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Abstract8

This article presents a step-by-step procedure for estimation of the joint distribution of N -year
maximum significant wave height, individual wave and crest heights, and total water level, accom-
modating the effects of directional and seasonal variation, surge and tide. The approach is based
on non-stationary extreme value analysis of peaks over threshold incorporating careful uncertainty
quantification, and is illustrated for a North Sea location using hindcast data. The article further
provides a brief overview of the development of a regulatory framework for specification of design
conditions for total water level over the past half century.
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1. Introduction10

Extremes of wave height and total water level (TWL) are key parameters for the design of fixed11

platforms in the offshore environment. Previous papers (e.g. Feld et al. (2015), Randell et al. (2015))12

have described an approach to non-stationary extreme value analysis (henceforth called “CEVA”,13

abbreviating “Covariate Extreme Value Analysis”) for estimating N -year maxima of significant14

wave height, individual wave and crest heights, taking into account the variation in seasonal and15

directional covariates. Waves that impact the topsides and supporting beams of offshore structures16

are particularly significant since they result in a rapid increase in loading with inundation level.17

Extremes of TWL, namely the combination of wave crest and still water level (SWL, itself the18

sum of tide and storm surge), can cause bigger loads still, and are often of greater importance to19

the structural engineer than crest height alone. This paper builds on the approach described in20

previous papers to also include SWL effects in a manner which is consistent with the wave modelling21

methodology and which preserves the relationships between waves, storm surge and tidal levels that22

are observed within storms.23

The underlying approach to the estimation of the wave component of TWL is based upon modelling24

storm peak events on a directional-seasonal covariate domain, described in outline in Section 4.25

Whilst this approach captures the storm peaks appropriately, in order to determine the maximum26

TWL within each storm, it is necessary to model more than just the peak sea state. This is due27
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to both the random nature of large individual wave crests within sea states near to the peak and28

also to the characteristics of the inter-relationships between waves, tide and surge. Both of these29

effects may result in the highest water level during a storm occurring at a time of lower significant30

wave height (HS) but higher tide and/or surge.31

In order to represent the total water level variability throughout a storm event, therefore, repre-32

sentative storm trajectories are derived which aim to capture the variability of all of the key wave33

(Section 5) and surge (Section 6) parameters as the storm develops both temporally and direction-34

ally. These trajectories can then be appropriately re-scaled in order to match the severity of storm35

peaks randomly selected from the fitted extremal model.36

To estimate maximum TWL in a storm, all these modelling components, i.e. storm peak modelling,37

wave and surge storm trajectory selection and tidal variations, need to be brought together and38

combined with the short-term variability of individual crest heights. In this way, for each simulated39

sea state in each storm event, individual maximum crests are randomly sampled and added to40

appropriately selected surge and tidal level. This process, explained in Section 7, is then repeated41

for all randomly-simulated storms over the return period of interest. For each period of simulation42

the maximum TWL for each direction and day-of-year are retained. This allows extreme values of43

TWL for any season-direction combination to be subsequently extracted and these can then further44

be aggregated to derive all-year and omni-directional extremes in a statistically consistent manner.45

This final simulation is described in Section 8.46

This modelling procedure allows all extremes that may be required for design and operational47

purposes to be derived in a single analysis. For example, seasonal criteria for installation activi-48

ties are readily available; or, a re-alignment of a structure during the design phase can be easily49

accommodated by simply aggregating across different sets of directional sectors.50

Throughout this whole process, uncertainties are propagated into the estimated distribution of51

the N -year maximum TWL, using the methods described. These uncertainties are captured by52

using bootstrapping of the original storm peak data, a range of wave and surge storm trajectory53

shapes, different tidal phases, a range of extreme value thresholds, random sampling of HS , and54

random sampling of individual crest heights.55

2. Background56

For the offshore environment, we assume that TWL is defined as the sum of individual crest, surge57

and tidal components. The importance of TWL has been explored particularly within two areas58

of study (a) coastal flooding and over-topping, and (b) wave impact on marine bottom-founded59

structures. In the first of these, annual maxima from long time series were traditionally used as60

the basis for extrapolating to long return periods but based on SWL, i.e. combined tide and surge.61

This approach means, however, that many significant surge events will be excluded if they happen62

to occur at low tide and it also does not make the best use of the available data since only a single63

event per year is included. The combined effects of decoupled tide and surge were modelled in64

Pugh and Vassie (1978) by the Joint Probability Method (JPM) where non- parametric probability65

distributions for both were derived and, assuming independence, recombined statistically to obtain66

the statistics of overall SWL. In order to extrapolate to longer return periods an empirically-selected67

log distribution was fitted to the tail of positive surges. The approach made better use of the data68

by using all hourly samples but in so doing introduced a data set which consisted of dependent69

samples. This introduced a bias into the estimate of the non-exceedance probability associated70

with given return periods.71
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Despite the shortcomings of the method it has been widely applied although the method was sub-72

sequently revised by Tawn (1992) to de-cluster the surge data into independent events, to smooth73

the observed magnitudes and to fit a more statistically-justified generalised Pareto distribution74

(GPD) to the tail of the surge distribution. An empirical approach for adjusting the surge distri-75

bution for different tidal levels was also presented for application to those shallow locations where76

this was relevant. Hawkes et al. (2002) proposed a joint model for water level, wave height, wave77

steepness and their dependence. An extension of the JPM for application to cases with more than78

two variables was described by Liu et al. (2010) in the “Direct JPM” in which a multi-dimensional79

histogram was set up to include wave run up in addition to tide and surge. In this approach the80

characteristics of dependence between the three were explicitly captured by using an empirical81

non-parametric method although the details used for extrapolation beyond the length of the data82

set are unclear. Shevchenko and Ivelskaya (2015) broadened and generalised the original JPM to83

include a description of seasonal variability in mean sea level within the tidal harmonics and used84

the Gumbel distribution to extrapolate both surge and tsunami levels to longer return periods.85

However, any joint probability characteristics between the parameters were not explicitly modelled86

in this approach.87

More sophisticated modelling approaches to joint probability in general have been developed by88

Heffernan and Tawn (2004) which describe the relationship of variable Y conditional on the value89

of another extreme variable X following transformation to a standard (typically Laplace) marginal90

scale91

Y | {X = x} = ax+ xbW (1)

where a ∈ [−1, 1] and b ∈ (−∞, 1] are fitted parameters and W represents a residual process with92

unknown distribution, assumed Gaussian for fitting only. Typically a generalised Pareto distribu-93

tion (GPD) is used to fit each marginal distribution of peaks over threshold. The approach can94

be extended to any number of variables in which each is conditional upon the value of a single95

conditioning variable that exceeds a certain extremal threshold. Gouldby et al. (2014) applied this96

approach to the study of coastal over-topping and overflow which included SWL and wave compo-97

nents. Once the model was fitted, a Monte Carlo approach was used in which a single parameter98

was sampled randomly and the relationship presented above was used (including sampling from the99

distribution of residuals, W ) to determine associated values of other parameters in order to model100

for long return periods.101

In terms of setting the deck height of offshore structures and the determination of extreme TWL102

in the North Sea, the design recipe in the 1970s and early 80s was based on a 1.5m clearance over103

and above a combination of the 50-year crest height, the 50-year surge and the mean high water104

spring (MHWS) tide (UK HMSO 1974). During the 1980s, the key return period was increased to105

100 years and some simple allowance was given for joint probabilities between tide and surge on the106

assumption of two Gaussian parameters between which a correlation coefficient could be defined107

(UK Department of Energy 1990).108

By 1998, the UK Health and Safety Executive dictated that a structure needed to withstand the109

10,000-year TWL with no additional air gap but no clear guidance was given as to how the TWL110

should be derived. At this time, therefore, certain empirical methods were developed within the111

industry based on empirically-derived relationships founded on considerations such as storm length112

versus length of tidal cycle and rules of thumb relating crest heights from one return period to113

another. One such method for the 10,000-year TWL, TWL10000, which was adopted by Shell and114
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BP in 2000 was the so-called “Interim method”115

TWL10000 = C1000 +
3

4
(MHW− MSL) + S+

1 (2)

where MHW is the mean tidal high water, S+
1 is the 1-year positive surge, C1000 is the 1,000-year116

crest height, and MSL is mean sea level. A second approach was described in Leggett et al. (2007)117

for the central (CNS) and southern (SNS) North Sea118

CNS: TWL10000 = C10000 + MSL + S+
1

SNS: TWL10000 = C10000 + MSL + S+
3 (3)

where S+
3 is the 3-year positive surge, and where subscript 10000 refers to the 10,000-year value119

of the corresponding quantities; however this approach - based on consideration of only selected120

combinations of crest height, tide and surge rather than a general investigation of the worst possible121

combinations - was not generically applicable.122

ISO19902 (2007) presented a range of TWL values for an offshore location utilizing relationships123

between tide, surge and crest and this was based on the approach set out by UK Department of124

Energy (1990). It provided limiting cases for TWL based on either complete correlation between125

surge and crest and the completely uncorrelated case. The range provided for TWL was126

(
√
a2 + s2 + t2,

√
(a+ s)2 + t2) (4)

where a is the extreme crest height, s is the extreme surge and t is the maximum elevation of tide127

relative to mean sea level.128

ISO19901-1 (2005) adopted the Tromans and Vanderschuren (1995) storm-based approach for the129

determination of individual wave and crest height return values based on the statistical combination130

of the long-term distribution of storm maxima with the short-term distribution of individual waves.131

This correctly accounts for the fact that the largest waves in a storm do not necessarily come from132

the most severe sea state and that the largest waves in a given return period do not necessarily133

come from the storms with the largest HS . However, there was still no further guidance as to how134

to combine these crest heights with SWL variations.135

In UK Health and Satefy Executive (2009), a Monte Carlo approach was described to combine the136

approach of Tromans and Vanderschuren (1995) for individual wave crests with a representation137

of the joint probabilities of waves and surge. Again, though, a simplistic approach was adopted in138

which once a randomly-selected HS was selected, the surge of the same percentile was associated139

with the sea state such that effectively, a perfect correlation was assumed between waves and surge,140

but a random tide was included. An additional empirical correction factor was then derived from141

measured data to correct for the degree of correlation.142

We note the work of Callaghan et al. (2008), Serafin and Ruggiero (2014), Wahl et al. (2017)143

and others on simulating wave environments for estimation of erosion and over-topping. Previous144

papers by some of the current authors have developed the Monte Carlo approach (e.g. Ewans and145

Jonathan 2008, Feld et al. 2015) in which the approach of Tromans and Vanderschuren (1995) was146

adopted for the crests but which allowed for varying characteristics by season and direction in order147

to better capture the changing statistical populations through the year and by direction.148

In order to derive TWL, however, a method for combining these crests with appropriate tides and149

surges is required, and this is the substance of the current paper.150
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3. Example data set151

For illustrative purposes, a data set from a location in the western half of the Southern North152

Sea in a water depth of around 20m has been chosen. The water level data consisted of hourly153

measurements at an offshore platform between October 2006 and December 2016 and the wave154

data came from the NORA10 (Norwegian Reanalysis, 10km wave hindcast model, Reistad et al.155

2011) WAM (third generation prognostic wave model, WAMDI 1988) hindcast grid point closest156

to the measurement location and covered the same period. A representation of the distribution157

of HS by season and direction is shown in Figure 1 showing the significance of the covariates in158

determining the severity of any particular season-direction combination. In this plot, all the data159

points are shown as grey dots and the storm peaks are shown as black dots. Direction is defined160

as the direction from which storms propagate, measured clockwise from North.161

[Figure 1 about here.]162

Tides were separated from storm surges by harmonic analysis (using T Tide software, Pawlowicz163

et al. 2002) of hourly mean original water level data, with residual level referred to as surge.164

Figure 2(a) shows the variability of surge with season with black dots representing all the observed165

data points; again the seasonality is obvious. A similar plot is shown for tide in Figure 2(b) where166

the small equinoctial effect on tides can be seen. The relationship between tide and surge is shown167

in Figure 2(c) in which the relationship appears to be random in nature in an overall sense, although168

there appears to be a slight tendency for the highest surges to have occurred at the extremes of169

tide either high or low. Figure 2(d) illustrates the overall relationship between HS and surge. In170

this case, the largest surge events are associated with higher HS values but the scatter indicates171

that a large HS does not necessarily imply that a large surge will occur simultaneously.172

[Figure 2 about here.]173

For definiteness, wave height is defined as the difference between the maximum and minimum174

values of the ocean surface between consecutive down-crossings of mean water level. Crest height175

is defined as a the maximum value of the ocean surface between an up-crossing and subsequent176

down-crossing of the mean water level.177

4. Storm peak modelling178

The details of this approach have been described in previous papers (e.g. Feld et al. 2015). Briefly179

1. A set of directional-seasonal covariate “bins” within which conditions are considered homoge-180

neous is defined. Binning reduces the computational complexity of the covariate description, and181

hence the complexity of the spline calculations to estimate extreme value (EV) models. Typi-182

cally, this is based on 32 directional bins (11.25◦ width) and 24 seasonal bins (approximately 2183

weeks long) giving a total of 768 across the covariate domain.184

2. A threshold q for isolation of storm event is defined using a quantile of sea state HS per direction-185

season sector. This threshold is typically chosen to correspond to a quantile with constant186

non-exceedance probability of between approximately 0.5 and 0.75; this produces a sufficient187

number of storm events whilst keeping the storm length to a manageable size. A quantile is188

better than a fixed storm threshold since this ensures that calmer seasons and directions are189
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adequately represented in the overall model (and see e.g. Northrop and Jonathan 2011). The190

peak of the storm event is captured and characterised by the storm peak HS (referred to as191

Hsp
S for definiteness where needed), zero-crossing wave period (TZ), spectral mean period, T01,192

direction and day of year. Note that T01 is defined as
√
m0/m1, where m0 is the zeroth moment193

and m1 the first moment of the wave spectrum; T01 is a key parameter in the Forristall crest194

height probability distribution.195

3. For each storm, the whole period of exceedance of storm threshold q is also added to the set196

of historical storm trajectories which can then be associated with synthesized storm peaks (see197

Section 5).198

4. A set of viable EV thresholds ψ for storm peaks was chosen, corresponding to quantiles with non-199

exceedance probabilities per covariate bin within some reasonable interval. Above ψ, occurrences200

of storm peaks are assumed to follow a Poisson process (with mean rate ρ), and storm severity201

described by a generalised Pareto model (with scale parameter σ and shape parameter ξ).202

5. The variation of model parameters ψ, ρ, σ and ξ with covariates is described using linear203

combinations of cubic B-spline functions (or tensor products thereof) defined on the covariate204

domain. Each spline function has a fixed width but can vary in height. The extent to which205

spline function height is allowed to vary between adjacent splines is determined by penalty206

terms and an optimal smoothness chosen using cross-validated penalised maximum likelihood207

estimation. The intention is that spline smoothness is chosen so that the resulting variation208

in model parameters reflects the underlying natural variability present, whilst preventing over-209

fitting. A conceptual illustration (unrelated to the current application) of the effect of high and210

low penalty cases is shown in Figure 3. In the left-hand case, the variability of heights between211

adjacent splines is much more constrained than the right-hand case. A penalised likelihood212

approach is also used to estimate covariate-dependent EV thresholds ψ in 4, above.213

6. The procedure for partitioning the covariate domain is explained in (e.g.) Ross et al. (2017).214

We choose to partition the domain into 32 directional bins of width 11.25◦, and 24 seasonal bins215

of width 15 seasonal days (from a year with 360 seasonal days). We judge this resolution to be216

sufficient to capture the main directional and seasonal variation of storm peak significant wave217

height. The extreme value model therefore uses a total of 768 (= 32×24) covariate combinations.218

For extreme value analysis we assume that neighbouring covariate bins exhibit similar behaviour.219

This is enforced by penalising the local variation of extreme value parameter estimates. We220

choose the penalty so that the resulting extreme value model has optimal predictive performance.221

In this sense, if there was no predictive evidence in the data related to covariate variation, the222

extreme value model would be extremely stiff, corresponding effectively to one covariate bin: in223

this case there would be one bin and 1156 peaks in it for the current application. Further, the224

effective number of covariate degrees of freedom used in the analysis can vary from one (stiff) to225

768 (flexible). The actual effective number is chosen to maximise predictive performance using226

cross-validation. The optimal choice of parameter roughness penality is discussed more fully in227

Section 6 and illustrated in Figure 6.228

All modelling is performed for 768 covariate combinations. For presentation of results concerning229

the distribution of N -year maxima, we can combine covariate bins to present exactly the results230

that the engineer finds most useful. In this work, we present estimates (e.g. Figure 11 or231

Figure 12, discussed in Section 8) on 8 directional octants and 12 seasonal months. However,232
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we can provide estimates of extreme environments using any combinations of covariate bins of233

interest to the engineer.234

[Figure 3 about here.]235

Once the storm peak modelling has been completed, a Monte Carlo approach can then be used236

to simulate a set of random storm peaks for any given return period that reflects the underlying237

statistical characteristics of the data. To capture uncertainties in this process, the original data238

can also be bootstrapped and the whole modelling process repeated.239

5. Derivation of storm wave trajectory240

It is not sufficient to just base the analysis on storm peaks. There are two main reasons for this:241

(a) an extreme value of TWL in a given directional sector will not necessarily correspond to an242

occurrence of storm peak HS in the same directional sector; it may occur as the tail of a storm243

that peaks in a different direction sector, and (b) when looking at large individual wave and crest244

values, these may occur during sea states that are not at the peak of storms.245

A consequence of this approach is that the largest observed values in each of the direction sectors246

are not and should not be statistically independent. In practice, however, the data are used in the247

design process as if they were independent and this means that there is some level of conservatism248

in the directional extremes. In general, though, the level of dependence is small for bins of size 45◦249

or larger and the biggest effect is on the least severe sectors. If only storm peaks were used to derive250

extremes, though, the results would be non-conservative so, on balance, the approach described251

here is preferred. Note that the effect is not an issue for seasonal sector since storm lengths are252

much shorter than the lengths of normal seasonal definitions.253

We now assume that trajectories of storms within the database being analysed are representative254

of the range of storm shapes that may be seen. Clearly, storms of different severities and in different255

seasons and directions may have different characteristics, so the challenge is to identify storms that256

have peaks that are closest to each randomly-simulated storm peak. To identify these, the observed257

storm histories are aggregated into a set of bins defined by the storm peak values of HS , direction258

and day of year. This is illustrated in Figure 4 where bins populated with storm peaks from the259

observed data are indicated in blue.260

[Figure 4 about here.]261

For every randomly-selected storm peak with characteristics (Hsp
S ,Drcsp,Ssnsp), indicated by a262

red dot in the figure, a distance D is defined to the centre of every bin (with characteristics263

(Hsp
Sbin

,Drcspbin, Ssnsp
bin)) for which data is available, namely264

D2 =
(Hsp

S −H
sp
Sbin

)2

α2
HS

+
(Ssnsp − Ssnsp

bin)2

α2
Ssn

+
(Drcsp −Drcspbin)2

α2
Drc

(5)

where superscript sp indicates storm peak values, HS is significant wave height, Ssn is the day of265

year, Drc is direction and the αs are scaling factors selected for each variable.266
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The bin that is closest for the selected scaling factors (indicated by the green bin in the figure) is267

then used as a source of archetype storms (and corresponding trajectories) for the storm peak in268

question. The scaling factors αHS
, αSsn and αDrc can be adjusted in order to fine-tune the relative269

importance of the three dimensions for the data set under investigation. The number of archetype270

storms in each bin can also be adjusted. A large number of storms would produce a more varied271

array of potential storm shapes, so capturing uncertainty in the storm trajectory, but if the number272

is set too large then there will be storms that are less similar to the simulated storm peak that are273

also randomly selected. Suitable values of the α parameters are chosen by inspection of diagnostic274

plots illustrating the performance of storm trajectory matching using a cross-validation procedure;275

historical storms are withheld from the analysis in turn, and then used as test cases. We find276

values of α parameters yielding adequate matching to the storm trajectory for the withheld storms.277

Typical values of the α parameters are given in Feld et al. (2015).278

Once the archetype populations have been established, the trajectories will be randomly selected279

for association with randomly-simulated storm peaks. If the selected storm trajectory for some280

archetype (labelled ∗ for definiteness) has peak characteristics Hsp∗
S , Drcsp∗ and Ssnsp∗, the storm281

trajectory is then adjusted as follows for association with a storm peak with characteristics Hsp
S ,282

Drcsp, Ssnsp, such that (a) all HS values are scaled by the ratio of Hsp
S /H

sp∗
S , (b) the whole storm283

history directions are rotated by Drcsp−Drcsp∗ so that the archetype storm peak direction matches284

that of the simulated storm peak, and (c) wave periods are scaled such that after scaling, the285

sea-state steepness S = 2πHS/(gT2) at every time step does not change.286

For further discussion of the storm wave trajectory matching procedure, please see Feld et al.287

(2015).288

6. Still water level modelling289

For the determination of TWL, the joint relationship between wave crests, tide and surge needs to290

be captured. Within the CEVA methodology, the same storm archetype approach that is used for291

storm wave trajectories is also used to describe the development of surge through storm histories, as292

outlined in Section 6.1. For locations where the water depth is sufficiently shallow that variations in293

the water depth can have an effect on the sea states it is important to also capture the tidal variation294

from that same storm. For deeper-water locations, just the storm surge needs to be available and295

the tide can be randomly sampled. These tidal approaches are described in Section 6.2.296

6.1. Surge modelling297

Within the period of each storm, as characterised by the exceedance of HS above storm threshold298

q, the storm surge is characterised by its maximum, minimum, median and range, i.e. the difference299

between the maximum and minimum storm surge as illustrated in Figure 5.300

[Figure 5 about here.]301

Linear relationships are then developed between each of these characteristics and the storm peak302

HS within each of the directional and seasonal bin combinations giving a total of 768 different303

fits. The relationship is defined in terms of (a) a selectable quantile of storm peak HS and the304

corresponding median value of surge characteristic (together referred to as a lock point (with value305

HSLock, SurgeLock) and (b) the slope of a linear least-squares fit between the surge characteristic306

and storm peak HS (with value Slope). The allowed rate of variability of Slope with direction and307
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season is set using a smoothing B-spline, optimised using cross-validation. For a given covariate308

bin, the model takes the form309

Surge = Slope× (HS −HSLock) + SurgeLock. (6)

Estimation of cross-validation smoothness penalties for Slope (in the case of the surge maxima310

variable) is illustrated in Figure 6. The figure shows lack-of-fit from the regression model as a311

function of Slope smoothness. Red lines illustrate how well the regression model describes variation312

present in the data as a function of Slope smoothness: as Slope becomes smoother (from left to313

right) the quality of fit reduces. The black line illustrates how well the regression model is able314

to predict unseen data: at optimum smoothness, the lack-of-predictive-fit is a minimum. This is a315

classic bias-variance trade-off.316

To illustrate for the case of surge maxima, Figure 7 shows the variability of storm peak HS lock317

point, slope and storm surge maximum lock point. Figure 8 shows 95% uncertainty intervals (UI)318

for the range of 96 linear fits within each of 8 aggregated directional sectors for the illustrative319

example for storm surge maximum, surge median and surge minimum characteristics. In these320

plots, the grey dots represent all the observed combinations of HS and surge whilst the coloured321

dots represent the HS and surge maximum pairs (blue), HS and surge median pairs (yellow) and322

HS and surge minimum pairs (red). Similar plots (not shown) were examined by month. The plots323

show that in general there is a broadening of surge maximum and surge minimum as HS increases324

with surge median in general tending to increase more slowly. This is apparent in plots split both325

by season and direction. It is also evident that as expected, there are more severe events that occur326

in the winter months and that the south-east and east are calmer directions.327

[Figure 6 about here.]328

[Figure 7 about here.]329

[Figure 8 about here.]330

In order to capture the variability in the relationship between storm surge characteristics and HS ,331

the residuals of the linear regression relationships, i.e. the differences between observed relationships332

and the line of best fit are also saved. These are then sampled randomly during the final Monte333

Carlo analysis and applied to the regression relationship for each storm. Residuals from storm334

surge characteristics were inspected by direction and season, and did not show obvious structure.335

Residuals are re-sampled during simulation to ensure that the natural variability in relationships is336

captured rather than collapsing everything onto a single regression relationship. Figure 9 illustrates337

the overall performance of the regression model for the storm surge maximum characteristic.338

[Figure 9 about here.]339

For given simulated storm peak HS value, we use Equation 6 above to calculate a surge maximum,340

surge median, surge minimum and surge range for the simulated storm; these values are dependent341

on the storm peak direction and season of the simulated storm peak event. We refer to these342

as mxm, mdn, mnm and rng for clarity. We next adjust the matched archetype surge trajectory343

{s∗t } say (which originally has different values mxm∗, mdn∗, mnm∗ and rng∗ for the surge maximum,344

median, minimum and range) such that the adjusted archetype surge trajectory {st} has the desired345

values corresponding to the simulated storm peak event. There are numerous possible approaches346
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to achieve this. Here we outline a simple linear scaling approach based on matching surge median,347

surge maximum and surge minimum only. For s∗t > mdn∗, define st such that348

st − mdn

mxm− mdn
=

s∗t − mdn∗

mxm∗ − mdn∗
(7)

and when s∗t ≤ mdn∗, define st such that349

mdn− st
mdn− mnm

=
mdn∗ − s∗t

mdn∗ − mnm∗
. (8)

6.2. Tidal modelling350

When a random storm is simulated the waves and surge are sampled from the same archetype351

storm, so retaining the relationship between these components. For shallower-water locations,352

the tidal component itself is sampled from the same storm as the waves and surge, but the tidal353

component is not re-scaled. In most hindcasts that are available, the effect of the variation in still354

water level on HS is not captured as they are run with a constant water depth. For this reason, it355

is often better to use measured wave and water level records to establish the relationships between356

HS and still water levels. An example of the impact of water level on the HS time trace is shown357

in Figure 10.358

[Figure 10 about here.]359

7. Simulation of TWL and related variables360

To obtain a single realisation of maximum TWL (and its components) for a single storm, the361

following procedure is used. We start by (a) simulating a storm peak direction and season (from362

the Poisson rate model), and a storm peak HS (from the extreme value model). Then (b) we select363

a historical archetype storm trajectory (of sea-state HS with direction and season in time, and364

surge in time) with similar storm peak characteristics to the simulated storm peak (as described365

in Section 5), and (c) rescale the storm trajectory (sea-state HS) characteristics (as described366

in Section 5) so that they agree with the simulated storm peak. Then (d) we rescale the surge367

trajectory (as described in Section 6). Next (e), we sample a random historical interval of tide to368

associate with the storm. Then (f) we estimate the water depth for every sea state using the SWL369

components of tide and surge, and the mean sea level above bed. Subsequently (g) we randomly370

sample maximum individual crest heights for each sea state using probability distributions based371

on the corresponding water depth (typically the Forristall distribution is used but this can be372

modified to fit water depth or swell characteristics where appropriate). Then (h) we add crest,373

surge and tide components per sea state to obtain TWL. Finally (i) the maximum value of TWL374

(per directional-seasonal covariate bin) is saved for the realisation.375

To obtain a single realisation of maximum TWL corresponding to a period of N years, we simply376

simulate the appropriate (random) number of storm events for N years, and retain the maximum377

value of TWL (per directional-seasonal covariate bin) over all events.378

In this way, the distribution of N -year maximum TWL can therefore be estimated from multiple379

N -year simulations, for any combination of directional-seasonal covariate bins of interest (including380

the combination of all covariate bins). Typically, to estimate the distribution of N -year maximum381

TWL, at least 200 realisations of N -years of data are calculated so that the central characteristics382

10



(e.g. mean, median, mode) of the distribution of the N -year maximum TWL are estimated reliably.383

In the current work, 300 realisations of N years were evaluated. To estimate extreme quantiles384

(e.g. the 95%ile) of the distribution of the N -year maximum TWL precisely, a larger number of385

realisations would be required.386

We note in passing that the computational efficiency of naive numerical simulation can often be387

considerably improved using e.g. numerical integration (e.g. Ross et al. 2017), importance sampling388

or other more thoughtful smarter simulation.389

8. Estimation of the distribution of the N-year event390

To estimate the distribution of the N -year maximum for quantities of interest, CEVA uses a Monte391

Carlo approach to simulate all storms in a return period of interest multiple times by (a) fitting the392

Poisson and GP model to nB different bootstrap resamples of the original data, and (b) making393

nR realisations of TWL (and its components) the full return period of interest for each bootstrap.394

This produces nB × nR different realisations of the return period of interest, where each version395

consists of multiple storms each of which are simulated as described in Section 7 and from which396

just the largest values of HS , individual wave height (H), individual crest height (C) and TWL are397

stored for every season-direction bin. This allows a probability distribution to be developed for the398

maximum of each of these variables for a return period of interest. The distribution of the N -year399

maximum for each bin can then be summarised by the quantile with non-exceedance probability400

1/e (i.e. the 37th percentile), which corresponds to the N -year return value for that bin in the401

absence of parameter uncertainty. Other quantiles of the distribution can also be used, e.g. to402

summarise the width of the distribution of the N -year maximum.403

Aleatory (natural inherent) and epistemic (data and modelling) uncertainties are captured through-404

out the simulation process. Natural variability of storm peaks for a given environment, of storm405

trajectories given storm peak, of wave heights and crests given storm trajectory and of tide are all406

quantified. Modelling uncertainty due to a finite original sample and choice of EV threshold is also407

quantified. The resulting probability distribution implicitly reflects these uncertainties. Typically,408

for applications to estimation of extreme wave environments based on hindcasts or measurements,409

the aleatory uncertainty is the major contributor to the width of the distribution of the N -year410

maximum.411

In the example used here, only 15 realisations of 20 bootstraps of the original sample were taken;412

that is, 300 simulations overall have been used to illustrate the methodology. Using these simula-413

tions, the overall fit of the HS model to the data as split by direction and season and overall are414

shown in Figure 11 split by direction. A similar plot, split by season, was also inspected. This415

is quite a small number of realisations to estimate the whole distribution, and is reflected in the416

jagged nature of the modelled median and 95% UI (black) lines fitted to the observed data (red417

dots); as noted earlier however, 300 realisations is sufficient to estimate the central features (e.g.418

median) of the distribution. The red dashed lines represent the 95% UI range from across all boot-419

strap resamples. Using more realisations would make the tails smoother or, alternatively, numerical420

integration can also be used. The overall comparison is good with the tail corresponding to the421

original data being contained within the 95% UI for the tail simulated under the fitted model.422

Towards the top end of the data sets, the 95% UI associated with the (red) bootstrap re-sampled423

data narrows because the same data points are being re-sampled each time.424

[Figure 11 about here.]425
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Similar plots are shown in Figure 12 for all storm sea states as opposed to just the storm peaks split426

by direction. Plots split by month are also available. Again the overall comparison is good although427

the storm lengths seem to be under-estimated by the approach since the number of modelled sea428

states (indicated by the number to the right of Mdl above each plot) are lower than the actual (Act)429

number of sea states. Nevertheless, the overall comparison of the probability distributions is good.430

[Figure 12 about here.]431

From the 300 simulations, the distribution of the maxima are shown in Figure 13 in which larger432

overall widths of the curves indicate a higher level of variability. The 37th percentile and median433

values are indicated by the dashed horizontal lines. The overall curves for the 37th percentile of434

the distribution of the N -year maxima for HS , C and TWL are shown in Figure 14 and Figure 15.435

[Figure 13 about here.]436

[Figure 14 about here.]437

[Figure 15 about here.]438

Figure 16 shows a comparison between the observed combinations of HS and surge that were439

observed overall and in each direction sector overlaid by median and 95% UI shown as red lines.440

The equivalent modelled values are represented by the black lines. Agreement between observed441

(red) and simulated (black) curves is good in the body of the data, becoming more uncertain for442

large HS where (a) there are fewer data and (b) there is greater spread in surge for given HS . The443

differences in the relationships in each direction sector are quite clear with many sectors exhibiting444

an increasingly negative surge as storms become more severe, particularly from the South-East. The445

North-West and North on the other hand show a positive correlation between HS and surge. These446

reflect the different storm tracks taken by storms which produce northerly as opposed to southerly447

or easterly winds at the site which will in turn affect the magnitude of the inverse barometric effect448

and the relative timing of the peak in surge and the HS peak in the different storm types.449

[Figure 16 about here.]450

Estimates for the 37th percentile of the distribution of the N -year maximum for splits by direction451

are shown in Table 1 and Table 2 for wave crest and TWL, respectively. Equivalent tables for results452

split by month are shown in Table 4 and Table 5. Differences between TWL and crest values in453

the tables are termed implied SWL values and are given in Table 3 and Table 6 for values split by454

direction and season, respectively. We note that, for any N -year period, the implied SWL should455

be interpreted as the value of SWL that, when added to the 37th percentile of the distribution456

of N -year maximum of individual crest, provides the 37th percentile of the distribution of N -year457

maximum TWL. The term implied SWL is used since the largest TWL will not necessarily occur458

at the time of maximum individual crest height. This effect will become more significant at a459

location where the wave climate is not that severe and the tides are large. These tables show the460

varying level of contribution by direction sector as reflected in Figure 16. Overall, the implied SWL461

values are larger for the North and North-West sectors than for the other sectors albeit with some462

variability. This could be associated with noise due to insufficient realisations in the analysis or it463

may indicate a varying degree of association between the timing of maximum surge and maximum464

wave conditions across the directional-seasonal domain.465

12



[Table 1 about here.]466

[Table 2 about here.]467

[Table 3 about here.]468

[Table 4 about here.]469

[Table 5 about here.]470

[Table 6 about here.]471

9. Discussion and conclusions472

In addition to the derivation of extremeHS and individual wave height, the covariate extreme value473

approach (CEVA) allows for the natural variability in waves and SWL and their joint probabilities474

to be modelled over long periods of time. This allows estimation of the joint distribution of N -year475

maxima of wave crest, storm surge and tide, and hence TWL. The approach includes the capability476

of reflecting the variability of climate with direction and season and also the correlation between477

the various components being studied in a non-parametric fashion which makes the approach very478

general.479

There are some limitations to the approach, however, the main one being that sufficient storm480

events need to be available in the underlying data set in order to populate the many season-direction481

bins adequately at the start of the analysis. Where data sets are shorter, or fewer events occur482

per year (for example, for tropical cyclones) this can be a problem, but the analysis can be carried483

out in with just one covariate in this case (typically direction) to increase the number of events484

per underlying bin. However, this still may result in poor model fits if the data set is too small. A485

further difficulty of the approach is that in order to get statistically stable results a large number of486

realisations needs to be run and this can be time-consuming even with good computing resources.487

Using parallel processing is a significant help in this regard, but the end-point of the development488

is smarter simulation incorporating clever sampling, numerical integration and parallel processing489

rather than naive Monte Carlo analysis for long return periods. A further enhancement that is490

under development (Ross et al. 2018) for inclusion within CEVA is the use of the approach of491

Heffernan and Tawn (2004) to determine the associated surge characteristics rather than using492

the linear regression and residuals approach described here. It is also understood that the surge493

and wave trajectory re-scaling approaches are relatively crude and more sophisticated statistical494

approaches (e.g. Tendijck et al. 2018) are being developed to describe those more systematically.495

Despite the limitations described here, the overall approach has been shown to produce good results496

in several of the major oil and gas basins and allows the complexity of the environment to be well497

captured within a single analysis.498
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Figure 1: Example data set: variation of HS by direction (top) and season (bottom). Grey dots represents all data,
black dots represent storm peaks.
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Figure 2: Example data set: (a) surge on month, (b) tide on month, (c) surge versus tide, both with respect to
long-term mean sea level, and (d) surge versus HS .
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Figure 3: Illustration of (a) high penalty spline combinations and (b) low penalty splines. The total representation
of variability is indicated by the heavy black lines.
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Figure 4: Representation of distance from a random storm peak at (Hssp, Ssnsp, Drcsp) to each direction-season
bin (Hsbin, Ssnbin, Drcbin). The bins which contain storms are indicated by the blue boxes. Each bin contains a
population of storm trajectories which are randomly selected. The green bin is closest to the storm peak.
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Figure 5: Storm surge characteristics and definitions. Panel (a) shows HS in time with vertical black lines representing
start and end of storm period. Panel (b) shows the corresponding surge time-series, with minimum, median and
maximum values as horizontal dashed black lines.
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Figure 6: Selection of optimal spline penalty coefficients for storm surge maximum. Red represents lack of fit, black
represents predictive performance. Minimum point of the black line represents the optimum penalty coefficient used
for modelling. Similar plots are available for surge minimum, median and range.
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Figure 7: Hsp
S lock (left), slope (middle) and surge lock (right) for storm surge maximum. Similar plots are available

for surge minimum, median and range.
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Figure 8: 95% uncertainty intervals for 96 linear fits within each directional sector of storm surge versus HS . Surge
maximum (blue), median (yellow) and minimum (red). Coloured points show surge maximum, median and minimum
values; all other pairs are shown in grey.
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Figure 9: Observed and predicted storm surge maxima with best-fit line shown. Similar plots are available for storm
minima, storm median and storm range.
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Figure 10: Time series of HS , surge and tide for a shallow-water location (21.0m) showing the impact that tide can
have on the variation in HS through storms.
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Figure 11: Comparison between resampled underlying data (red) and simulated (black) storm peaks for the overall
case (left) and for each directional sector. Solid lines represent median case, dashed lines represent the 95% uncertainty
intervals. The original data is shown as red dots. Similar plots are available resolved by month.
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Figure 12: Comparison between resampled underlying data (red) and simulated (black) all storm sea-states for the
overall case (left) and for each directional sector. Solid lines represent median case, dashed lines represent the 95%
uncertainty intervals. The original data is shown as red dots. Similar plots are available resolved by month.

29



Figure 13: Distribution of the 10,000-year maximum of HS (a) by direction and (b) by season. In each case, the
overall omni-covariate curve is shown in black.
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Figure 14: 37th percentile of the distribution of N -year maximum HS (a) by direction and (b) by season, by return
period. The overall omni-covariate curve is shown in black.

31



Figure 15: 37th percentile of the distribution for N -year maximum (a) wave crest by direction, (b) wave crest by
season, (c) total water level by direction, and (d) total water level by season, as a function of return period. The
overall omni-covariate curve is shown in black.
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Figure 16: Comparison of observed (red) and simulated (black) median and 95% uncertainty intervals for storm surge
versus HS . Actual historical pairs of seat state HS and surge are given as grey dots.
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Table 1: Estimates for the 37th percentile of the distribution of the N -year maximum wave crest (in metres) for 8
directional octants and omnidirectionally, as a function of return period.
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Table 2: Estimates for the 37th percentile of the distribution of the N -year maximum TWL (in metres) for 8 directional
octants and omnidirectionally, as a function of return period.
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Table 3: Estimates for difference (in metres) between the 37th percentile of the distribution of the N -year maximum
TWL and the 37th percentile of the distribution of the N -year maximum wave crest for 8 directional octants and
omnidirectionally, as a function of return period.
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Table 4: Estimates for the 37th percentile of the distribution of the N -year maximum wave crest (in metres) per
month and all-year (over all months), as a function of return period.
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Table 5: Estimates for the 37th percentile of the distribution of the N -year maximum TWL (in metres) per month
and all-year (over all months), as a function of return period.
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Table 6: Estimates for difference (in metres) between the 37th percentile of the distribution of the N -year maximum
TWL and the 37th percentile of the distribution of the N -year maximum wave crest per month and all-year (over all
months), as a function of return period.
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