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Motivation

o Rational design an assessment of marine structures:

e Reducing bias and uncertainty in estimation of structural reliability
o Improved understanding and communication of risk

o For new (e.g. floating) and existing (e.g. steel and concrete) structures
e Climate change

@ Other applied fields for extremes in industry:

e Corrosion and fouling
o Economics and finance
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Australian North West Shelf

Model storm peak significant wave height Hs

@ Wave climate is dominated by westerly monsoonal swell and
tropical cyclones

Cyclones originate from Eastern Indian Ocean, Timor and Arafura Sea

Sample of hindcast storms for period 1970-2007
9 x 9 rectangular spatial grid over 5° x 5° longitude-latitude domain

Spatial and directional variability in extremes present

Marginal spatio-directional model
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Irection

Storm peak Hs by d

Raw data: 6156 events
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Extreme value analysis: challenges

o Covariates and non-stationarity:

e Location, direction, season, time, water depth, ...
o Multiple / multidimensional covariates in practice

Cluster dependence:

o Same events observed at many locations (pooling)
o Dependence in time (Chavez-Demoulin and Davison 2012)

Scale effects:

o Modelling X or f(X)? (Reeve et al. 2012)
Threshold estimation:

e Scarrott and MacDonald [2012]

Parameter estimation

e o

Measurement issues:

o Field measurement uncertainty greatest for extreme values
o Hindcast data are simulations based on pragmatic physics, calibrated to
historical observation
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Extreme value analysis: multivariate challenges

o Componentwise maxima:
e < max-stability < multivariate regular variation
o Assumes all components extreme
e = Perfect independence or asymptotic dependence only
o Composite likelihood for spatial extremes (Davison et al. 2012)
o Extremal dependence: (Ledford and Tawn 1997)
o Assumes regular variation of joint survivor function
o Gives more general forms of extremal dependence
e = Asymptotic dependence, asymptotic independence (with +ve, -ve
association)
o Hybrid spatial dependence model (Wadsworth and Tawn 2012)
o Conditional extremes: (Heffernan and Tawn 2004)
e Assumes, given one variable being extreme, convergence of distribution
of remaining variables
o Allows some variables not to be extreme
o Not equivalent to extremal dependence
o Application:
e ... a huge gap in the theory and practice of multivariate extremes ...
(Beirlant et al. 2004)
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Model components

e Sample {z}7_, of i1 storm peak significant wave helghts observed at
locations {X;, y;}7_, with storm peak directions {f;}7_

@ Model components:

© Threshold function ¢ above which observations z are assumed to be
extreme estimated using quantile regression

© Rate of occurrence of threshold exceedances modelled using Poisson
model with rate p( £ p(6, x, y))

© Size of occurrence of threshold exceedance using generalised Pareto
(GP) model with shape and scale parameters ¢ and o
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Model components

@ Rate of occurrence and size of threshold exceedance functionally
independent (Chavez-Demoulin and Davison 2005)

e Equivalent to non-homogeneous Poisson point process model (Dixon
et al. 1998)

@ Smooth functions of covariates estimated using penalised B-splines
(Eilers and Marx 2010)

o Slick linear algebra (c.f. generalised linear array models, Currie et al.
2006)
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Penalised B-splines

@ Physical considerations suggest model parameters ¢, p, £ and o vary
smoothly with covariates 6, x, y
e Values of (n =)o, p, & and o all take the form:

77:5/877

for B-spline basis matrix B (defined on index set of covariate values)
and some 3, to be estimated

@ Multidimensional basis matrix B formulated using Kronecker products
of marginal basis matrices:

B=By®B«®B,
@ Roughness R, defined as:
R, = 57/7’3577
where effect of P is to difference neighbouring values of 3,

Philip Jonathan (Shell) Non-stationary extremes RSS 2013 18 / 35



Penalised B-splines

@ Wrapped bases for periodic
covariates (seasonal, direction)

@ Multidimensional bases easily
constructed. Problem size
sometimes prohibitive

@ Parameter smoothness
controlled by roughness
coefficient \: cross validation
chooses A optimally
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Quantile regression model for extreme value threshold

e Estimate smooth quantile ¢(0, x, y; 7) for non-exceedance probability
7 of z (storm peak Hs) using quantile regression by minimising
penalised criterion 62 with respect to basis parameters:

f;; = £¢ + )\¢R¢

{r) Inl+ @@= Inl}

>0 ri<0

ly

for rj = z; — (0, xi, yi; T) for i = 1,2, ..., n, and roughness R,
controlled by roughness coefficient Ay

@ (Non-crossing) quantile regression formulated as linear programme
(Bollaerts et al. 2006)
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Cross-validation for optimal roughness

QR lack of fit as a function of penality
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Poisson model for rate of threshold exceedance

@ Poisson model for rate of occurrence of threshold exceedance
estimated by minimising roughness penalised log likelihood:

=1L+ 2Ry
o (Negative) penalised Poisson log-likelihood (and approximation):
n
by = _Zlogp(eiaXth)+/p(9,X,y)d9dXdy
i=1

= clogp(jA) + A p(jA)

j=1 j=1

>

~
)
Il

o {¢j}T; counts of threshold exceedances on index set of m (>> 1)
bins partitioning covariate domain into intervals of volume A

@ )\, estimated using cross validation
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Generalised Pareto model for size of threshold exceedance

@ Generalise Pareto model for size of threshold exceedance estimated by
minimising roughness penalised log-likelihood:

ﬁza = 5570 + )\éRg + MRy

(Negative) conditional generalised Pareto log-likelihood:

§i

le o Z log o + Iog(l + = ( zi — ¢;))

Parameters: shape &, scale o

(]

Threshold ¢ set prior to estimation

A¢ and ), estimated using cross validation. In practice set A\¢ = kA,
for fixed K
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Return values

@ Return value z1 of storm peak significant wave height corresponding
to return period T (years) evaluated from estimates for ¢, p, £ and o

27 = 6= F(1+ ~(og(1 — 1))

@ Zz100 corresponds to 100—year return value, denoted Hs1gg

@ Alternative: estimation of return values by simulation under model
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Current developments

@ Non-stationarity
e Spatio-directional, seasonal-directional and spatio-seasonal-directional

@ Computational efficiency
e Sparse and slick matrix manipulations
@ Quantifying uncertainty
o Bootstrapping, Bayesian (Nasri et al. 2013, Oumow et al. 2012)
@ Spatial dependence
o Composite likelihood: model componentwise maxima
o Censored likelihood: block maxima — threshold exceedances
o Hybrid model: full range of extremal dependence
@ Interpretation within structural design framework
@ Non-stationary conditional extremes

e Spline representations for parameters of marginal and conditional
extremes models (Jonathan et al. 2013)
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Simple stationary conditional extremes

e Model conditional (and hence joint) extremes of two variables
@ Heffernan and Tawn [2004]

e Sample {xj1,xj2}7_; of variate X; and X

(X1, X2) transformed to (Y7, Y2) on standard Gumbel scale

Model (Y2|Y1 = y) = ay + y?Z for large y and positive dependence
Model (Y1|Y2 = y) similarly

@ Appropriate for most known distributional forms, but not all
e Simulation to sample joint distribution of (Y1, Y2) (and (X1, X2))
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Non-stationary conditional extremes

On Gumbel scale, extend with common covariate 9:
(Ya|Y1 =y,0) = agy + ¥y (g + 09Z) for y > ¢g(7)

where:
@ ¢y(7) is a high non-stationary quantile of Y7 on Gumbel scale, for
non-exceedance probability 7, above which the model fits well
CINT RS [0, 1], Bo € (—OO, 1], og € [0,00)
@ Z is a random variable with unknown distribution G, assumed
Normal for estimation
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South Atlantic Ocean sample

(a) [90,240) (b) [240,350) (©) [350,90)
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Single directional covariate. Three directional sectors identified by
consideration of fetch conditions, with differing sample characteristics
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South Atlantic Ocean parameter estimates
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South Atlantic Ocean return values

®)

25 w25
)
= 2
= 20 1 r ]
N . =~ 20
=} ©
= =
: g
5‘ 15 b g AN
3 B PIRANS
= o -’ - =
= : G A -
= ] =t =
& 107 ks 1
=t
> E
3
5 I I i U 5 I I i
0 90 180 270 360 0 90 180 270 360
Direction Direction

More at www.lancs.ac.uk/~ jonathan/NSCE13.pdf
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