

Estimation of storm peak and intra-storm directional-seasonal design conditions in the North Sea

Graham Feld, David Randell, Yanyun Wu, Kevin Ewans, Philip Jonathan, Shell Global Solutions (UK)

Motivation

- Rational design and assessment of marine structures:
 - Reducing bias and uncertainty in estimation of structural reliability
 - Improved understanding and communication of risk
 - For new (e.g. floating) and existing (e.g. steel and concrete) structures
 - Climate change
 - Whole-basin analysis: non-stationary analysis for 1000s of locations with multidimensional covariates
- Other applied fields for extremes in industry:
 - Corrosion and fouling
 - Economics and finance

North Sea

- Model storm peak significant wave height, H_S^{sp}
- Incorporate intra-storm evolution of H_S
- Estimate wave height, crest elevation, tide and surge
- Wave climate is dominated by extra-tropical storms
- Fetch (Atlantic, Norwegian Sea, North Sea) and land shadow (Norway, UK)
- Directional and seasonal variability present in extremes
- Sample of **hindcast** storms for period of \approx 50 years
- Marginal model
- Animation: Clink

Storm peak significant wave height H_S^{sp}

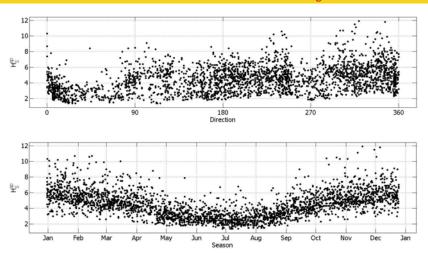


Figure: Storm peak significant wave height H_S^{sp} on storm direction θ^{sp} (upper panel) and storm season ϕ^{sp} (lower panel).

Quantiles of H_S^{sp}

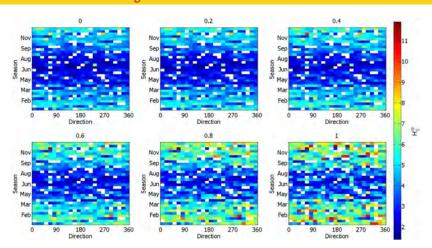


Figure: Empirical quantiles of storm peak significant wave height, H_S^{sp} by storm direction, θ^{sp} , and storm season, θ^{sp} . Empty bins are coloured white.

Storm trajectories of significant wave height, H_S .

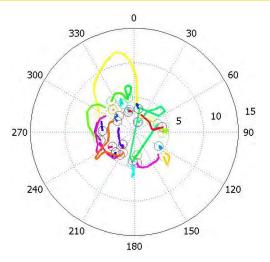


Figure: Storm trajectories of significant wave height, H_S , on wave direction θ for 30 randomly-chosen storm events (in different colours). A circle marks the start of each instra-storm trajectory.

7 / 32

Outline of modelling procedure

Data and model estimation

Storm peak variables

$ \begin{array}{c c} \text{Covariates} & \theta, \phi \\ H_{\mathcal{S}}^{sp} & H_{\mathcal{S}}^{sp} \theta, \phi \end{array} $	Isolate from sample & threshold / Poisson model Isolate from sample & threshold / GP model
---	--

Intra-storm variables

Between sea-states	$H_S H_S^{sp}, \theta, \phi$	Isolate trajectories from sample
Within sea-states	$H_{max} H_S$	Known parametric model from literature

Return value inference

Covariates	θ, ϕ	Simulate occurrences of θ , ϕ (corresponding to P years of storm peaks)
H ^{sp}	$H_S^{sp} \theta,\phi$	Simulate sizes given θ , ϕ
Between sea-state	$H_S H_S^{sp}, \theta, \phi$	Peak-matching (using H_{S}^{sp} , θ , ϕ) for best trajectory
Within sea-states	$H_{max} H_S$	Sample form known distribution given H_S

Extreme value model components

- Sample $\{\dot{z}_i\}_{i=1}^n$ of \dot{n} storm peak significant wave heights observed with storm peak directions $\{\dot{\theta}_i\}_{i=1}^{\dot{n}}$ and storm peak seasons $\{\dot{\phi}_i\}_{i=1}^{\dot{n}}$
- Model components:
 - 1. Threshold function ψ above which observations \dot{z} are assumed to be extreme estimated using quantile regression
 - 2. Rate of occurrence of threshold exceedances modelled using Poisson model with rate $\rho(\stackrel{\triangle}{=} \rho(\theta, \phi))$
 - 3. Size of occurrence of threshold exceedance using generalised Pareto (GP) model with shape and scale parameters ξ and σ

Extreme value model components

- Rate of occurrence and size of threshold exceedance functionally independent (Chavez-Demoulin and Davison 2005)
 - Equivalent to non-homogeneous Poisson point process model (Dixon et al. 1998)
- Smooth functions of covariates estimated using penalised B-splines (Eilers and Marx 2010)
 - Slick linear algebra (c.f. generalised linear array models, Currie et al. 2006)
- Large number of parameters to estimate
 - Computational efficiency essential

Penalised B-splines

- Physical considerations suggest model parameters ψ, ρ, ξ and σ vary smoothly with covariates θ, ϕ
- Values of $(\eta =)\psi, \rho, \xi$ and σ all take the form:

$$\eta = B\beta_{\eta}$$

for **B-spline** basis matrix *B* (defined on index set of covariate values) and some β_{η} to be estimated

Multidimensional basis matrix B formulated using Kronecker products of marginal basis matrices:

$$B = B_{\theta} \otimes B_{\phi}$$

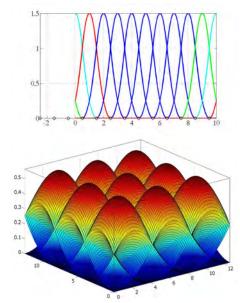
Roughness R_{η} defined as:

$$R_{\eta} = \beta'_{\eta} P \beta_{\eta}$$

where effect of P is to difference neighbouring values of β_{η}

Penalised B-splines

- Wrapped bases for periodic covariates (seasonal, direction)
- Multidimensional bases easily constructed. Problem size sometimes prohibitive
- Parameter smoothness controlled by roughness coefficient λ: cross validation or similar chooses λ optimally



Quantile regression model for extremal threshold

Estimate smooth quantile $\psi(\theta, \phi; \tau)$ for non-exceedance probability τ of z (storm peak H_S) using quantile regression by minimising **penalised** criterion ℓ_{ij}^* with respect to basis parameters:

$$\ell_{\psi}^{*} = \ell_{\psi} + \lambda_{\psi} R_{\psi}
\ell_{\psi} = \{\tau \sum_{r_{i} \geq 0}^{n} |r_{i}| + (1 - \tau) \sum_{r_{i} < 0}^{n} |r_{i}| \}$$

for $r_i = \mathbf{z}_i - \psi(\theta_i, \phi_i; \tau)$ for i = 1, 2, ..., n, and roughness R_{ij} controlled by roughness coefficient λ_{ij}

 (Non-crossing) quantile regression formulated as linear programme (Bollaerts et al. 2006)

Directional-seasonal threshold, ψ .

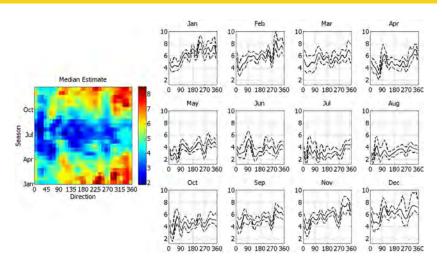


Figure: lhs: bootstrap median. rhs: 12 monthly directional.

Poisson model for rate of threshold exceedance

 Poisson model for rate of occurrence of threshold exceedance estimated by minimising roughness penalised log likelihood:

$$\ell_{\rho}^* = \ell_{\rho} + \lambda_{\rho} R_{\rho}$$

 (Negative) penalised Poisson log-likelihood (and approximation):

$$\ell_{\rho} = -\sum_{i=1}^{n} \log \rho(\theta_{i}, \phi_{i}) + \int \rho(\theta, \phi) d\theta dxdy$$

$$\hat{\ell}_{\rho} = -\sum_{j=1}^{m} c_{j} \log \rho(j\Delta) + \Delta \sum_{j=1}^{m} \rho(j\Delta)$$

- $\{c_i\}_{i=1}^m$ counts of threshold exceedances on index set of m(>> 1) bins partitioning covariate domain into intervals of volume Δ
- λ_{ρ} estimated using cross validation or similar (e.g. AIC)

Directional-seasonal exceedance rate, ρ .

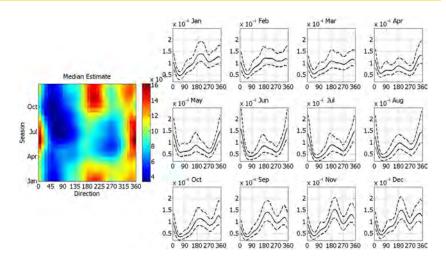


Figure: lhs: bootstrap median. rhs: 12 monthly directional.

GP model for size of threshold exceedance

 Generalise Pareto model for size of threshold exceedance estimated by minimising roughness penalised log-likelihood:

$$\ell_{\xi,\sigma}^* = \ell_{\xi,\sigma} + \lambda_{\xi} R_{\xi} + \lambda_{\sigma} R_{\sigma}$$

(Negative) conditional generalised Pareto log-likelihood:

$$\ell_{\xi,\sigma} = \sum_{i=1}^{n} \log \sigma_i + \frac{1}{\xi_i} \log(1 + \frac{\xi_i}{\sigma_i} (\mathbf{z}_i - \psi_i))$$

- Parameters: **shape** ξ , **scale** σ
- lacktriangle Threshold ψ set prior to estimation
- λ_{ξ} and λ_{σ} estimated using cross validation or similar. In practice set $\lambda_{\xi} = \kappa \lambda_{\sigma}$ for fixed κ

Directional-seasonal GP shape, ξ .

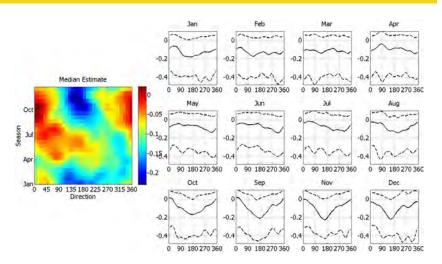


Figure: lhs: bootstrap median. rhs: 12 monthly directional.

Directional-seasonal GP scale, σ .

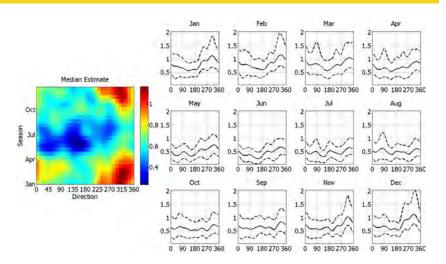


Figure: lhs: bootstrap median. rhs: 12 monthly directional.

Return values

- Estimation of return values by simulation under model
 - Sample number of events in period, directions and seasons of events, sizes of events
- Alternative: closed form function of parameters
 - Return value z_T of storm peak significant wave height corresponding to return period T (years) evaluated from estimates for ψ, ρ, ξ and σ :

$$z_{T} = \psi - \frac{\sigma}{\xi} (1 + \frac{1}{\rho} (\log(1 - \frac{1}{I}))^{-\xi})$$

- Interpretation problematic
- **z**₁₀₀ corresponds to 100--year return value, denoted H_{S100}

CDFs for H_{S100}

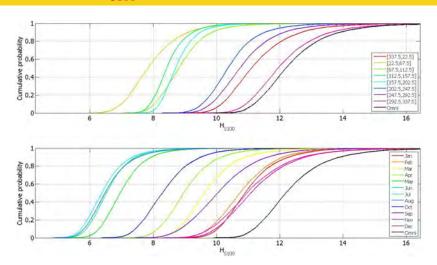


Figure: CDFs incorporating bootstrap uncertainty

Directional-seasonal return value plot for H_{S100}

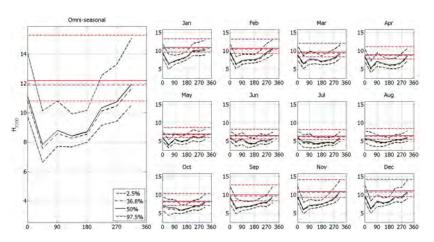


Figure: Ihs: Directional omni-seasonal return values. rhs: Directional return values for calendar months.

Directional-seasonal return value plot for H_{S100}

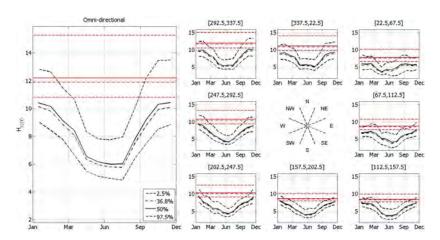


Figure: Ihs: Seasonal omni-directional return values. rhs: Seasonal return values for directional octants.

Critical environmental variables

- Peak significant wave height
- Maximum wave height
- Maximum crest elevation
- Peak total water level
- "Associated" values of wind speed and direction corresponding to peak significant wave height
- "Associated" values of current speed and direction corresponding to peak significant wave height
- Maximum load on structure

Intra-storm variability (e.g. H_S and H_{max})

- **Extreme** value model allows simulation of H_S^{sp} , θ^{sp} and ϕ^{sp}
- Matching procedure used to estimate storm evolution $(H_S(t), \theta(t), \phi(t))|(H_S^{sp}, \theta^{sp}, \phi^{sp})$ for sea state t
- Empirical literature models for $H(t)|H_S(t)$ and $H_{max}(t)|H_S(t)$

The cumulative distribution function for the maximum wave height H_{max} in a sea-state of n_s waves with significant wave height $H_S = h_s$ is taken (see, for example, Forristall 1978) to be given by:

$$P(H_{\text{max}} \leq h_{\text{max}}|H_{\text{S}} = h_{\text{s}}, M = n_{\text{s}}) = (1 - \exp(-\frac{1}{\beta}(\frac{h_{\text{max}}}{h_{\text{s}}/4})^{\alpha}))^{n_{\text{s}}}$$

with $\alpha=2.13$ and $\beta=8.42$. The number of waves $n_{\rm s}$ in a particular sea state is estimated by dividing the length of the sea-state (in seconds) by its zero-crossing period, T_Z .

Directional-seasonal return value plot for H_{max100}

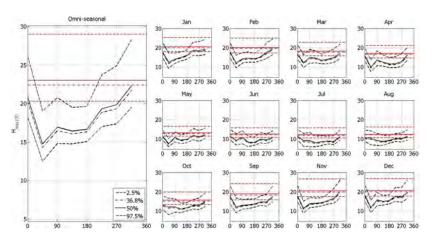


Figure: Ihs: Directional omni-seasonal return values. rhs: Directional return values for calendar months.

Directional-seasonal return value plot for H_{max100}

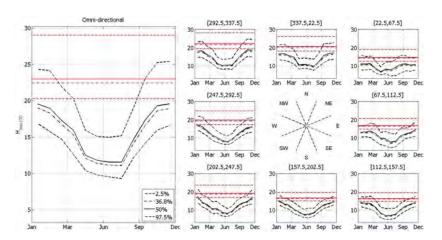


Figure: Ihs: Seasonal omni-directional return values on wave season. rhs: Seasonal return values for directional octants.

Validation of directional-seasonal model for H_S^{sp}

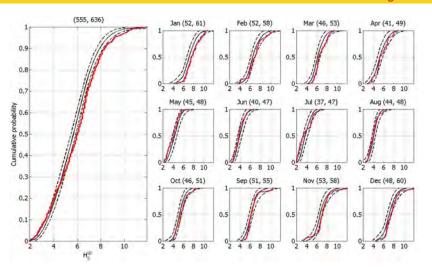


Figure: CDFs for H_S^{sp} for original sample and for 1000 sample realisations under the model corresponding to the same time period as

28 / 32

Validation of directional-seasonal model for $H_{\rm S}$

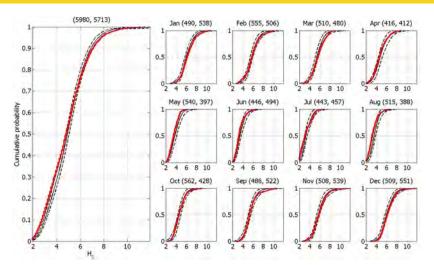


Figure: CDFs for H_S for original sample and for 1000 sample realisations under the model (incorporating ITV) corresponding to the same time

Summary

- lacktriangle Directional-Seasonal extreme value model for H_S^{sp} for North Sea
- Incorporation of short term effects allowing modelling of associated variables wave height, crest elevation, surge
- Return value distributions vary with direction and season in line with physical intuition
- For operational purposes directional-seasonal model can be re-combined in many ways to quickly get return values without need to do new analysis.
- Generally important to accommodate covariate effects in threshold and rate, sometimes in GP shape and scale

References

- K Bollaerts, P H C Eilers, and M Aerts. Quantile regression with monotonicity restrictions using P-splines and the L1 norm. Statistical Modelling, 6:189--207, 2006.
- V. Chavez-Demoulin and A.C. Davison. Generalized additive modelling of sample extremes. J. Roy. Statist. Soc. Series C: Applied Statistics, 54:207, 2005.
- D. Currie, M. Durban, and P. H. C. Eilers. Generalized linear array models with applications to multidimensional smoothing. J. Roy. Statist. Soc. B, 68:259--280, 2006.
- J. M. Dixon, J. A. Tawn, and J. M. Vassie. Spatial modelling of extreme sea-levels. Environmetrics, 9:283--301, 1998.
- P H C Eilers and B D Marx. Splines, knots and penalties. Wiley Interscience Reviews: Computational Statistics, 2: 637--653, 2010.
- G. Z. Forristall. On the statistical distribution of wave heights in a storm. J. Geophysical Research, 83:2353--2358, 1978.