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1. Introduction

We congratulate the authors on their very stimulating paper. There is much in it worthy of comment, but we shall focus on two issues that we

wish to highlight, parametrization and efficiency, and on an alternative simpler approach to high quantile estimation which we think has

advantages over that proposed in the paper.

2. Parametrization

Although the block maximum and peaks over threshold approaches to modelling extremes are mathematically equivalent, their statistical

merits depend on the use to which they are put. Threshold stability is a key property of the generalized Pareto distribution (GPD): when the

threshold increases from u to v> u, the shape parameter ju is unchanged but the GPD scale parameter tu changes to tv ¼ tu þ ðv�uÞj. Thus,

if these parameters are respectively modelled using regression formulations with covariates x and z at threshold u, then their values tuðxÞ and

juðzÞ change to tvðx; zÞ ¼ tuðxÞ þ ðv�uÞjuðzÞ and jvðzÞ ¼ juðzÞ at the higher threshold v: the way in which the covariates enter t depends on

the threshold. In many applications the shape is taken to be constant, or, even if not, the numerical value of ðv�uÞjuðzÞ may be relatively

small, but the statistically unnatural behaviour of t suggests that it is usually preferable to insert covariates into the parameters of the

generalized extreme-value distribution or the corresponding point process model, which do not depend on the threshold. The authors of the

present paper are clearly aware of this, but it ought to be more widely appreciated.

3. Efficiency

Peaks over threshold modelling is often said to be more efficient than the block maximum approach. Madsen et al. (1997a,b) simulated

independent data to compare these approaches in estimating a high quantile, and concluded that with maximum likelihood estimation the

peaks over threshold method does indeed have lower root mean squared error, though the efficiency gain is less cut-and-dried for other

estimators popular among hydrologists. The gain when using maximum likelihood depends on the mean number of annual exceedances, and

in the cases considered in this paper, the mean squared error for threshold-based estimation of a 100-year return period based on 30 years of

data, a value typical in hydrological studies, seems likely to be around 0.6 of that of using annual maximum series. For independent data,

there is thus a substantial gain in efficiency through using peaks over thresholds.

Real data usually exhibit clustering. Fawcett and Walshaw (2007) show that declustering of dependent exceedances over a threshold can

systematically bias the estimators of s and j, leading to severe underestimation of extreme quantiles for very dependent data. They

recommend that if the sole interest is the estimation of extreme quantiles, inference should be based on all exceedances, with appropriate

adjustment for the within-cluster dependence. Guidance on how clustering affects estimation efficiencies does not yet seem to be available.

4. Alternative approach

Efficient estimation is desirable, but more importantly in many applications, the peaks over threshold approach enables detailed modelling of

clusters of rare events. The focus of the present paper is estimation of high quantiles, however, and then one may question the need for any

threshold model. A third way uses neither annual maxima nor peaks over thresholds, but the r-largest values yð1Þs � � � � � yðrÞs at the sth site

ðs ¼ 1; . . . ; SÞ. If covariates xs affect the location parameter and the data from different sites are supposed to be independent, then the

likelihood function is

YS

s¼1

Yr

j¼1

s�1 1þ jzðjÞs

� ��1=j�1

þ
� exp �ny 1þ jzðrÞs

� ��1=j

þ

� �
; (1)

where aþ ¼ maxða; 0Þ, ny is the number of years of data, and for compactness we write zðjÞs ¼ fyðjÞs �mðxsÞg=s, for j ¼ 1; . . . ; r. Regression

models for the scale and shape parameters s and j may be added in (1), and correction for dependence between the different sites may be

performed as in the paper, with only minor changes. Use of (1) has the following advantages: (a) there is no need for a quantile regression

model, with the additional effort and complexity that it entails. In particular, there is no need to introduce a further component of uncertainty
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(neglected in the paper) to allow for the estimated threshold; (b) unlike with using the classical GPD, the parametrization is

threshold-invariant; and (c) choice of the threshold is replaced by choice of r. This poses the same bias/variance tradeoff as does threshold

choice, but since the threshold does not appear in (1), there is no need to model it. Moreover, the number of observations contributing to (1)

might be allowed to vary from site to site, i.e., we might replace r with rs.

An equivalent formulation is that the threshold at the sth site is chosen to equal yðrÞs , and that, conditional on yðrÞs , there are r�1 independent

exceedances each having the GPD with scale and shape parameters respectively tðrÞs ¼ s þ jfyðrÞs �mðxsÞg and j. The likelihood contribution

from the data at the sth site is then proportional to

1
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Apart from constants of proportionality, the first term in (2) is the density of yðrÞs , and the second is the joint density of yð1Þs ; � � � ; yðr�1Þ
s ,

conditional on yðrÞs . Expression (2) is just a re-expression of (1), but it shows that, unlike with quantile regression, the effect of using a random

threshold is directly incorporated into the likelihood.

Possible drawbacks of our proposal are that: (d) the extrema yð1Þs � � � � � yðrÞs are supposed to be based on independent identically

distributed variables, and in practice some declustering of an underlying time series will be needed, in order to obtain ‘independent’ cluster

maxima. This may introduce bias (Fawcett and Walshaw, 2007); (e) strongly seasonal data must be divided into roughly stationary blocks

(e.g., months), whose r largest values are taken. Typically r will then be small, and covariates representing the seasonal variation must be

introduced (Frossard, 2010); and (f) detailed modelling of clusters themselves cannot be undertaken.

In the present case, the prior declustering and the apparent lack of seasonality imply that these drawbacks are unimportant.
5. Application

Figures 1 and 2 show results from using (1) to fit the extremal model to the data from the paper.

The r-largest estimates for r¼ 130 shown in Figure 1 are very similar to those in Table 2 of the paper, but the standard errors for the

parameters contributing to m, obtained using the analogue of the variance estimate in expression (2) of the paper, are much smaller. We

suspect that this reflects a difficulty with the matrix bV , which is often close to singular; for r¼ 130, the ratio of its largest and smallest singular

values is 4.6� 107, and this ratio is never smaller than 7.7� 105 for r ¼ 20; 30; . . . ; 130. Further signs of trouble are the counter-intuitive

finding in x3.3 of the paper that adjustment for dependence increases the significance of the regression coefficients, and that for large r the
Figure 1. Parameter estimates and pointwise 95% confidence intervals based on adjusted standard errors, from Northrop and Jonathan (horizontal lines) and

using the r-largest method with r ¼ 20; 30; . . . ; 130

Figure 2. Estimated 105-year return level from Northrop and Jonathan (heavy blobs) and using the r-largest method with r ¼ 20; 30; . . . ; 130. The lighter grey

blobs are data points
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adjusted standard errors for bm0 are smaller than the unadjusted ones, though the opposite is true for small r. These difficulties with bV may be

due to the relatively high correlations among the extreme wave heights (Figure 3 of the paper). In our experience, such matrices can be quite

unstable in extremal contexts, and it seems worthwhile to investigate how they can be made more reliable, or, perhaps better, avoided.

Figure 2 compares the 105-year return levels from the paper with those using (1). As one might anticipate from Figure 1, there is strong

dependence on r, but the estimates using the two approaches are quite similar for r� 80. In view of the uncertainty shown in Figure 7 of the

paper, the differences between the approaches seem unimportant. More surprisingly, the choice of model for m essentially removes the

marked spatial pattern seen in Figure 1 of the paper, and the shapes of the return levels depend strongly on r, and, by implication, on the

threshold. The reason for this undesirable behaviour is the changing signs of the estimated coefficients of the Legendre polynomials (cf.

Figure 1); curiously, taking smaller r leads to fits that clash even more strongly with Figure 1 of the paper.

It would be interesting to see if explicit modelling of the spatial dependence could remove some of the difficulties with both the approach

proposed in the paper and our alternative.
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Let me begin by congratulating Northrop and Jonathan (2011) on a very sensible approach to a real and important application. This work’s

ultimate goal is to provide engineers with accurate assessments of wave heights so that safe marine structures can be constructed. As recent

history shows, failure of marine structures (whether due to human error or extreme natural events) can have immense consequences. The

authors’ approach, while accounting for spatial variation in the extremal behavior, is very accessible and does not require fitting of

complicated multivariate/spatial models. The difference between the estimates for the shape parameter and between the current analysis and

the earlier, more simple analysis (Section 3.3) illustrates the need for accounting how extremes can vary with location and would doubtlessly

have a noticeable effect on estimates of long return levels for wave heights.

Two approaches for describing the upper tail have seen increased interest over the last couple of decades: quantile regression and extreme

value theory (EVT). Each approach has its advantages. Quantile regression allows the practitioner to model high quantiles on observed

covariates without requiring one to make assumptions about the underlying distribution. However, one cannot use quantile regression to

extrapolate beyond the range of the observed data. The advantages of EVT are almost the opposite of quantile regression. Asymptotic theory

results in a known parametric form for the tail, which allows one to extrapolate. Importantly, the parametric form for the tail does not require

the practitioner to make overarching assumptions about the particular distribution which generated the data. To my knowledge, no one has

previously tried to employ both techniques in tandem.

When modeling threshold exceedances, selecting a threshold is often tricky. The usual diagnostics such as mean-residual-life plots are

open to interpretation and can demonstrate unrealistic variability between spatial locations which should share similar characteristics. As the

authors demonstrate, it is often inappropriate to set a common threshold over a study region. The quantile regression approach for threshold

selection offers several advantages, not the least of which is that it borrows strength across locations when setting thresholds. One still must

check that the threshold is set so that EVT applies. Equation (5) which relates the threshold to the covariates for a given spatially-varying

extreme value model is a straightforward calculation, but indicates that the authors have taken care that the quantile regression for the

threshold does in fact work in tandem with the extreme value model for the exceedances.

The authors also appropriately handle the dependent observations. Here, like in the longitudinal analyses found in medical applications,

dependence in the observations is a nuisance, and one is only interested in the marginal behavior and its relation to the covariates (location).

Although a hurricane affects multiple locations at once, a marine structure is only struck by waves at its location. In other applications such as

flood prediction, the effects are some function (e.g., the sum) of multiple locations and the dependence must be explicitly modeled. Modeling

multivariate or spatial extremes requires much more work, and the available models are limited, some references are Schlather (2002);
wileyonlinelibrary.com/journal/environmetrics Copyright � 2011 John Wiley & Sons, Ltd. Environmetrics 2011;22:810–816
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Kabluchko et al. (2009); Cooley et al. (2010). Spatial models for threshold exceedances are still being formulated. Rather than explicitly

modeling the dependence between sites, in this application the authors are able to circumvent the issue by fitting an independence likelihood

and then using the Godambe information approach to account for the mis-specified model. This approach could readily be applied by

researchers who might find modeling dependent extremes challenging. However, this route cannot be chosen solely for convenience. One

must keep in mind what quantities are critical for one’s application.

The study region is relatively simple which allows the authors to fit a relatively simple model based on EVT; let me make a few comments

about other situations in which the model might need to be more complex. First, the authors are able to model the marginal parameters with a

trend surface; in fact they need only to model the location parameter m, and do so by regressing on Legendre polynomials of latitude and

longitude. In many situations, available covariates are not rich enough to characterize how extremes vary over a study region and it becomes

necessary to employ a hierarchical approach (Cooley et al., 2007; Sang and Gelfand, 2009). Ribatet et al. (2010) show a trend surface

approach is unable to capture the extremal behavior of precipitation over Switzerland. Fitting a hierarchical model is done via MCMC

methods and requires both a significant amount of human and computational time; it should only be done when the study region is sufficiently

complex to necessitate the approach. Conversely, a trend surface approach should only be used when the study region is sufficiently simple,

such as in this example.

More related to this article’s threshold modeling procedure, the authors presume that both j and p, the probability of exceeding the

threshold, are constant over the study region. The authors assume a constant j when developing equation (5), but I see no reason that the

argument leading to this equation could not be adapted to the case where j varies with the location xi;j. Because the study region is relatively

simple, assuming a constant j is appropriate, but there are situations where assuming a constant shape parameter is inappropriate. In our study

of modeled precipitation over the Western US, Cooley and Sain (2010), found the shape parameter to vary over the region. This is important

because it shows that the distribution’s tail differs over the region in a fundamental way that cannot be captured by a shift or scaling. This has

implications for p, for if the distribution is fundamentally different, then its rate of convergence to the extremal type is likely to also differ

over the study region. Consequently using a quantile regression approach for a common p across the study region might be inappropriate. I

imagine the quantile regression approach could be adapted to allow p to vary over a more complex region.

Discussion
(wileyonlinelibrary.com) DOI:10.1002/env.1125
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We would like to congratulate the authors on proposing what promises to be a useful new approach for threshold selection in extreme value

problems with covariates. The major development of the paper is the use of quantile regression for threshold selection. However, other

aspects of the paper that we particularly like are the use of spatial methods for marginal extreme value analysis, their illustration through a

major application, and the careful use of diagnostics.

The use of data arising only from hurricane events is interesting. Is this because the underlying mechanisms suggest that wave heights in

hurricanes arise from a different population to other extreme wave heights? If this is so, then is maximization over three hurricane events per

year sufficient to justify the fit of the GEV (as described in Section 3.2)? If this is not the case, then are potentially informative data being

excluded from the analysis?

We suspect that the analysis of the hindcast data in the paper does not illustrate the full benefits of quantile regression for the threshold

selection. As all sites have the same amount of data over the same period of time, site-wise threshold selection using the same fixed empirical

quantile could produce similar findings to the current analysis, but with substantially reduced effort. However in other applications with

non-equal data lengths at different sites we can see that the proposal may have substantial benefits. An unsettling feature of quantile

regression is the lack of ordering of estimated conditional quantiles for different percentiles, with model mis-specification and heterogeneity

across the design space being two of the most common causes for the violation of the monotonicity of quantile estimates. In the present

analysis the authors have not addressed this issue. Were different exceedance probabilities examined with respect to the crossing effect?

Section 3.2.2 raises an interesting point on the connection between the parameterization of covariate effects in mðxijÞ, sðxijÞ and uðxijÞ
under an assumption of constant exceedance probability. Typically, the quantity on the right hand side of equation (4) is estimated rather well

in extremal analyses. Thus, if a constant exceedance probability is attained by a linear quantile regression for uðxijÞ, then we would indeed
Sons, Ltd. wileyonlinelibrary.com/journal/environmetrics
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anticipate that any further model selection would implicate linear models for mðxijÞ and sðxijÞ. This highlights the importance of attaining an

appropriate regression form for uðxijÞ. The authors’ current suggestion is to inform this process entirely by a GEV analysis of maxima. This

seems a sensible idea, but given the influence of this stage, could it be augmented by alternative procedures?

The parameter stability plots in Figure 4 appear to show that covariate trends may not be independent of threshold. Of course, the power to

detect genuine trends decreases with sample size, but the change of sign of point estimates for some parameters suggests the possibility that

some covariate effects change or disappear at higher thresholds. Could it be possible that different regression forms for uðxijÞ are implied for

different exceedance probabilities? A simple, informal, way to assess this using the authors’ current approach could be to consider GEV fits

using different block lengths to derive maxima, block length having analogies with threshold level. However, the aforementioned difficulties

of reduced power in relation to smaller sample sizes may be an issue here.

Table 1 displays compelling evidence for taking the quadratic form for the linear model in mðxijÞ when sðxijÞ is held fixed; this is

unsurprising in light of the preceding discussion surrounding Section 3.2.2. Were threshold models with non-constant sðxijÞ fitted in

conjunction with each of the entertained models for mðxijÞ? Given that equation (5) effectively dictates the form of mðxijÞ þ csðxijÞ, it could

be interesting to analyze which of the covariate effects fitted to uðxijÞ are naturally assigned to mðxijÞ, and which to sðxijÞ. An intriguing

question is whether it is possible to assess the choice of covariate fit to mðxijÞ, sðxijÞ and uðxijÞ simultaneously.

Figure 7 seems to suggest that there are limited covariate effects on the fitted return levels relative to the uncertainty in the estimates, and

that potential structure in the at-site estimates has been smoothed out. We wonder if there is covariate structure for sðxijÞ which has been

omitted. In particular, your assessment of the spatial model fit using site-by-site Q–Q plots provides relatively weak diagnostic ability.

Heffernan and Tawn (2001) were able to draw stronger conclusions by constructing pooled Q–Q plots by combining data over independent

but not identically distributed units. Here that approach may be helpful, though the spatial dependence in the data will need accounting for in

developing tolerance intervals for such plots.

The authors acknowledge that no element of uncertainty is carried forth from the selection of the exceedance probability for the quantile

regression or the covariate fit to uðxijÞ into the subsequent analysis. This is a ubiquitous problem in almost all (stationary and non-stationary)

extreme value analyses. There is a growing body of literature surrounding the issue of threshold uncertainty under stationarity (e.g. Frigessi

et al., 2002; Tancredi et al., 2006). To our knowledge, this problem has yet to be considered under non-stationarity. This paper plays a helpful

role in clarifying the need for such a development.

Rejoinder
wileyonlinelibrary.com/journal/environmetrics Copyright � 2
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We would like to thank all the discussants for their comments. We have found them to be extremely helpful and we expect others will too.

There are some interesting suggestions for methodological developments.

Alternative approaches. Chavez-Demoulin et al. suggest, and implement, an alternative approach based on the r largest values at each site.

We agree that for data of the type considered in our paper—pre-declustered balanced response data on a spatial grid—that this approach has

advantages over using quantile regression to set a threshold. Tawn et al. made a similar suggestion and we agree with their comment that the

data in our paper are not best suited for illustrating the potential of quantile regression to set thresholds. In more general situations, for

example, where continuous covariates are involved, then quantile regression can be used to set a threshold without the need to discretize

covariates. Daniel Cooley gives an excellent summary of various issues, including the importance of tailoring modelling approaches based on

the needs of the practical application, the complexity of the problem and the availability of data. We appreciate his point that our approach is

relatively accessible for practical application by engineers.

Threshold selection using quantile regression. Selecting an appropriate level of threshold is non-trivial because threshold diagnostic plots,

such as those in Figure 4 of our paper, can be expected to depend on the model used to produce them. This necessitates an iterative process in

which threshold diagnostic plots based on a sensible working model are first used to suggest a suitable level for the threshold. The threshold

diagnostics are to be revisited if the working model has been modified subsequently. We suspect that we did not make this iterative process

clear.

(wileyonlinelibrary.com) DOI:10.1002/env.1125
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We used a GEV fit to annual maxima merely to provide the working model. As Tawn et al. suspect the physics of hurricane events is

different to that of other storms. The hurricane events in the data represent the most severe occurrences of specific weather conditions giving

rise to tropical storms and hurricanes. Although the GEV model appeared to fit the data well in this example Tawn et al. are quite right to

question whether this is an appropriate strategy more generally. In many cases simple exploratory plots should be sufficient to suggest a

working model.

We think that Tawn et al. overstate the link between the quantile regression fit used to set the threshold and the resulting extreme value fit.

Of course, there is some link, because they are based on the same raw data. However, they use different aspects of these data. Provided that

there are no data points with high leverage (as will be the case for the gridded data considered in our paper) the quantile regression fit is

relatively insensitive to the values of the largest threshold exceedances. In contrast, these values will be influential in the fit of the extreme

value model.

Tawn et al. point out that quantile regression lines for different quantiles can cross. We confess that we had not previously investigated this.

However, it turns out that the regression lines for different exceedance probabilities do not cross for our data. Bondell et al. (2010) have

developed methodology for avoiding the crossing problem. However, it may be preferable to check for crossing of thresholds as this will

highlight model mis-specification and thus provide an additional threshold diagnostic.

Chavez-Demoulin et al. note that the estimates of regression parameters mi, i ¼ 1; . . . ; 5 are much less stable over different levels of

threshold than the estimates of the marginal parameters m0, s, j. We believe this is at least partly due to the effects of the particular positioning

of the larger individual hurricanes relative to the data grid. This can be seen in Figure 7 in our paper. In future work we will consider whether it

is beneficial to incorporate the positioning of hurricanes into the modelling.

We like the idea (Tawn et al.) of trying to disentangle the relative contributions of m and s to the threshold u. If m and s are both linear in the

same covariates then it cannot be possible to do this based only on a single quantile regression line. One would need at least two quantile

regression lines in order to identify all the parameters involved. If, for example, m and logs are linear in the covariates the fitting the implied

non-linear quantile regression model would estimate separately the covariate effects on m and logs. The question of estimating

simultaneously the threshold and the parameters of the extreme value model is one we have considered. One possibility is to fix the number of

exceedances and maximize the log-likelihood over the parameters of the extreme value model based on a threshold implied by equation (5) of

our paper. This is a challenging optimization problem: as the parameters of the extreme value model are changed, the threshold changes and

data points move across the threshold. We have recently found a discussion of this on page 227 of Beirlant et al. (2004).

Modelling of wave data. Tawn et al. ask about covariate effects on s. We did report on this briefly in section 3.3 of the paper, finding that

spatial variation in s was not strong. We have also fitted a model in which m is quadratic in space and s is proportional to m, finding that the

maximized log-likelihood for this model is much smaller than for the corresponding model with s constant. We think that the spatial effects

appear over-smoothed at least partly because, in hindsight, Figure 1 is a too simplistic a summary of the spatial effects. It overstates the spatial

effect of location as it is dominated by two hurricanes.

Tawn et al. suggest pooling suitably-defined residuals from different sites in a Q–Q plot, acknowledging that this is not a trivial exercise

due to the spatial dependence in the data. If dependent data are pooled then the plotting positions of the Q–Q plot will also need to be adjusted

for spatial dependence since, for example, the largest value from a dependent sample is stochastically smaller than the largest value from an

independent sample. A simple (but less useful) alternative is to superimpose separate Q–Q plots of residuals from each of the sites.

Parameterization. Daniel Cooley considers situations where it is necessary to allow j to vary with covariates. We agree that in this event

equation (5) in our paper can be used to estimate a threshold: using non-linear quantile regression. Daniel Cooley also points out that it may

then be more appropriate to allow the probability of exceedance p to vary with the covariates. We agree that it should be possible to do this for

given values of p. However, choosing p would require knowledge of the distribution of the response variable or empirical justification. In the

spatial case perhaps separate threshold diagnostic plots could be produced for different regions.

We agree with Chavez-Demoulin et al. that it is often useful or necessary to build covariate effects into the GEV parameters (m, s, j). An

argument sometimes made for the alternative parameterization—covariate effects in the probability p of exceedance and/or the scale

parameter su of the GP distribution of exceedances of u—is the orthogonality of the p and su parameters. This can improve the speed and

ease of model fitting in comparison to the non-orthogonal (m, s, j) parameterization. We suggest the following hybrid approach. Suppose that

covariates have been mean-centred, u0 is the threshold when all covariates are zero and m0 and s0 are the intercepts of m and s. We

parameterize the covariate effects in terms of m and s. Then, for the purposes of fitting the model only, we reparameterize (m0, s0) to (p0,

su0 1þ jð Þ) where su0 ¼ s0 þ j u0�m0ð Þ and p0 ¼ 1=lð Þ 1þ j u0�m0ð Þ=s0½ ��1=j
. Thus (Davison, 2003, page 688) p0, su0 1þ jð Þ and j are

orthogonal. We have implemented this for the model fitted to the wave data in our paper and have found that convergence is faster and initial

parameter values are less critical.

Estimation of adjusted standard errors. Chavez-Demoulin et al. raise issues surrounding the adjustment of standard errors. That the

adjustment for dependence can reduce the standard errors of the regression coefficients is not counter-intuitive. Consider as an example the

estimation of the difference md in GEV location m between two sites. This difference is more precisely estimated when there is positive

dependence between the data at the sites than when the series sites are independent: the differences between the responses at the two sites will

be less variable in the former case than in the latter. In the extreme case where the two series are completely dependent, md is estimated with

perfect precision because pairs of values from the two sites always differ by exactly md. Chandler and Bate (2007) also observe this

phenomenon for a bivariate extreme value model.

The adjusted variance matrix of the parameter estimates is estimated by bH�1bV bH�1. The extent of the adjustment is governed by how

different bV is from�bH. Adjustment for strong spatial dependence may increase the standard errors of the marginal parameters substantially

and decrease the standard errors of the marginal parameters substantially. Thus we can expect bV to have large and small elements and thus

have a large condition number (ratio of the largest and smallest singular values). A large condition number does not necessarily mean that the

adjusted standard errors are incorrect. In the simulation study of section 5 we created very strong spatial dependence and found that the

adjusted standard errors were of the correct magnitudes.
Environmetrics 2011;22:810–816 Copyright � 2011 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/environmetrics
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Of course it is undesirable for calculations to involve matrices with large condition numbers. We could alter the condition number of bV
quite substantially by a simple scaling of the parameters involved. Chavez-Demoulin et al. ask whether we can avoid estimating V. We note

that

bH�1bV bH�1 ¼ bH�1
Xk

i¼1

UT
i ðbuÞUiðbuÞ

 !bH�1 ¼
Xk

i¼1

bH�1UiðbuÞT UiðbuÞbH�1 ¼ ðbUbH�1ÞT bUbH�1;

where bU is a matrix of score contributions evaluated at bu and k is the number of clusters. Instead of calculating bV we work with transformed

scores bUbH�1. For the final model in our paper the condition numbers of bV and bH�1 are 9150 and 28, respectively. The condition numbers of bU
and bUbH�1 are 96 and 18, respectively. Nevertheless, we agree that research is needed on how best to estimate adjusted standard errors for

extreme value models.
REFERENCES TO THE DISCUSSIONS AND REJOINDER

Beirlant J, Goegebeur Y, Segers J, Teugels J. 2004. Statistics of Extremes: Theory and Applications. Wiley: Chichester, England.
Bondell HD, Reich BJ, Wang H. 2010. Non-crossing quantile regression curve estimation. Biometrika 97(4): 825–838.
Chandler RE, Bate SB. 2007. Inference for clustered data using the independence loglikelihood. Biometrika 94(1): 167–183.
Cooley D, Davis RA, Naveau P. 2010. The pairwise beta: a flexible parametric multivariate model for extremes. Journal of Multivariate Analysis 101:

2103–2117. http://www.stat.colostate.edu/�cooleyd/Papers/pairwiseBeta.pdf.
Cooley D, Nychka D, Naveau P. 2007. Bayesian spatial modeling of extreme precipitation return levels. Journal of the American Statistical Association 102:

824–840.
Cooley D, Sain SR. 2010. Spatial hierarchical modeling of precipiation extremes from a regional climate model. Journal of Agricultural, Biological, and

Envrionmental Statistics 15: 381–402.
Davison AC. 2003. Statistical Models. Cambridge University Press: Cambridge.
Fawcett L, Walshaw D. 2007. Improved estimation for temporally clustered extremes. Environmetrics 18: 173–188.
Frossard L. 2010. Modelling Minima of Ozone Data in the Southern Mid-Latitudes. Master’s thesis, Ecole Polytechnique Fédérale de Lausanne, Section de
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