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Motivation

Rational and consistent design an assessment of marine and
coastal structures

Reduce bias and uncertainty in estimation of return values.

Non-stationary marginal and conditional extremes

Multiple locations, multiple variables, time-series,
Multidimensional covariates.

Improved understanding and communication of risk

Incorporation within well-established engineering design
practices,
“Knock-on” effects of “improved” inference.
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Motivation

Environmental extremes vary continuously with
multidimensional covariates

Parameters of EV model should be functions of
covariates.

Inferences should reflect all estimation uncertainty

Typically threshold pre-specified since sample size changes,
Need to estimate a whole sample model.

Piecewise models have been used in the past

Empirical evidence that Weibull distribution is reasonable for
body of storm severity,
Generalised Pareto already used for tail of distribution,
(Truncated) Weibull - generalised Pareto candidate.

Need statistical and computational efficiency

Slick spline methods (GLAMs),
Bayesian inference.
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Application: directional-seasonal
Storm peak significant wave height at northern North Sea location; clear directional and seasonal variability in
storm severity; directional variability more dramatic at around 225◦; seasonal variability more gradual.
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Two-part model for y

Sample of peaks y over threshold ψ, with direction θ, season φ

For y ≤ ψ, y follows truncated Weibull distribution with
shape γ, scale α

For y > ψ, y follows generalised Pareto with shape ξ, scale σ

ξ, σ, α, γ, ψ all functions of θ and φ

ψ specified with (stationary) threshold probability τ

Frigessi et al. [2002], Behrens et al. [2004], MacDonald et al.
[2011]
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Two-part model for y

Density is f (y |ξ, σ, α, γ, ψ, τ)

=

{
τ × fTW (y |α, γ) for y ≤ ψ
(1− τ)× fGP(y |ξ, σ) for y > ψ

Hence ψ|τ, α, γ = α (− log(1− τ))γ

No imposition of continuity in the density at ψ

Other possibilities below threshold
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Model for count rate c

Whole-sample rate of occurrence ρ modelled as Poisson
process given counts c of numbers of occurrences per
covariate bin

Chavez-Demoulin and Davison [2005]
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Penalised spline smoothers

Physical considerations suggest parameters α, γ, ρ, ξ and σ
vary smoothly with covariates θ, φ

Values of η ∈ {α, γ, ρ, ξ, σ} on some index set of covariates
take the form η = Bβη

B takes the form of a tensor product Bφ ⊗ Bθ

Spline roughness with respect to covariate κ ∈ {θ, φ} given by
quadratic form ληκβ

′
ηκPηκβηκ

Pηκ is a function of stochastic roughness penalties δηκ

δηκ not estimated here, but could be in principle

Eilers and Marx [2010], Brezger and Lang [2006]

Copyright 2015 Shell Global Solutions (UK) EVAN 2015 Santander Sept 2015 9



Prior specification

density of βηκ ∝ exp

(
−1

2
ληκβ

′
ηκPηκβηκ

)
ληκ ∼ gamma

τ ∼ beta
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DAG for y

y βξ
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τ λξ
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DAG for c

cβρ

λρ

δρ
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Inference

Elements of βη highly interdependent, correlated proposals
essential for good mixing

“Stochastic analogues” of IRLS and back-fitting algorithms
for maximum likelihood optimisation used previously

Estimation of different penalty coefficients for θ and φ
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Inference

Sampling from full conditionals
Gibbs sampling when full conditionals available,
Metropolis-Hastings (MH) within Gibbs otherwise, using
suitable proposal mechanisms.

Conjugacy for ληθ, ληφ, so Gibbs sampling

Simple Gaussian random walk MH for τ

Correlated Gaussian random walk MH for βη when η ∈ {α, γ}
Correlated Gaussian random walk MH with drift (mMALA)
for βη when η ∈ {ρ, σ(ν), ξ}

Roberts and Stramer [2002], Girolami and Calderhead [2011],
Xifara et al. [2014]
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Parameter estimates
Prior for τ in red, posterior in black; all parameters except ξ and τ suggest strong directional variation; seasonal
variation less pronounced but clear for α, σ (and ρ); ξ effectively constant; sample not informative about τ .
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Roughness penalty estimates
Posterior directional roughness penalties in black, posterior seasonal roughness penalties in red; shape penalities
(λγ , λξ) similar for direction and season; scale penalties (λγ , λξ) and rate penalty λρ greater in season than
direction ⇒ rougher solution in direction than season as expected.
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Validation
Estimates for the distribution of HS (in metres) corresponding to the period of the original sample; empirical
estimate in red; predictive distribution from multiple realisations under the directional-seasonal model (median with
2.5% and 97.5% values in black; omni-directional omni-seasonal case on lhs; omni-seasonal estimates for each of 8
directional octants on rhs; titles give numbers of actual events and the median number of events simulated.
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Return values

Estimated by simulation from posterior

Maximum value in a simulation period of 100–years
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Return values
Predictive distribution of the 100-year maximum (in metres); directional and seasonal variability of the median
estimate on lhs; seasonal variation of predictive distribution for directional octants (2.5%, 37%, median and 97.5%
values) in black; corresponding omni-seasonal estimates in red; large difference between S and SW; smooth
seasonal variation.
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Return values
Predictive cumulative distribution functions for 100-year maximum HS (in metres); directional (octant) on lhs;
seasonal (monthly) on rhs; W and SW dominate directionally; Dec, Jan and Feb seasonally.
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Summary

General

Modelling non-stationarity essential for understanding
extremes and development of design conditions

Non-parametric covariate models flexible, but need to
estimate roughness

Penalised splines computationally efficient for smoothing over
higher dimensional domains

Bayesian penalised splines for smoothing in extremes

Roughness penalty coefficients estimated using Gibbs sampling

Different roughness penalty coefficients for each covariate
dimension

Correlated MCMC proposals exploiting gradient

Computationally more efficient and more stable than
optimisation to point solution
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