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m Shell: Kevin Ewans, Graham Feld, Shejun Fan, Michael Vogel.
m Academic colleagues: Lancaster, Durham.

m Ex-tropical storm Henri, EasyJet, Melisa and EVAN 2015
organisers for making talk possible remotely!
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m Rational and consistent design an assessment of marine and
coastal structures

m Reduce bias and uncertainty in estimation of return values.
m Non-stationary marginal and conditional extremes

m Multiple locations, multiple variables, time-series,
m Multidimensional covariates.

m Improved understanding and communication of risk

m Incorporation within well-established engineering design
practices,
m “Knock-on” effects of “improved” inference.
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Motivation

m Environmental extremes vary continuously with
multidimensional covariates

m Parameters of EV model should be functions of
covariates.
m Inferences should reflect all estimation uncertainty

m Typically threshold pre-specified since sample size changes,
m Need to estimate a whole sample model.

m Piecewise models have been used in the past
m Empirical evidence that Weibull distribution is reasonable for
body of storm severity,
m Generalised Pareto already used for tail of distribution,
m (Truncated) Weibull - generalised Pareto candidate.
m Need statistical and computational efficiency

m Slick spline methods (GLAMs),
m Bayesian inference.
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Application: directional-seasonal

Storm peak significant wave height at northern North Sea location; clear directional and seasonal variability in
storm severity; directional variability more dramatic at around 225°; seasonal variability more gradual.
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m Sample of peaks y over threshold 1), with direction #, season ¢

m For y <, y follows truncated Weibull distribution with
shape 7, scale «

m For y >, y follows generalised Pareto with shape &, scale o
m & o, q, 7, ¢ all functions of § and ¢
m ¢ specified with (stationary) threshold probability 7

m Frigessi et al. [2002], Behrens et al. [2004], MacDonald et al.
[2011]
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Density is f(y|&, o, a7y, 1, T)

_ 7 X frw(ylo, ) fory <4
(1—7) x fep(yl&,0)  fory >

Hence 4|m,a,v = a(—log(l — 1))

No imposition of continuity in the density at 1

Other possibilities below threshold
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m Whole-sample rate of occurrence p modelled as Poisson
process given counts ¢ of numbers of occurrences per
covariate bin

m Chavez-Demoulin and Davison [2005]
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Penalised spline smoothers

m Physical considerations suggest parameters «, v, p, & and o
vary smoothly with covariates 4, ¢

m Values of n € {«,v,p,§,0} on some index set of covariates
take the form n = B3,

m B takes the form of a tensor product By ® By

m Spline roughness with respect to covariate x € {6, ¢} given by
quadratic form )\WB{MPW,B%

m P, is a function of stochastic roughness penalties J,,

m J,, not estimated here, but could be in principle

m Eilers and Marx [2010], Brezger and Lang [2006]
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2
Age  ~  gamma

1
density of 3,, o exp (——)\nn,@;nPnn,@nn)

T ~ Dbeta
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m Elements of 3, highly interdependent, correlated proposals
essential for good mixing

m “Stochastic analogues” of IRLS and back-fitting algorithms
for maximum likelihood optimisation used previously

m Estimation of different penalty coefficients for 8 and ¢
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Inference

Sampling from full conditionals

m Gibbs sampling when full conditionals available,
m Metropolis-Hastings (MH) within Gibbs otherwise, using
suitable proposal mechanisms.

Conjugacy for A9, Aye, so Gibbs sampling

Simple Gaussian random walk MH for

Correlated Gaussian random walk MH for 3, when n € {a, v}
Correlated Gaussian random walk MH with drift (mMALA)
for B, when n € {p,o(v), &}

Roberts and Stramer [2002], Girolami and Calderhead [2011],
Xifara et al. [2014]
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Parameter estimates

Prior for T in red, posterior in black; all parameters except £ and 7 suggest strong directional variation; seasonal
variation less pronounced but clear for a, o (and p); & effectively constant; sample not informative about 7.
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Roughness penalty estimates

Posterior directional roughness penalties in black, posterior seasonal roughness penalties in red; shape penalities
(A, )\5) similar for direction and season; scale penalties (A, /\5) and rate penalty A\, greater in season than
direction = rougher solution in direction than season as expected.
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Validation

Estimates for the distribution of Hg (in metres) corresponding to the period of the original sample; empirical
estimate in red; predictive distribution from multiple realisations under the directional-seasonal model (median with
2.5% and 97.5% values in black; omni-directional omni-seasonal case on lhs; omni-seasonal estimates for each of 8
directional octants on rhs; titles give numbers of actual events and the median number of events simulated.
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m Estimated by simulation from posterior

m Maximum value in a simulation period of 100—years
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Return values

Predictive distribution of the 100-year maximum (in metres); directional and seasonal variability of the median
estimate on |hs; seasonal variation of predictive distribution for directional octants (2.5%, 37%, median and 97.5%
values) in black; corresponding omni-seasonal estimates in red; large difference between S and SW; smooth
seasonal variation.
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Return values

Predictive cumulative distribution functions for 100-year maximum Hs (in metres); directional (octant) on lhs;
seasonal (monthly) on rhs; W and SW dominate directionally; Dec, Jan and Feb seasonally.
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Summary

General

m Modelling non-stationarity essential for understanding
extremes and development of design conditions

m Non-parametric covariate models flexible, but need to
estimate roughness

m Penalised splines computationally efficient for smoothing over
higher dimensional domains

Bayesian penalised splines for smoothing in extremes
m Roughness penalty coefficients estimated using Gibbs sampling
m Different roughness penalty coefficients for each covariate
dimension
m Correlated MCMC proposals exploiting gradient

m Computationally more efficient and more stable than
optimisation to point solution
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