. Efficient estimation of return value distributions from non-stationary
marginal exireme value models using Bayesian inference




South China Sea Storms
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Motivation

Rational and consistent design and assessment of marine structures
Reduce bias and uncertainty in estimation of structural integrity
Quantify uncertainty as well as possible

Non-stationary marginal, conditional and spatial extremes
Improved understanding and communication of risk

Incorporation within established engineering design practices

Knock-on effects of improved inference
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South China Sea
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Motivation: storm model

Hg = 4 x standard deviation of ocean surface fime-series at specific location corresponding to a specified period (typically three hours)

. Storm peck

' Exceedance

Storm Trajectory
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Storm peak data
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Storm peak data by bin
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Storm trajectories
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Marginal: gamma-GP model

m Sample of peaks over threshold y, with covariates 6

m 0 is 1D in motivating example : directional
m 0 is nD later : e.g. 4D spatio-directional-seasonal

m Below threshold v
m y follows truncated gamma with shape «, scale 1/3
m Hessian for gamma better behaved than Weibull

m Above v

m y follows generalised Pareto with shape ¢, scale o

m &, 0, B3, dll functions of 6
m ¢ for pre-specified threshold probability 7

m Frigessi et al. [2002], Behrens et al. [2004], MacDonald et al. [2011]
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Gamma-generalised Pareto model for extremes

| Densify is f(y‘f, o, Q, 67 ¢: T)

_ [ xfelyla, 8,v) fory <4
(1 —7) x fop(yl€, ,7p)  fory >4

m Likelihood is £(¢, 0, v, B, 9, T|{y:}7_,)

= 11 fetile, 8,9) 1T ferlyilé, o, 9)
iyi<e iy >
x 71— 7)) where ng = Z 1.
iy <

Estimate all parameters as functions of 9
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Marginal: count rate ¢

m Whole-sample rate of occurrence p modelled as Poisson process given counts ¢ of numbers of
occurrences per covariate bin

m Chavez-Demoulin and Davison [2005]
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Threshold effect
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Threshold effect
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Marginal: priors and conditional structure

Priors

density of B, o exp (—%)\m,@;,@l’m,ﬁnm)

Age  ~  gamma

Conditional structure

f(:@n‘YaQ\ﬂn) X f()’l/@n,ﬂ\ﬂn)xf(ﬁnl%,hn)
f(An|YaQ\>‘n) X f(ﬁnwn:)‘n)xﬂ)‘n)

Q= {a76,p7£707w,7—}

7 is not estimated
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Inference

m Elements of 3, highly interdependent, correlated proposals essential for good mixing

m “Stochastic analogues” of IRLS and back-fitting algorithms for maximum likelihood optimisation used
previously

m Estimation of different penalty coefficients for each covariate dimension

m Gibbs sampling when full conditionals available
m Otherwise Metropolis-Hastings (MH) within Gibbs, using suitable proposal mechanisms
= mMALA where possible

m Roberts and Stramer [2002], Girolami and Calderhead [2011], Xifara et al. [2014]
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Posterior parameter estimates
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Validation

Compare sample with simulated values on partitioned covariate domain
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Return values

To get directional return values we can do 2 main approaches

m Monte Carlo simulation: easy to understand and simple to implement but slow. 10000 year events
can take over a day to compute for the complex models we fit.

m Numerical integration: much faster, 100 fold improvement in return value calculation time.
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Return values from Monte Carlo simulation

m Consider directional-seasonal bin S; (j = 1,2, ..., m) centred on location J;. S; is sufficiently small that
all model parameters p are assumed constant within it.

m For each realisation i, for each covariate bin j, with wj = {aj, ¢, &, v, ¥i}

1. Sample the number of storms
nj; ~ Poisson(p;)
where pj is the annual rate of occurrence.

2. Sample nj;  Tvalues from
Yii ~ GammaGP(w;)

where T is the refurn period.

m T-year return values in S; are then found by taking maximum over in each realisation and then
finding the empirical cdf

m Bins can be combined by taking maximum over bins.
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Numerical integration of return values storm peaks

We define F(y|w)) to be the cumulative distribution function of any storm peak event given w;.
We estimate the cumulative distribution function Fy. (ylw;)

Fitr (lwj) = P (Mr <y)

ZIP’ (k events in S; in Tyears ) x P (size of an event in §; < y)

Z
=0
exp

~
[=}

" exp( ~Tpj) x F(yle)

(=Toi (1 = Flylw))) -
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Posterior predictive return values across bins

m Since storm peak events are independent given covariates, we combine by taking the product
Fp, (ylw) H Fp, (ylwy)

m The final estimate for Fy, (y), unconditional on w, is estimated by marginalising over w

Fu; (y) :/ Fp, (ylw flw)dw

where f(w) is the estimated posterior density for w.
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Empirical dissipation shapes
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Numerical integration of return values with dissipation

m For applications, it is also necessary to estimate the distribution of return value Mrs(y) for maximum
of sea state.

m We empirically estimate the storm dissipation function §(S; j, y) for sea state Hs in directional sector S
estimated from the sample of storm trajectories.

m Next we estimate the cumulative distribution function Fp, (d|w;) of Ds, the dissipated sea state Hs in
sector S from a random storm dissipating from directional-seasonal bin S;

Fou (clwy) = B(Ds < dluy) = / B(G(S:),Y) < d|Y = y)ylwpdy

Y

where f(y|w;) is the marginal directional density of storm peak Hs in directional-seasonal bin ;
corresponding to cumulative distribution function F(y|w).
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10000 years return values by direction
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10000 year return values by season
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Summary

m Evidence for covariate effects in marginal extremes of ocean storms

m Modelling non-stationarity essential for understanding extreme ocean storms, and estimating marine risk
well
m Non-parametric P-spline flexible basis for covariate description

m Essential that non-stationary models are used for marginal, conditional and spatial extremes inference of
ocean environment
m Cradle-to-grave uncertainty quantification

m Numerical integration of return value provides a much faster way to estimate return values without
the need to resort to Monte Carlo simulation.
m Looking at way of modelling dissipation to avoid the empirical resampling

m Paper accepted Ocean Engineering on Monday!
http://www.lancs.ac.uk/ jonathan/RssEAMrgBys17.pdf
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