Hirst et al. [2013]: “free” sources (= R]-MCMC)
m Hirst et al. [2020]: fixed grid of candidate sources

Inference
m Full conditionals where possible
m MH with gradient-based (mMALA) proposals otherwise
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Remote sensing: Source estimates for airborne
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Remote sensing: Satellite sensing of gaseous and particulate emissions

Data sources
m ESA Sentinel 5P TROPOMI instrument (data publicly available)
m Private by commission (e.g. GHGSat)

Pros and cons:
m Daily measurements, globally
m Direct quantification of column-integrated concentrations
m Sensor limitations: oceans, cloud, albedo / reflection, striping
m Smallest source detectable: TROPOMI ~ 5 T/hr, GHGSat ~ 100 kg/hr
m Spatial resolution: TROPOMI ~ 5km, GHGSat ~ 50m
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Remote sensing: NO; as surrogate for CHy

NO; is a good surrogate
m More easily detected, better spatial coverage than CHy

m Half life of days (better temporal source identification)

Model
Observation
Nz(?d = Nid+€Nido—Nid/ d= 1,2,...,1’1Day,i: 1/2/""n0bs(d)
o = Cia+ecigocia
System
Cia = og+BiNig+erigora

m Bayesian inference as before
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Remote sensing: NO; as surrogate for CHy

Latitude

w
w
1

314

O kt\’- _ w W
Longitude -104 —102 -100

Left: original CHy map. Right: inferred CHy map (both ppb by volume)

294+— ;
—-106 -104 -102 Longitude

Thanks to Clay Roberts, Oli Shorttle and Kaisey Mandel at IoA, Cambridge
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Summary

m Coupling of physical and statistical knowledge within an appropriate framework for inference
m Exploit growing sources of data from direct observation and physical models

m Careful uncertainty quantification for better decisions

Diolch & Thank-you!
www.lancs.ac.uk/~jonathan
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