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o Marginal extremes
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Motivation

Modelling ocean storm environment
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o Multiple coupled physical processes

o Rare, extreme events
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Motivation

Modelling structural risk
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o Ocean environment is harsh
o Marine structures at risk of failure

o Reliability standards must be met
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Spectacular scale

Offshore Portugal, 24m wave height, November 2017 (The Guardian)

o Nazaré is a great source of huge coastal waves
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Motivation

Spectacular scale

Draupner wave; 1* January 1995. (North Sea)

.

Surface elevation (m)

Time (s)

Laser readings, 1 January 1995. Wave 25.6m, crest 18.5m (Statoil / Equinor)

o Maximum recorded wave height > 30m (multiple events, various sources)
o Maximum recorded significant wave height : 19.0m (buoy, North Atlantic, 4 Feb 2013, WMO)
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Motivation

Wave-impact damage

Norwegian Dream, Atlantic, 2007
(gcaptain.com)

Extreme oceans

Ike, Gulf of Mexico, 2008
(Joe Richard)
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Optimal design

Set-up
o A marine system with “strength” specifications S
o An ocean environment X dependent on covariates @
o A structural “loading” Y as a result of environment X and covariates @
o System utility (or risk) U(Y|S) for loading Y and specification S
o Desired U typically specified in terms of annual probability of failure
o Y|X, ® and X|© (and U?) subject to uncertainty Z
o Z,0, X, Y are multidimensional random variables

Optimal design
o Estimate a model fx|g 7 for the environment
o Estimate a model fy|x g,z for environment-structure interaction
o Estimate a model fg|z for the covariates

Buis] = [ [ [ [ uIS Dfvxez(41%.0,2)fxi0.2(x10,2) forz 0]z) do dxdy dz
= solve for S to achieve required (safety) utility



Motivation

Return values : conventional engineering practice

[e]

Estimating E[U|S] is difficult

o

Design to extreme quantile of marginal annual distribution of one X instead
Fa) = [ [ [ Fxie.2(x10.2)fci,2(K0, =) fo(60]:) dkdo dz

where fc|@,7 is the annual rate of occurrence of events given covariate ©.

[e]

Set the return value x7 (for T = 1000 years say) such that

1
Fp(xr) =1— T

[e]

Specify conditional return values for other Xs given X = xt

[e]

Potentially as a function of covariates

o Ambiguous ordering of expectation operators ... a can of worms!



Motivation

A model for the (non-stationary multivariate extreme) environment

o Expected utility and return values are dominated by extreme environments

o Have to estimate tails of distributions well

o Focus on a simple Z-free 2-D environment with stationary dependence

Fxj@,2(x(0, z) C (FX1 0(x1]0), Fx,jo(x2 |6)) for simplicity, so

fxjez(x10,z) = fx, x,j0(x]0)
fxi10(x110) fx, 0 (x2[0) x C(Fxl\e(xl|9)rFx2\®(x2|9)> typically

o Marginal models (non-stationary, extreme) fx,o(x10), fx,jo(x2(6)

o Multivariate model on standard marginal scale (stationary, “extreme”) c(u, )



Marginal extremes

Marginal extremes

o Theory : Beirlant et al. [2004]
o Method : Dey and Yan [2016]
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Marginal extremes

Generalised extreme value distribution

[¢]

Fg is the distribution of the maximum of 7 independent draws of X

o If F§ “looks like” F)”(/, we say Fy is max-stable

o More formally, Fx is max-stable if there exist sequences of constants a;,, b, and
non-degenerate G; such that

Jim Fg (anx +by) = Gg(x)

o We say Fx € D(Gg¢) or that Fx lies in the max-domain of attraction of G¢

o The Fisher-Tippett-Gnedenko theorem states that G; is the generalised extreme
value distribution with parameter ¢

Ge(y)=exp (~(1+&y) %), 2R

o For sufficiently large #, it makes sense to model block maxima of # independent
identically-distributed draws of X using G¢ (with (x — p) /0 in place of y above)



Marginal extremes

Generalised Pareto distribution

o Now suppose we have an exceedance X of high threshold ¢

o The Pickands-Balkema-De Haan theorem states

. Fx(x)
P T F (@)
GP(x|&,0,9)

g 1/
1—(1+;(x—1[1)) , £cR

lim P[X < x|X > ]
P—o0

+
Theory Practicalities
o How to isolate independent threshold
o Derived from max-stability of Fx exceedances from observed time-series?
o Threshold-stability property o How to specify extreme threshold 1)?
o “Poisson x GP = GEV” o &, o,y functions of covariates

o Davison and Smith [1990]



Marginal extremes in practice

Marginal extremes in practice

[¢]

Motivation : Chavez-Demoulin and Davison [2005]

o

Practicalities : Jonathan and Ewans [2013], Feld et al. [2019]
o Semi-parametric : Randell et al. [2016], Zanini et al. [2020]

... lots more

o

[e]

Non-stationary marginal extremes



ginal extremes

Motivation

o Environmental extremes vary smoothly with multidimensional covariates

[e]

Generic modelling framework for different covariate representations

[e]

Statistical and computational efficiency for n-D covariates

[e]

Full (Bayesian) uncertainty quantification

0 90 180 270 360
direction

Typical data for northern North Sea. Storm peak Hg on direction, with T = 0.8 extreme value threshold.
Rate and size of occurrence varies with direction.



Non-stationary marginal extremes

Model for size of occurrence

o Sample of storm peaks Y over threshold 1pg, with 1-D covariate 8
o Extreme value threshold Yy assumed known

o Y assumed to follow generalised Pareto distribution with shape &g, (modified)
scale vy

1 —1/&—1
for(rteo, o) = o (1+ 22 (= )

0 +

o vg =0p(1+&)
°oy> g, Pg ER
o Shape parameter &y € R and scale parameter vy > 0

o Non-stationary Poisson model for rate of occurrence, with rate pg > 0



Non-stationary marginal extremes

Covariate representations

o Index set Ty = {65} ; on periodic covariate domain Dy

o Each observation belongs to exactly one 6

o On Zy, assume n
ns = Y ByBr,s=1,2,..,m, or
k=1
n = Bfin vector terms

o n € (&,v) (and similar for p)
o B = {Bg}."| ,_, basis for Dy
o B = {Bx}}_, basis coefficients

o Inference reduces to estimating n¢, 11y, Bz, By, Bz, Bv (and roughnesses Az, Ay)

o P-splines, BARS and Voronoi are different forms of B



rginal extremes

P-splines

o nregularly-spaced knots on Dy

o B consists of n B-spline bases
o Orderd
o Each using d 4 1 consecutive knot
locations
o Local support
o Wrapped on Dy
o Cox - de Boor recursion formula

o nis fixed and “over-specified”

o Knot locations {r}?_, fixed

o Local roughness A of B penalised Periodic P-splines

Extreme oceans May 2022 19/48



rginal extremes

BARS basis

o n irregularly-spaced knots on Dy N
o B consists of 1 B-spline bases TA A~
o Knot locations {r¢}}_; can change ( .',u"/ \_}(\

o Number of knots 1 can change .

Periodic BARS knot birth and death

Extreme oceans May 2022 20/48




Non-stationary marginal extremes

Voronoi partition

o nirregularly-spaced centroids on Dy
o Define n neighbourhoods or “cells”
B consists of n basis functions

o Piecewise constant on Dy
o =1 “within cell”, = 0 “outside”

e}

e}

Centroid locations {r¢}}_; can change

e}

Number of centroids n can change

Trivial extension to n-D

o}

Periodic Voronoi centroid birth and death

May 2022
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Non-stationary marginal extremes

Prior for B (all representations)

1
prior density of B o< exp (fEB'Pﬁ)
o P=AD'D, Disan x n (wrapped) differencing matrix
o P-splines: D represents first-difference; prior equivalent to local roughness penalty
o BARS and Voronoi: D is I;; prior is “ridge-type” for Bayesian regression
Prior for A (all representations)
A~ gamma
Prior for n (BARS and Voronoi)
n ~ Poisson
Prior for 7,k =1,2,...,n (BARS and Voronoi)

e ~ uniform



Non-stationary marginal extremes

Inference for GP

Parameter set Q
o P-splines: Q = {B¢, A¢, Bv, Av} with ng, r¢, ny, and r,, pre-specified
o BARS and Voronoi: Q = {ng, 1z, Bz, Az, v, tv, Bv, Av}
o r={nti_1, B={Br}i_
Inference
o Gibbs sampling when full conditionals available

o Otherwise Metropolis-Hastings (MH) within Gibbs, using suitable proposal
mechanisms, mMALA where possible

o Reversible-jump for #, r (satisfy dimension-jumping detailed balance)

Basic conditional structure for non-dimension-jumping

f(Bnly, Q\ Bn) o< f(ylBn, Q\Bn) X f(BnlAn)
Faly, Q\Ag) o< f(BylAn) X f(An)
flrly, Q\ry) o< f(ylrm, Q\ry) x f(ry),
o ne (& v)(and p)



nal extremes

Posterior parameter estimates for &, v and p for northern North Sea

o Note colour scheme

o Rate pand v very
similar

o Voronoi gives almost
constant ¢

o Voronoi piecewise
constant

o Land shadow effects

o General agreement
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o Prior uniform knot
placement for r

o Knot placement
uniform for &, clear
effect for p

o nclose to 1 for
Voronoi ¢

o General agreement

o Effect of different
priors on n checked

density r
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Non-stationary marginal extremes

Posterior densities for penalty coefficients A

[¢]

[¢]

[e]

Jonathan
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Prior density is gamma(1,1) (f(x) x exp(—x), x > 0)
Ridge penalties for BARS and Voronoi, but roughness for P-splines
A somewhat lower for Voronoi, but also this has smaller n

General consistency

Extreme oceans May 2022 26 /48



rginal extremes

Fit diagnostic

o Empirical tail (blue)

o Posterior means and
95% credible
intervals for quantile
levels from different
models

10g, ,(1-P)

o General consistency

Extreme oceans May 2022 27 /48



Non-stationary marginal extremes

Directional posterior predictive distribution of T = 1000-year
maximum

20 -

N NE E SE S Sw w NwW Omni

o Box-whiskers with 2.5%, 25%, 50%, 75% and 97.5% percentiles
o Uncertainties larger for P-splines?

o General consistency
o This is more-or-less what the engineer needs to design a “compliant” structure
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Multivariate extremes

Multivariate extremes

o Theory : Beirlant et al. [2004]
o Copulas : Joe [2014]
o Method : Dey and Yan [2016]
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Multivariate extremes

Multivariate extreme value distribution, MEVD

o X;=(Xi, s Xijyoer Xi ),i=1,...,niid p-vectors, distribution F

o My ; = max; X;j, component-wise maximum

ir
o Then for Z,, ; = (M, j — by,j) /ay,j, normalised with scaling constants:
P(Z<z)=F"(apz+by) > G(z) as n—
o Non-degenerate G(z) must be max-stable, so Vk € N, 3 ay, > 0, B s.t.
GNewz + Br) = G(z)
o Wesay F € D(G)

o Margins Gy, ..., Gp are unique GEV, but G(z) is not unique

o The component-wise maximum is not “observed” (especially as n — oo)

e —— Ny 207 TV



Multivariate extremes

MEVD on common margins

o

o

On uniform margins, we have extreme value copula: C(u) = C¥(u!/¥)

On standard Fréchet margins (G;(z) = exp (—z~1)), with pseudo-polars (r, w)

G(z) = exp(=V(z)), forexponentmeasureV
, w;
with V(z) = /Amax{z—]} S(dw), onA={wecR:||lw||=1}
] j
and1 = / w; S(dw), Vj, for angular measure S
A

Max-stability : V(rz) = r~1V(z), homogeneity order -1
Rich spatial extensions to max-stable processes, MSPs
Multivariate generalised Pareto distribution, MGPD

Condition of multivariate regular variation, MRV

1— F(tx)

m—)A(x)ast—)OO,xeRp

useful to prove that F € D(G) for some MEVD G
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Multivariate extremes

Extremal dependence (2D, uniform margins)

_PU>u,V>u) C(uu)
x(u) = P(U > ) g — xasu —1
X = 1 perfect dependence
x € (0,1) asymptotic dependence, AD
x = 0 perfect independence

O O O

_ logP(U > u) log(1 —u)
= —1=2——+
X(u) logP(U > u,V > u) log C(u,u)
X = 1 perfect dependence and AD
X € (0,1) asymptotic independence, Al
X = 0 perfect independence
See 7 for motivation

-1 —xasu—1

O O O O

o(u) = logP(U <u,V<u) logC(u,u)
W= log P(U < u) ~ logu

0f0=2-x

—0Basu —1

o MEVDs do not admit asymptotic independence
Extreme oceans May 2022 32/48



Extremal dependence (bivariate Gaussian)
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x(u) and x(u) for bivariate Gaussian (= x =0, x = p)
Colours are correlations p on -0.9, -0.8, ..., 0.9
(Recreated from Coles et al. 1999)
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Multivariate extremes

Beyond component-wise maxima

o Many (almost all?) environmental extremes problems involve asymptotic
independence, at least in part

o Need to move away from MEVDs

o On Fréchet margins (F(z) = exp (—z 1)), assume

P(Zl >z,7y) > Z)
(P(Z > 2))"/"

= L(z)

where L is slowly varying : £(xz)/L(z) — 1asz — oo
ox=2n-1
o Ledford and Tawn [1996], Ledford and Tawn [1997]

o e.g. use non-extreme value copulas or inverted EV copulas

o P(Z1 > z|Zy > z) =~ Cz' /7 from above

o Idea: assume a max-stable-like normalisation for conditional extremes



Multivariate extremes

Conditional extremes

o X = (Xl,..‘, X]',..‘, Xp)
o Each X and Y have standard Laplace margins (f(x) = exp(—|x|)/2, x € R)
o Seek amodel for X|(Y = y) for y > u

o Assume we can find p-dimensional scaling a > 0, b such that

P(Zz<zlY=y) — nd.G(z) as u— oo
X —b(y)

a(y)
o Non-degenerate G is unknown, and estimated empirically

for Z =

o Typical scalingis a = ayand b = y#, a € [-1,1]P, B € (—o0, 1]P
o So simply fit regression model

X|(Y =y) =ay+y°z
o a =1, =0: perfect dependence and AD, and « € (0,1) : Al

o Heffernan and Tawn [2004] find choices for « and 3 for popular bivariate cases
o Bivariate Gaussian: a = p?, 3 = 1/2



Conditional extremes in practice

Conditional extremes in practice

o

Non-stationary : Jonathan et al. [2014]
o Time-series : Winter and Tawn [2016], Tendijck et al. [2019]
o Mixture model : Tendijck et al. [2021]

o Spatial : Shooter et al. [2021b], Shooter et al. [2021a]
o ... lots more
o Multivariate spatial : Shooter et al. [2022]



MSCE

Multivariate spatial conditional extremes (MSCE)

Motivation
o How useful are satellite observations of ocean waves and winds?
o Could they become the primary data source for decisions soon?

o What are the spatial characteristics of extremes from satellite observations?

Overview
o A look at the data

o Brief overview of methodology

[¢]

Results for joint spatial structure of extreme scatterometer wind speed, hindcast
wind speed and hindcast significant wave height in the North Atlantic

[¢]

Implications for future practical applications
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MSCE

In a nut-shell

707N

[

o Condition on large value x of first quantity Xo; at one
location j = 0 (green square)
\
[

o Estimate “conditional spatial profiles” for m > 1
/ L] \
65° N ’/’

quantities {Xjk}?’:rq,kzl at p > 0 other locations (green,
\ and blue circles)
/ \ x> u
6(/“1\: / ® \
/ X|{Xo1 =x} =ax+xPZ
Z ~ DL(p, a?, §5Z(A,p,K))
o MCMC to estimate &, 3, 4, 0, § and p, k, A

25"y

20" v

. 0
15w 10w 5 W

o «a, B, 4, 0, & spatially smooth for each quantity
o Residual correlation X for conditional Gaussian
field, powered-exponential decay with distance

May 2022 38/48



Swath wind speeds

Wind speed (Swath 1

Wind speed (Swath 160)
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Daily descending METOP swaths. Satellite swath location changes over time. Spatial structure evident
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MSCE

Scatter plots on physical scale
0 (Okm) 1(124km)  2(250km) 3 (374km) 6 (760km) 9 (1144km) 13 (1633km)
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= .
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=1 w O
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w

0 10 20 300 10 20 300 10 20 300 10 20 300 10 20 300 10 20 300 10 20 30
StWnd (m/s) at location 0
Scatter plots of registered data : StHWnd (green), HndWnd (orange), HndWav(blue)
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Covariate dependence
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MSCE

Marginal transformation to standard Laplace scale

Procedure

o

Non-stationary piecewise constant directional-seasonal marginal extreme value
model

Pre-specified 8 directional bins (“octants”) of equal width centred on cardinal and
semi-cardinal directions

Pre-specified “summer” and “winter” seasonal bins
Generalised Pareto model for peaks over threshold

Model parameters vary smoothly between bins, optimal roughness found using
cross-validation

Multiple extreme value thresholds with non-exceedance probabilities between 0.7
and 0.9 considered

Bootstrapping for uncertainties
Uncertainty in marginal model not propagated

Independent marginal models for pair of variable (St1Wnd, HndWnd, HndWav)and
location (0,1,...,13)

Software : github.com/ECSADES/ecsades-matlab


github.com/ECSADES/ecsades-matlab

Scatter plots on Laplace scale
0 (Okm) 1(124km) 2 (250km) 3 (374km) 6 (760km) 9 (1144km) 13 (1633km)

v
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v

HndWav (m)

&

5 0 5 S5 0 5 S5 0 5 S5 0 5 5 0 5 50 5 5 0 5
StWnd (m/s) at location 0
Registered data on Laplace scale: StHWnd (green), HndWnd (orange), HndWav(blue)
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MSCE

In a nut-shell

707N

[

o Condition on large value x of first quantity Xo; at one
location j = 0 (green square)
\
[

o Estimate “conditional spatial profiles” for m > 1
/ L] \
65° N ’/’

quantities {Xjk}?’:rq,kzl at p > 0 other locations (green,
\ and blue circles)
/ \ x> u
6(/“1\: / ® \
/ X|{Xo1 =x} =ax+xPZ
Z ~ DL(p, a?, §5Z(A,p,K))
o MCMC to estimate &, 3, 4, 0, § and p, k, A

25"y

20" v

. 0
15w 10w 5 W

o «a, B, 4, 0, & spatially smooth for each quantity
o Residual correlation X for conditional Gaussian
field, powered-exponential decay with distance
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MSCE

Inference

o Delta-Laplace residual margins

5
z— ik |’

Kj KOk

Sik
ij,k (Zj,k) = ]71 exp § —
2:<j,k0<,kl“ (W)

o Gaussian residual dependence

P dist(r;, 7)™
Z * (il Je! *A‘ /k‘ ex - #
A=(j ) A* (1K) kk p Pk

Piecewise linear forms for all parameters with distance using nyq spatial nodes

, k=T (1/5]-,,() /T (3/5]-,,()

[¢]

[e]

Adaptive MCMC, Roberts and Rosenthal [2009]
Total of m(5nNog + (3m + 1)/2) parameters

Rapid convergence, 10k iterations sufficient

[e]

[e]



Parameter estimates

0.6

0.4
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Distance (km)
Estimates for «, 3, i, 0 and § with distance, and residual process estimates p, k and A. Model fitted with 7 = 0.75
StIWnd (green), HndWnd (orange), HndWav(blue)
(Residual Gaussian field : p=scale, k=exponent, A=cross-correlation)
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Summary

Why?

Careful quantification of “rare-event” risk

[¢]

[e]

Characterise tails of (multivariate) distributions

Limited observations

[e]

o Immediate real-world consequences

The next 10 years?

o Univariate : fuller covariate descriptions, exploit measurement scale /
sub-asymptotics, UQ, provide real-world decision-support

o Multivariate : theoretical development, computational tractability, expansion in
scope (time-series, spatial), serious real-world applications

An interesting field for research?

o Environmental extremes is a nice area if you like a mix of statistical theory,
method, computation and serious physical science-based application
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