

Efficient estimation of return value distributions from non-stationary marginal extreme value models using Bayesian inference

David Randell, Emma Ross, Philip Jonathan David Randell, EVA 2017

 Copyright of Shell
 David Randell, EVA 2017
 June 2017
 1 / 28

South China Sea Storms

Motivation

- Rational and consistent design and assessment of marine structures
- Reduce bias and uncertainty in estimation of structural integrity
- Quantify uncertainty as well as possible
- Non-stationary marginal, conditional and spatial extremes
- Improved understanding and communication of risk
- Incorporation within established engineering design practices
- Knock-on effects of improved inference

South China Sea

5 / 28

Motivation: storm model

 $H_{
m S}pprox 4 imes$ standard deviation of ocean surface time-series at specific location corresponding to a specified period (typically three hours)

6 / 28

Storm peak data

Storm peak data by bin

Storm trajectories

Marginal: gamma-GP model

- Sample of peaks over threshold y, with covariates θ
 - \blacksquare θ is 1D in motivating example : directional
 - lacksquare is nD later: e.g. 4D spatio-directional-seasonal
- lacksquare Below threshold ψ
 - y follows truncated gamma with shape α , scale $1/\beta$
 - Hessian for gamma better behaved than Weibull
- \blacksquare Above ψ
 - y follows generalised Pareto with shape ξ , scale σ
- \blacksquare ξ , σ , α , β , ψ all functions of θ
- ullet ψ for pre-specified threshold probability au
- Frigessi et al. [2002], Behrens et al. [2004], MacDonald et al. [2011]

Copyright of Shell David Randell FVA 2017 June 2017 10 / 28

Gamma-generalised Pareto model for extremes

■ Density is $f(y|\xi, \sigma, \alpha, \beta, \psi, \tau)$

$$= \quad \begin{cases} \tau \times \mathit{f}_{\mathsf{TG}}(\mathsf{y}|\alpha,\beta,\psi) & \text{ for } \mathsf{y} \leq \psi \\ (1-\tau) \times \mathit{f}_{\mathsf{GP}}(\mathsf{y}|\xi,\sigma,\psi) & \text{ for } \mathsf{y} > \psi \end{cases}$$

■ Likelihood is $\mathcal{L}(\xi, \sigma, \alpha, \beta, \psi, \tau | \{y_i\}_{i=1}^n)$

$$= \prod_{i:y_i \leq \psi} f_{TG}(y_i|\alpha,\beta,\psi) \prod_{i:y_i > \psi} f_{GP}(y_i|\xi,\sigma,\psi)$$

$$\times \tau^{n_B} (1-\tau)^{(1-n_B)} \text{ where } n_B = \sum_{i:y_i < \psi} 1.$$

Estimate all parameters as functions of θ

Marginal: count rate c

- lacktriangle Whole-sample rate of occurrence ho modelled as Poisson process given counts c of numbers of occurrences per covariate bin
- Chavez-Demoulin and Davison [2005]

 Copyright of Shell
 David Randell, EVA 2017
 June 2017
 12 / 28

Threshold effect

Threshold effect

14 / 28

Marginal: priors and conditional structure

Priors

density of
$$\boldsymbol{\beta}_{\eta\kappa} \propto \exp\left(-\frac{1}{2}\lambda_{\eta\kappa}\boldsymbol{\beta}'_{\eta\kappa}\boldsymbol{P}_{\eta\kappa}\boldsymbol{\beta}_{\eta\kappa}\right)$$

$$\lambda_{\eta\kappa} \sim \text{gamma}$$

Conditional structure

$$\begin{array}{lcl} \textit{f}(\beta_{\eta}|\textbf{\textit{y}},\Omega\setminus\beta_{\eta}) & \propto & \textit{f}(\textbf{\textit{y}}|\beta_{\eta},\Omega\setminus\beta_{\eta})\times\textit{f}(\beta_{\eta}|\delta_{\eta},\lambda_{\eta}) \\ \textit{f}(\lambda_{\eta}|\textbf{\textit{y}},\Omega\setminus\lambda_{\eta}) & \propto & \textit{f}(\beta_{\eta}|\delta_{\eta},\lambda_{\eta})\times\textit{f}(\lambda_{\eta}) \end{array}$$

$$\Omega = \{\alpha, \beta, \rho, \xi, \sigma, \psi, \tau\}$$

au is not estimated

ロト 4回 ト 4 恵 ト 4 恵 ト 夏 り 9 0 0 0

 Copyright of Shell
 David Randell, EVA 2017
 June 2017
 15 / 28

Inference

- lacktriangle Elements of eta_η highly interdependent, correlated proposals essential for good mixing
- "Stochastic analogues" of IRLS and back-fitting algorithms for maximum likelihood optimisation used previously
- Estimation of different penalty coefficients for each covariate dimension
- Gibbs sampling when full conditionals available
- Otherwise Metropolis-Hastings (MH) within Gibbs, using suitable proposal mechanisms
 - mMALA where possible
- Roberts and Stramer [2002], Girolami and Calderhead [2011], Xifara et al. [2014]

Copyright of Shell David Randell . FVA 2017 June 2017 16 / 28

Posterior parameter estimates

Validation

Compare sample with simulated values on partitioned covariate domain

18 / 28

Return values

To get directional return values we can do 2 main approaches

- Monte Carlo simulation: easy to understand and simple to implement but slow. 10000 year events
 can take over a day to compute for the complex models we fit.
- Numerical integration: much faster, 100 fold improvement in return value calculation time.

 Copyright of Shell
 David Randell, EVA 2017
 June 2017
 19 / 28

Return values from Monte Carlo simulation

- Consider directional-seasonal bin S_i (i = 1, 2, ..., m) centred on location I_i . S_i is sufficiently small that all model parameters ρ are assumed constant within it.
- For each realisation *i*, for each covariate bin *j*, with $\omega_i = \{\alpha_i, \zeta_i, \xi_i, \nu_i, \psi_i\}$
 - 1. Sample the number of storms

$$n_{ij} \sim Poisson(\rho_i)$$

where ρ_i is the annual rate of occurrence.

2. Sample $n_{ii} * T$ values from

$$Y_{ij} \sim GammaGP(\omega_i)$$

where T is the return period.

- \blacksquare T-year return values in S_i are then found by taking maximum over in each realisation and then finding the empirical cdf
- Bins can be combined by taking maximum over bins.

Numerical integration of return values storm peaks

We define $F(y|\omega_i)$ to be the cumulative distribution function of any storm peak event given ω_i . We estimate the cumulative distribution function $F_{M_T}(y|\omega_i)$

$$\begin{split} F_{M_T}(y|\omega_i) &= \mathbb{P}\left(M_T < y\right) \\ &= \sum_{k=0}^{\infty} \mathbb{P}\left(k \text{ events in } S_i \text{ in } T \text{ years }\right) \times \mathbb{P}^k \left(\text{size of an event in } S_i < y\right) \\ &= \sum_{k=0}^{\infty} \frac{\left(T\rho_i\right)^k}{k!} \exp(-T\rho_i) \times F^k(y|\omega_i) \\ &= \exp\left(-T\rho_i \left(1 - F(y|\omega_i)\right)\right). \end{split}$$

 Copyright of Shell
 David Randell, EVA 2017
 June 2017
 21 / 28

Posterior predictive return values across bins

■ Since storm peak events are independent given covariates, we combine by taking the product

$$F_{M_T}(\mathbf{y}|\boldsymbol{\omega}) = \prod_{j=1}^m F_{M_T}(\mathbf{y}|\omega_j)$$

■ The final estimate for $F_{M_T}(y)$, unconditional on ω , is estimated by marginalising over ω

$$F_{M_T}(y) = \int_{\omega} F_{M_T}(y|\omega) f(\omega) d\omega$$

where $f(\omega)$ is the estimated posterior density for ω .

22 / 28

Empirical dissipation shapes

23 / 28

Numerical integration of return values with dissipation

- For applications, it is also necessary to estimate the distribution of return value $M_{\mathbb{T}S}(y)$ for maximum of sea state.
- We empirically estimate the storm dissipation function $\delta(\mathbb{S}; j, y)$ for sea state H_S in directional sector \mathbb{S} estimated from the sample of storm trajectories.
- Next we estimate the cumulative distribution function $F_{D_{\mathbb{S}}}(d|\omega_i)$ of $D_{\mathbb{S}}$, the dissipated sea state H_S in sector \mathbb{S} from a random storm dissipating from directional-seasonal bin S_i

$$F_{D_{\mathbb{S}}}(d|\omega_{j}) = \mathbb{P}(D_{\mathbb{S}} \leq d|\omega_{j}) = \int_{\mathbf{y}} \mathbb{P}(\delta(\mathbb{S}; j, \mathbf{Y}) \leq d|\mathbf{Y} = \mathbf{y}) f(\mathbf{y}|\omega_{j}) d\mathbf{y}$$

where $f(y|\omega_i)$ is the marginal directional density of storm peak H_S in directional-seasonal bin S_i corresponding to cumulative distribution function $F(y|\omega_i)$.

10000 years return values by direction

25 / 28

10000 year return values by season

26 / 28

Summary

- Evidence for covariate effects in marginal extremes of ocean storms
 - Modelling non-stationarity essential for understanding extreme ocean storms, and estimating marine risk well
 - Non-parametric P-spline flexible basis for covariate description
 - Essential that non-stationary models are used for marginal, conditional and spatial extremes inference of ocean environment
 - Cradle-to-grave uncertainty quantification
- Numerical integration of return value provides a much faster way to estimate return values without the need to resort to Monte Carlo simulation.
- Looking at way of modelling dissipation to avoid the empirical resampling
- Paper accepted Ocean Engineering on Monday! http://www.lancs.ac.uk/jonathan/RssEAMrgBys17.pdf

 Copyright of Shell
 David Randell, EVA 2017
 June 2017
 27 / 28

References

- C N Behrens, H F Lopes, and D Gamerman. Bayesian analysis of extreme events with threshold estimation. *Statistical Modelling*, 4:227–244, 2004.
- V. Chavez-Demoulin and A.C. Davison. Generalized additive modelling of sample extremes. J. Roy. Statist. Soc. Series C: Applied Statistics, 54:207–222, 2005.
- Arnoldo Frigessi, Ola Haug, and Hå vard Rue. A Dynamic Mixture Model for Unsupervised Tail Estimation without Threshold Selection. *Extremes*, 5:219–235, 2002.
- M. Girolami and B. Calderhead. Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. Roy. Statist. Soc. B, 73:123–214, 2011.
- A. MacDonald, C. J. Scarrott, D. Lee, B. Darlow, M. Reale, and G. Russell. A flexible extreme value mixture model. Comput. Statist. Data Anal., 55:2137–2157, 2011.
- Gareth O Roberts and Osnat Stramer. Langevin diffusions and metropolis-hastings algorithms. *Methodology and computing in applied probability*, 4(4):337–357, 2002.
- T. Xifara, C. Sherlock, S. Livingstone, S. Byrne, and Mark Girolami. Langevin diffusions and the Metropolis-adjusted Langevin algorithm. *Stat. Probabil. Lett.*, 91(2002):14–19, 2014.

Copyright of Shell David Randell FVA 2017 June 2017 28 / 28