

On the interpretation of return values

David Randell, Jenny Wadsworth, Jonathan Tawn, Philip Jonathan Shell & Lancaster University

Overview

- Return value
- Problem: incorporating estimation (epistemic) uncertainty
- Possible approaches
- Simulation study
- Theoretical properties
- Conclusions

What is a return value?

- Random variable *A* represents the maximum value of some physical quantity *X* per annum
- The *N*-year return value x_N of X is then defined by the equation

$$F_A(x_N) = \Pr(A \le x_N) = 1 - \frac{1}{N}$$

■ Typically $N \in [10^2, 10^8]$ years

What is a return value?

- \blacksquare Random variable A_N represents the N-year maximum value of X
- The *N*-year return value x'_N of *X* can be found from F_{A_N} for large *N* since

$$F_A(x_N) = 1 - \frac{1}{N} \Rightarrow F_{A_N}(x_N) = \left(1 - \frac{1}{N}\right)^N \approx \exp(-1)$$

■ Use $F_{A_N}(x'_N) = \exp(-1)$ to define an alternative return value x'_N

Estimating a return value

- To estimate x_N , we need knowledge of the distribution function F_A of the annual maximum
- We might estimate F_A using extreme value analysis on a sample of independent observations of A
- Typically more efficient to estimate the distribution $F_{X|X>\psi}$ of threshold exceedances of X above some high threshold ψ using a sample of independent observations of X, and use this in turn to estimate F_A and x_N
- How is this done?

Estimating a return value

 \blacksquare Asymptotic theory suggests for large ψ that

$$F_{X|X>\psi}(x|\psi,\sigma,\xi) = 1 - \left(1 + \frac{\xi}{\sigma}(x - \psi)\right)_{+}^{-1/\xi}$$

for $x > \psi$, threshold $\psi \in (-\infty, \infty)$, shape $\xi \in (-\infty, \infty)$ and scale $\sigma \in (0, \infty)$

- The full distribution of *X* is $F_X(x) = \tau + (1 \tau)F_{X|X>y}(x)$ where $Pr(X < \psi) = \tau$
- Thus

$$F_A(x) = \Pr(A \le x) = \sum_{k=0}^{\infty} f_C(k) F_X^k(x)$$

where C is the number of occurrences of X per annum, with probability mass function f_C to be estimated (say with a Poisson model with parameter λ)

What's the problem?

What's the issue?

- x_N (or x'_N) can be estimated easily in the absence of uncertainty
- In reality, we estimate parameters λ , ψ , σ and ξ from a sample of data
- How does epistemic uncertainty affect return value estimates?
- A number of plausible estimators for return values under uncertainty
- Different estimators perform differently (bias and variance)
- Which estimators are likely to perform reasonably in fairly general circumstances?
- Is it sensible even to estimate return values?

Incorporating uncertainty

■ If a distribution $F_{Y|Z}$ of random variable Y is known conditional on random variables Z, and the joint density f_Z of Z is also known, the unconditional distribution F_Y can be evaluated using

$$F_Y(y) = \int_{\zeta} F_{Y|Z}(x|\zeta) f_Z(\zeta) d\zeta$$

Expected value of deterministic function g of parameters Z given f_Z

$$E[g(\mathbf{Z})] = \int_{\zeta} g(\zeta) f_{\mathbf{Z}}(\zeta) \, d\zeta$$

 $= \zeta = (\lambda, \psi, \sigma, \xi), Y = A \text{ or } Y = A_N$

Copyright of Shell

Return value estimated using expected values of parameters, $x_N(E[Z])$

 Motivated by the widespread approach of ignoring uncertainty in parameters ζ for estimation of return values

$$x_{N1} = x_N(E[\mathbf{Z}])$$

- $\mathbf{E}[\mathbf{Z}] = \int_{\mathcal{L}} \zeta f_{\mathbf{Z}}(\zeta) d\zeta$
- A related estimator converging to x_{N1} with increasing N, would be $x'_N(E[Z])$
- similar choices of estimator here could be the MLE, MAP, median parameter values

Shell & Lancaster University Return values

Expected quantile of distribution of A with NEP 1 - 1/N, $E[x_N(Z)]$

$$x_{N2} = E[x_N(Z)] = \int_{\zeta} x_N(\zeta) f_{\mathbf{Z}}(\zeta) d\zeta$$

- Solve for quantile $x_N(\zeta)$ of the distribution of A with NEP 1 1/N for a large number of parameter choices ζ , and then integrate
- A related estimator $E[x'_N(Z)]$ is the expected quantile of distribution of A_N with NEP $\exp(-1)$ (converges to x_{N2} as N increases)

Quantile of predictive distribution of A with NEP 1 - 1/N, $Q_A(1 - 1/N)$

$$F_A(x_{N3}) = 1 - \frac{1}{N}$$

- $\blacksquare F_A(x) = \int_{\zeta} F_{A|Z}(x|\zeta) f_Z(\zeta) d\zeta$
- Write briefly as $x_{N3} = Q_A(1 1/N)$, where Q_A is the quantile function corresponding to cumulative distribution function F_A

Quantile of predictive distribution of A_N with NEP $\exp(-1)$, $Q_{A_N}(\exp(-1))$

$$F_{A_N}(x_{N4}) = \exp(-1)$$

- $F_{A_N}(x) = \int_{\zeta} F_{A_N|Z}(x|\zeta) f_{Z}(\zeta) d\zeta$
- Write briefly as $x_{N4} = Q_{A_N}(\exp(-1))$, where Q_{A_N} is the quantile function corresponding to F_{A_N}

Simulation study

- $n_P = 100$ random (latin hypercube) pairs of ξ and σ on $[-0.2, 0.2] \times [1, 3]$. Then for each pair ξ , σ
 - $n_R = 500$ realisations of sample (size n) generated from generalised Pareto tail
 - Estimates for ξ , σ obtained using maximum likelihood
 - Return value estimated using one of 4 approaches above (incorporating uncertainty from all n_R realisations)
 - Compute 1000-year return value assuming 10 storms per annum.
- Distribution of fractional bias estimated (using all n_P selections)

$$fractional\ bias = \frac{estimated\ return\ value - true\ return\ value}{true\ return\ value}$$

Distribution of fractional bias

- 500 realisations of sample size *n*, truth known per sample
- ξ , σ and x_N estimated per sample using MLE
- Empirical distribution of fractional bias
 accumulated

14 / 22

Bootstrap uncertainty estimation

- Illustrative single sample (size *n*)
- ξ , σ and x_N estimates shows for each of 100 bootstrap resamples

15 / 22

Bootstrap uncertainty estimation

- Empirical distribution accumulated:
- over all 100 bootstrap resamples and
- over all 500 sample realisations

Copyright of Shell Shell & Lancaster University Return values

16 / 22

Bootstrap uncertainty estimation

- Empirical distribution accumulated:
- over all 100 bootstrap resamples and
- over all 500 sample realisations

September 2019

Copyright of Shell Shell Shell & Lancaster University Return values

Theoretical properties

- In simple thought experiment, can show that
 - Quantile of predictive distribution $Q_A(1-1/N)$ will have positive bias
 - Quantile of predictive distribution $Q_{A_N}(\exp(-1))$ will have negative bias
 - Expected return value $E[x_N(\mathbf{Z})]$ is unbiased
- When the true value ξ_0 of ξ is negative, the form of the far tail of $Q_A(1-1/N)$ is dictated by values $\xi > \xi_0$. Hence likely that $Q_A(1-1/N)$ is biased high
- When $Q_A(1-1/N)$ is large, and the maximum observed ξ from n_R realisations is ξ^+ , and n_R is large, that

$$\frac{E[x_N(\mathbf{Z})]}{Q_A(1-1/N)} \approx n_R^{(\xi^+-1)} \quad \Rightarrow \quad E[x_N(\mathbf{Z})] < Q_A(1-1/N) \text{ when } \xi^+ < 1$$

Theoretical properties

- Single sample
- Bootstrap estimates for ξ , σ
- Coloured by estimated ξ

19 / 22

Theoretical properties

- Curves coloured by estimated ξ
- Vertical magenta: $E(x_N)$
- Vertical black
 - Top: $Q_A(1-1/N)$
 - Bot: $Q_{A_N}(\exp(-1))$

September 2019

20 / 22

Findings

- Return value estimators yield different estimates under uncertainty
- $E[x_N(\mathbf{Z})]$ less biased in current simulations, estimated from F_A or F_{A_N}
- $Q_A(1-1/N)$ statistically preferable, has given exceedance probability

Are return values necessary?

- Why estimate a return value? What question are we trying to answer?
- Do safety factors elsewhere in the design process require return values with assumed characteristics?
- Does the framework used for inference affect estimated return values?

Recommendations

- Take great care in estimating and interpreting return values, when model parameters are uncertain
- Propagate full sample $\{\lambda_k, \psi_k, \sigma_k, \xi_k\}_{k=1}^{n_R}$ and "integrate out parameter uncertainty" as late as possible in inference
- Use decision theory: structure the decision problem, and estimate risk