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Over 2 million wells in North America
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Global warming potentials (wiki: time-integrated energy released from
instantaneous release of 1 kg of trace substance relative to that of 1 kg of CO2)
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Introduction Outline

Outline

Motivation
� A method for detecting, locating and quantifying sources of gas

emissions to the atmosphere
� From remotely obtained atmospheric gas concentration measurements

Issues
� Potentially large background gas concentrations (≈ 1800ppb for CH4)
� Need to detect small signals (≈ 5− 35ppb for CH4)
� Gas dispersion determined by prevailing wind conditions

Approach
� Plume model represents gas dispersion between source and

measurement location
� Measured concentration is sum of contributions from sources and

relatively smooth background
� Infer source locations, source emission rates, background level, plume

biases and uncertainties
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Introduction Outline

Smoke plumes (Gaussian plume in far field)
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Introduction Outline

Survey aircraft (≈ 50ms−1, ≈ 200m above ground)
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Introduction Applications

Motivating test applications

Synthetic problem
� Known wind field, sources and background, 10 sources

Landfill
� 2 landfill regions, probable diffuse sources
� Wind field from UK met–office global circulation model

Flare stack
� Single elevated near–point source
� Wind field from UK met–office global circulation model
� Coastal location
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Introduction Applications

Synthetic problem revealed
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Introduction Applications

(a) two passes x–y (b) first pass in time (c) second pass in time

Jonathan Locating gas emissions May 2019 10 / 28



Introduction Applications

Landfill from above
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Introduction Applications

Landfill measurements
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Introduction Applications

Flare stack
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Introduction Applications

Flare stack measurements (wind direction bias)
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Model

Model formulation

y = As + b +ε

� y: measured concentrations
� A: assumed known from plume model
� s: sources to be estimated
� b: background to be estimated
� ε: measurement error (assumed Gaussian), variance to be estimated
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Model Plume

Plume model
� Red: Source height H
� Blue: Source half–width w
� Magenta: Downwind offset δR

� Cyan: Horizontal offset δH

� Green: Vertical offset δV

� ABL height: D
� Horizontal extent:

σH = δR tan(γH) + w
� Vertical extent: σV = δR tan(γV)

� Opening angles: γH , γV
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Model Background

Background model

Requirements
� Positive and smoothly–varying, spatially and temporally
� Basis function representation: b = Pβ
� We use Gaussian Markov random field
� Explicit spatial dependence due to wind transport incorporated

Random field prior

f (β) ∝ exp{−µ
2 (β−β0)

TJβ(β−β0)}

� Jβ is sparse, P = I
� Fast estimation
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Inference Str

Inference strategy

Initial point estimation
� Sources and background
� Source locations assumed on fixed grid
� Fast estimation of starting solution for Bayesian inference

Subsequent Bayesian inference
� Sources, background, measurement error, wind–field parameters, ...
� Grid-free sources modelled using Gaussian mixture model
� Reversible jump MCMC inference
� Quantified parameter uncertainties and dependencies
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Inference PntEst

Initial point estimation

Background prior

f (β) ∝ exp{−µ
2 (β−β0)

TJβ(β−β0)}

Source prior (Laplace)
f (s) ∝ exp{−λ‖Qs‖1}

Likelihood
f (y|s,β) ∝ exp{− 1

2σ2
ε
‖As + Pβ− y‖2},

Posterior
f (s,β|y) ∝ f (y|s,β) f (s) f (β)

Maximum a-posteriori estimate

argmins,β
1

2σ2
ε
‖As + Pβ− y‖2 + µ

2 (β−β0)
T J(β−β0) + λ‖Qs‖1
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Inference BsnInf

Bayesian inference
Parameters
� Source locations z, “widths” w and emission rates s for mixture of m

sources
� Random field background parameters β
� Measurement error standard deviation σε

� Wind–direction correction δφ

� Others (e.g. plume opening angles)
� Call theseθ which can be partitioned {θκ ,θκ}

Full conditional
f (θκ |y,θκ) ∝ f (y|θκ ,θκ) f (θκ |θκ)

Inference tools
� Gibbs’ sampling
� Reversible jump
� (Metropolis–Hastings)
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Results Synthetic

Synthetic

(a) initial (b) median (c) 2.5% (d) 97.5%
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Results Landfill

Landfill

(a) initial (b) median (c) 2.5% (d) 97.5%
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Results Flare stack

Flare stack

(a) initial (b) median (c) 2.5% (d) 97.5%
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Results Flare stack

Flare stack

(a) background in time (b) residual vs measured concentration
initial (red); posterior median (black)

Wind direction correction of 18o
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Conclusions

Conclusions and on–going work

Conclusions
� Data structure and management
� Flexible inference using combination of standard methods
� Good performance on synthetic and field applications
� Scalability from iterative estimation

Extensions (on-going and potential)
� Multiple flights, multiple wind data sources
� Enhanced plume model
� Internal calibration
� Improved prior characterisation of sources, intermittent sources
� Simultaneous inference using multiple measurement types
� Optimal design
� Line-of-sight and satellite applications

Slides and articles at www.lancs.ac.uk/∼jonathan
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Conclusions

Line-of-sight sensing

Line-of-sight laser
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Conclusions

Satellite

Tropomi satellite and Google Earth
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Conclusions

Satellite Service Dates

Potential to measure individual sources
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