Locating and quantifying gas emission sources using remotely obtained concentration data

Philip Jonathan

Lancaster University, Department of Mathematics & Statistics, UK. Shell Research Ltd., London, UK.

Seminar: Data Science of the Natural Environment (slides at *www.lancs.ac.uk/~jonathan*)

イロト イポト イヨト イヨト

Over 2 million wells in North America

Locating gas emissions

GWP values and lifetimes from 2013 IPCC AR5 p714	Lifetime (veere)	GWP	
(with climate-carbon feedbacks) ^[8]	Litetime (years)	20 years	100 years
Methane	12.4	86	34
HFC-134a (hydrofluorocarbon)	13.4	3790	1550
CFC-11 (chlorofluorocarbon)	45.0	7020	5350
Nitrous oxide (N ₂ O)	121.0	268	298
Carbon tetrafluoride (CF ₄)	50000	4950	7350

Global warming potentials (wiki: time-integrated energy released from instantaneous release of 1 kg of trace substance relative to that of 1 kg of CO_2)

ヘロト ヘ週ト ヘヨト ヘヨト

Thanks

All of what follows is joint work led by

Bill Hirst (Shell)

with

- David Randell (Shell)
- Oliver Kosut (MIT, now Arizona State)
- Fernando Gonzalez del Cueto (Shell, now Lumos Imaging, Denver)

Thanks also to

Rutger Ijzermans, Matthew Jones (Shell)

イロト イポト イヨト イヨト

Outline

Outline

Motivation

- A method for detecting, locating and quantifying sources of gas emissions to the atmosphere
- From remotely obtained atmospheric gas concentration measurements

Issues

- Potentially **large** background gas concentrations ($\approx 1800 ppb$ for CH_4)
- Need to detect small signals ($\approx 5 35ppb$ for CH_4)
- Gas dispersion determined by prevailing wind conditions

Approach

- Plume model represents gas dispersion between source and measurement location
- Measured concentration is sum of contributions from sources and relatively smooth background
- Infer source locations, source emission rates, background level, plume biases and uncertainties

イロト イポト イヨト イヨト 二日

Outline

Smoke plumes (Gaussian plume in far field)

ヘロン 人間 とくほど 人間と

Survey aircraft ($\approx 50ms^{-1}$, $\approx 200m$ above ground)

Jonathan

Motivating test applications

Synthetic problem

Known wind field, sources and background, 10 sources

Landfill

- 2 landfill regions, probable diffuse sources
- Wind field from UK met–office global circulation model

Flare stack

- Single elevated near–point source
- Wind field from UK met–office global circulation model
- Coastal location

Jonathan

イロト イタト イヨト イヨト

Introduction A

Applications

(a) two passes x-y (b) first pass in time (c) second pass in time

Jonathan

May 2019 10 / 28

э

• • • • • • • • • • • •

Landfill from above

T	an	at	ha	-
J	οn	au	110	

Locating gas emissions

● E 一 つ へ (~
May 2019 11 / 28

・ロト ・四ト ・ヨト ・ヨト

Landfill measurements

Τ		a1		
JO.	пa	u 1	al	

<ロト < 四 > < 注 > < 注 > … 注 May 2019 12 / 28

Flare stack

L.	n	n		n	- 23	
	~					

<ロト < 四 > < 注 > < 注 > … 注

Introduction A

Applications

May 2019 14 / 28

Model formulation

$$\mathbf{y} = \mathbf{A}\mathbf{s} + \mathbf{b} + \boldsymbol{\epsilon}$$

- **y**: measured concentrations
- A: assumed known from plume model
- **s**: sources to be estimated
- **b**: background to be estimated
- ϵ : measurement error (assumed Gaussian), variance to be estimated

イロト イ理ト イヨト イヨト

Model

Plume

Plume model

- Red: Source height H
- Blue: Source half–width *w*
- **•** Magenta: Downwind offset δ_R
- **C**yan: Horizontal offset δ_H
- Green: Vertical offset δ_V
- **ABL** height: *D*
- Horizontal extent: $\sigma_H = \delta_R \tan(\gamma_H) + w$
- Vertical extent: $\sigma_V = \delta_R \tan(\gamma_V)$

イロト イポト イヨト イヨト

Opening angles: γ_H , γ_V

$$a = \frac{1}{2\pi |\mathbf{U}|\sigma_H \sigma_V} \exp\left\{-\frac{\delta_H^2}{2\sigma_H^2}\right\} \times \left\{ \exp\left\{-\frac{(\delta_V - H)^2}{2\sigma_V^2}\right\} + \exp\left\{-\frac{(\delta_V + H)^2}{2\sigma_V^2}\right\} + \exp\left\{-\frac{(\mathbf{2D} - \delta_V - H)^2}{2\sigma_V^2}\right\} + \exp\left\{-\frac{(\mathbf{2D} - \delta_V - H)^2}{2\sigma_V^2}\right\} \right\}$$

Background model

Requirements

- Positive and smoothly-varying, spatially and temporally
- Basis function representation: $\mathbf{b} = \mathbf{P}\boldsymbol{\beta}$
- We use Gaussian Markov random field
- Explicit spatial dependence due to wind transport incorporated

Random field prior

$$f(\boldsymbol{\beta}) \propto \exp\{-\frac{\mu}{2}(\boldsymbol{\beta}-\boldsymbol{\beta}_0)^T \mathbf{J}_{\boldsymbol{\beta}}(\boldsymbol{\beta}-\boldsymbol{\beta}_0)\}$$

J_β is sparse, P = I
Fast estimation

イロト イポト イヨト イヨト

Inference strategy

Initial point estimation

- Sources and background
- Source locations assumed on fixed grid
- **Fast** estimation of starting solution for Bayesian inference

Subsequent Bayesian inference

- Sources, background, measurement error, wind-field parameters, ...
- **Grid-free** sources modelled using Gaussian **mixture model**
- Reversible jump MCMC inference
- Quantified parameter uncertainties and dependencies

イロト イロト イヨト イヨト

Initial point estimation

Background prior

$$f(\boldsymbol{\beta}) \propto \exp\{-\frac{\mu}{2}(\boldsymbol{\beta}-\boldsymbol{\beta}_0)^T \mathbf{J}_{\boldsymbol{\beta}}(\boldsymbol{\beta}-\boldsymbol{\beta}_0)\}$$

Source prior (Laplace)

$$f(\mathbf{s}) \propto \exp\{-\lambda \|\mathbf{Q}\mathbf{s}\|_1\}$$

Likelihood

$$f(\mathbf{y}|\mathbf{s},\boldsymbol{\beta}) \propto \exp\{-\frac{1}{2\sigma_{\epsilon}^{2}}\|A\mathbf{s}+P\boldsymbol{\beta}-\mathbf{y}\|^{2}\},\$$

Posterior

$$f(\mathbf{s}, \boldsymbol{\beta}|\mathbf{y}) \propto f(\mathbf{y}|\mathbf{s}, \boldsymbol{\beta})f(\mathbf{s})f(\boldsymbol{\beta})$$

Maximum a-posteriori estimate

$$\operatorname{argmin}_{\mathbf{s},\boldsymbol{\beta}} \qquad \frac{1}{2\sigma_{\epsilon}^{2}} \|A\mathbf{s} + P\boldsymbol{\beta} - \mathbf{y}\|^{2} + \frac{\mu}{2}(\boldsymbol{\beta} - \boldsymbol{\beta}_{0})^{T} J(\boldsymbol{\beta} - \boldsymbol{\beta}_{0}) + \lambda \|Q\mathbf{s}\|_{1}$$

Jonathan

May 2019 19 / 28

ヘロト ヘロト ヘヨト ヘヨト

Bayesian inference

Parameters

- Source locations **z**, "widths" **w** and emission rates **s** for mixture of *m* sources
- **\blacksquare** Random field background parameters β
- Measurement error standard deviation σ_{ϵ}
- Wind–direction correction δ_{ϕ}
- Others (e.g. plume opening angles)
- **Call these** θ which can be partitioned $\{\theta_{\kappa}, \theta_{\overline{\kappa}}\}$

Full conditional

```
f(\boldsymbol{\theta}_{\kappa}|\mathbf{y},\boldsymbol{\theta}_{\overline{\kappa}}) \propto f(\mathbf{y}|\boldsymbol{\theta}_{\kappa},\boldsymbol{\theta}_{\overline{\kappa}})f(\boldsymbol{\theta}_{\kappa}|\boldsymbol{\theta}_{\overline{\kappa}})
```

Inference tools

- Gibbs' sampling
- Reversible jump
- (Metropolis–Hastings)

ヘロト 人間 とくほとくほとう

Synthetic

Jonathan

Locating gas emissions

Landfill

Landfill

э

Flare stack

Flare stack

(a) initial (b) median (c) 2.5% (d) 97.5%

Flare stack

Flare stack

(a) background in time (b) residual vs measured concentration initial (red); posterior median (black)

Wind direction correction of 18°

Jo	natha	n

May 2019 24 / 28

A (1) > A (1) > A

Conclusions and on-going work

Conclusions

- Data structure and management
- Flexible inference using combination of standard methods
- Good performance on synthetic and field applications
- **Scalability** from iterative estimation

Extensions (on-going and potential)

- Multiple flights, multiple wind data sources
- Enhanced plume model
- Internal calibration
- Improved prior characterisation of sources, intermittent sources
- Simultaneous inference using multiple measurement types
- Optimal design
- Line-of-sight and satellite applications

Slides and articles at www.lancs.ac.uk/~jonathan

(ロ) (四) (注) (日) (日) (日)

Conclusions

Line-of-sight sensing

Line-of-sight laser

Locating gas emissions

ヘロト ヘ回ト ヘヨト ヘヨト

Satellite

Tropomi satellite and Google Earth

	I	on	at	h	aı	n		
--	---	----	----	---	----	---	--	--

Locating gas emissions

Satellite Service Dates

Potential to measure individual sources

00	 b a	-
ΟL	1.61	

イロト イポト イヨト イヨト