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Hurricane Katrina
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Hurricane Katrina
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Motivation: extremes in met-ocean

Rational and consistent design an assessment of marine
structures

Reduce bias and uncertainty in estimation of return values.

Non-stationary marginal and conditional extremes

Multiple locations, multiple variables, time-series,
Multidimensional covariates.

Improved understanding and communication of risk

Incorporation within well-established engineering design
practices,
“Knock-on” effects of “improved” inference,
New and existing structures.
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Marginal directional-seasonal extremes
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Marginal directional-seasonal extremes

Marginal model: single location.

Response: storm peak significant
wave height, Hsp

S .

Wave climate: monsoonal.

Southwest monsoon (∼ August, to
northwest).

Northeast monsoon (∼ January, to
east-northeast).

Long fetches to Makassar Strait,
Java Sea.

Land shadows of Borneo
(northwest), Sulawesi (northeast),
Java (south). www.westernpacificweather.com
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Directional and seasonal variability
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Figure: Hindcast storm peak significant wave height H
sp
S

for 1956 − 2012 (black) on direction θ (upper panel, to

which waves propogate) and season φ (lower panel). Also shown is sea-state significant wave height HS (grey) on
direction θ (upper panel) and season φ (lower panel). Northeast monsoon: August to northwest (315). Southwest
monsoon: January to east-northeast (110).
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Storm model

Figure: HS ≈ 4× standard deviation of ocean surface profile at a location corresponding to a specified period
(typically three hours)
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Model components

Linear wave theory suggests ocean waves Rayleigh distributed,
Longuet-Higgins [1952].

Response y not exceeding the extreme value threshold ψ
follows a truncated Weibull distribution with density similar to
Frigessi et al. [2002]

f (y |ξ, σ, α, γ, ψ, τ) =

{
τ × fTW (y |α, γ) for y ≤ ψ
(1− τ)× fGP(y |ξ, σ) for y > ψ

ψ is defined by τ , α and γ

ψ|τ, α, γ = α (− log(1− τ))γ .

No imposition of continuity in the density.

Rate of occurrence ρ|r is modelled as a Poisson distribution as
in Chavez-Demoulin and Davison [2005], where r is
observation counts in covariate bins.
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Bayesian P-Splines

Physical considerations suggest model parameters
α, γ, ρ, ξ and σ vary smoothly with covariates θ, φ

Values of (η =)α, γ, ρ, ξ and σ all take the form

η = Bβη

Priors:

βη ∼ λexp
(
−1

2
β′ηD

′Dβη

)
λ ∼ Gamma(Λη)

τ ∼ Beta(Λτ )

B is a spline basis and D is a difference matrix of order k .

Smoothnesses λ can be estimated very easily using Gibbs
sampling see Brezger and Lang [2006].

Λη are smoothness hyper-parameters giving diffuse prior.
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DAG for Poisson Rate of Occurrence

rβρλρΛρ
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DAG for Weibull GP
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Penalised B-splines

Wrapped bases for periodic
covariates (direction,
season).

Multidimensional bases
easily constructed using
tensor products, Eilers and
Marx [2010].

GLAMs, Currie et al. [2006]
for efficient computation in
high dimensions.
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Sampling for P-Splines

Cannot write full conditionals for generalised Pareto
likelihood, so no Gibbs sampling; simple Metropolis Hastings
methods don’t mix well.

Neighbouring spline parameters are highly correlated due to
smoothness prior.

Correlated spline proposals made from

β∗ ∼ N(β,G−1)

where
G = B ′B + λD ′D .

Gradient based MCMC methods also help to improve mixing.
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MCMC proposals exploiting gradient

Simple Metropolis Hastings sampling is a “stochastic
analogue” of penalised likelihood optimisation, but does not
exploit gradient information.

MALA and mMALA use gradient information for MCMC
proposal generation. These are stochastic analogues of
back-fitting and IRLS, see Roberts and Stramer [2002]. They
provide random walks downhill, particularly important with
high numbers of correlated parameters.

Copyright 2015 Shell Global Solutions (UK) EVA 2015 Ann Arbor June 2015 17



Parameter plots
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Smoothness
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Return values

Estimated by simulation from sample of posterior.

HS100 is the maximum value of Hsp
S in a simulation period of

100–years.
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Directional 100yr return values
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Directional seasonal 100yr return values
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Directional Seasonal 100Yr Return Values
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Summary

Modelling non-stationarity essential for understanding
extremes and development of design conditions.

Non-parametric covariate models flexible, but need to
estimate roughness.

P-splines simple to implement and extend to periodic and
higher dimensional domains.

Bayesian P-spline for extremes

Roughness estimated using Gibbs sampling,
Different roughness for each covariate dimension,
Correlated MCMC proposals exploiting gradient,
Computationally efficient, and generally more stable than
optimisation to point solution.
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Parameters τ
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Parameters ψ
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Parameters ρ

Copyright 2015 Shell Global Solutions (UK) EVA 2015 Ann Arbor June 2015 30



Parameters α
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Parameters γ
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Parameters σ
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Parameters ξ
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Directional Seasonal 100Yr Return Values
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Gradient Based MCMC

HMC: Hamiltonian Monte Carlo: uses first derivatives of
parameters have momentum based on gradient. This
approach can be unstable so several leapfrog steps are taken
instead of single step.

Riemann manifold HMC: uses second derivatives of
parameters. Here 2 leapfrog steps are needs so this is
computationally challenging

MALA Metropolis adjusted Langevin algorithm: uses first
derivatives steps. Proposal calulated α∗ by sampling from a
Normal distribution N(µ,Σ) where

µ = α− ε

2

∂

∂α
(L + Lprior )

Σ = εI
(1)

and then implement standard MH based on this proposal.
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mMALA

Given a current state α a proposal α∗ is sampled from
N(µ(α),Σ), where

µ(α) = α− ε

2
G−1(α)

∂

∂α
(L + Lprior )

Σ = εG−1(α)
(2)

and then MH is carried through as before. As in MALA we
again do not have symmetric proposals and so we must
calculate the full acceptance probability.

it is also interesting to notice the similarities between IWLS
and mMALA. To see this compare

G (αξ)−1 = (B ′
∂2L

∂ξ2
B + λξP)−1 (3)

α̂t+1 = (B ′ŴtB + λD ′D)−1B ′Ŵt ẑt (4)
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