Modelling extreme environments

Philip Jonathan, David Randell

Shell Technology Centre Thornton, Chester, UK

philip.jonathan@shell.com www.lancs.ac.uk/~jonathan

Oslo, April 2013

Acknowledgements

- Kevin Ewans
- Yanyun Wu

Outline

- Motivation.
- Modelling challenges.
- Covariate effects in extremes.
- Multivariate extremes.
- Current developments.
- Conclusions.

Review (Jonathan and Ewans 2013) at www.lancs.ac.uk/~jonathan.

Motivation

Modelling extreme environments

Katrina in the Gulf of Mexico.

Modelling extreme environments

Katrina damage.

Cormorant Alpha in a North Sea storm.

"L9" platform in the Southern North Sea.

A wave seen from a ship.

Black Sea coast.

Motivation

- Rational design an assessment of marine structures:
 - Reducing bias and uncertainty in estimation of structural reliability.
 - Improved understanding and communication of risk.
 - Climate change.
- Other applied fields for extremes in industry:
 - Corrosion and fouling.
 - Finance.
 - Network traffic.

Modelling challenges

- Covariate effects:
 - Location, direction, season, ...
 - Multiple covariates in practice.
- Cluster dependence:
 - e.g. storms independent, observed (many times) at many locations.
 - e.g. dependent occurrences in time.
 - estimated using e.g. extremal index (Ledford and Tawn 2003)
- Scale effects:
 - Modelling X^2 gives different estimates c.f. modelling X.
- Threshold estimation.
- Parameter estimation.
- Measurement issues:
 - Field measurement uncertainty greatest for extreme values.
 - Hindcast data are simulations based on pragmatic physics, calibrated to historical observation.

• Multivariate extremes:

- Waves, winds, currents, forces, moments, displacements, ...
- - Assumes all components extreme.
 - >> Perfect independence or asymptotic dependence **only**.
- Extremal dependence:
 - Assumes regular variation of joint survivor function.
 - Gives rise to more general forms of extremal dependence.
 - Asymptotic dependence, asymptotic independence (with +ve, -ve association).
- Conditional extremes:
 - Assumes, given one variable being extreme, convergence of distribution of remaining variables.
 - Not equivalent to extremal dependence.
 - Allows some variables not to be extreme.
- Inference:
 - ... a huge gap in the theory and practice of multivariate extremes ... (Beirlant et al. 2004)

Covariates: outline

- Sample $\{x_i, t_i\}_{i=1}^n$ of variate x and covariate t.
- Non-homogeneous Poisson process model for threshold exceedences
- Davison and Smith [1990], Davison [2003], Chavez-Demoulin and Davison [2005]
- Rate of occurrence of threshold exceedence and size of threshold exceedence are functionally independent.
- Other equivalent interpretations.
- Time, season, space, direction, GCM parameters ...

Quantile regression models threshold

• Data $\{\theta_i, x_i\}_{i=1}^n$, τ^{th} conditional quantile $\psi(\tau, \theta)$.

Fourier basis:

$$\psi(\tau,\theta) = \sum_{k=0}^{p} \alpha_{c\tau k} \cos(k\theta) + \alpha_{s\tau k} \sin(k\theta) \text{ and } \alpha_{s\tau 0} \triangleq 0$$

Spline basis:

$$\psi(\tau,\theta) = \sum_{k=0}^{p} \Phi_{\theta k} \beta_{\tau k}$$

• Estimated by minimising **penalised** criterion Q_{τ}^* with respect to basis parameters $(\alpha \text{ or } \beta)$:

$$Q_{\tau}^* = \left\{ \tau \sum_{r_i \ge 0}^{n} |r_i| + (1 - \tau) \sum_{r_i < 0}^{n} |r_i| \right\} + \lambda R_{\psi \tau}$$

for $r_i = x_i - \psi(\tau, \theta_i)$ for i = 1, 2, ..., n, and **roughness** $R_{\psi\tau}$.

GP models size of threshold exceedances

 Generalised Pareto density (and negative conditional log-likelihood) for sizes of threshold excesses:

$$f(x_i; \xi_i, \sigma_i, u) = \frac{1}{\sigma_i} (1 + \frac{\xi_i}{\sigma_i} (x - u_i))^{-\frac{1}{\xi} - 1} \text{ for each } i$$

$$I_E(\xi, \sigma) = -\sum_{i=1}^n log(f(x_i; \xi_i, \sigma_i, u_i))$$

- Parameters: **shape** ξ , **scale** σ .
- Threshold *u* set prior to estimation.

Poisson models rate of threshold exceedances

 (Negative) Poisson process log-likelihood (and approximation) for rate of occurrence of threshold excesses:

$$I_{N}(\mu) = \int_{i=1}^{n} \mu dt - \sum_{i=1}^{n} \log \mu_{i}$$

$$\widehat{I}_{N}(\mu) = \delta \sum_{j=1}^{m} \mu(j\delta) - \sum_{j=1}^{m} c_{j} \log \mu(j\delta)$$

- $\{c_j\}_{j=1}^m$ counts the number of threshold exceedences in each of m bins partitioning the covariate domain into intervals of length δ
- Parameter: **rate** μ

Overall:

$$I(\xi, \sigma, \mu) = I_E(\xi, \sigma) + I_N(\mu)$$

with all of ξ , σ and μ smooth with respect to t.

• We can estimate μ independently of ξ and σ .

- We can impose smoothness on parameters in various ways.
- In a frequentist setting, we can use **penalised likelihood**:

$$\ell(\theta) = I(\theta) + \lambda R(\theta)$$

- $R(\theta)$ is parameter roughness (usually quadratic form in parameter vector)
- \bullet λ is roughness tuning parameter
- In a Bayesian setting, we can impose a random field prior structure (and corresponding posterior) on parameters:

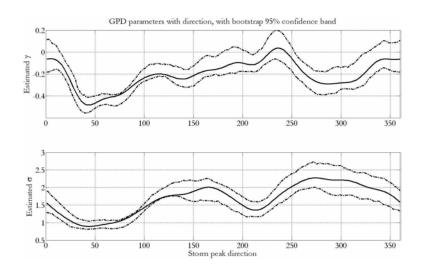
$$f(\theta|\alpha) = \exp\{-\alpha \sum_{i=1}^{n} \sum_{t_{j} \text{ near } t_{i}} (\theta_{i} - \theta_{j})^{2}\}$$

$$\log f(\xi, \sigma|x, \alpha) = I(\xi, \sigma, \mu|x)$$

$$- \sum_{i=1}^{n} \sum_{t_{j} \text{ near } t_{i}} \{\alpha_{\xi}(\xi_{i} - \xi_{j})^{2} + \alpha_{\sigma}(\sigma_{i} - \sigma_{j})^{2}\}$$

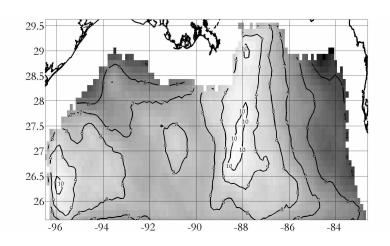
Covariates: applications

Directional



Fourier directional model for GP shape and scale at Northern North Sea location, with 95% bootstrap confidence band.

Spatial



Spatial model for 100-year storm peak significant wave height in the Gulf of Mexico (not to scale), estimated using a **thin-plate spline** with directional pre-whitening.

Spatio-directional model

Modelling extreme environments

Cyclone Narelle, January 11th, 2013

Narelle's track

- Physical considerations suggest that we should expect the model parameters to vary smoothly with respect to covariates.
- n dimensional basis matrix B formulated using Kronecker products of marginal basis matrices

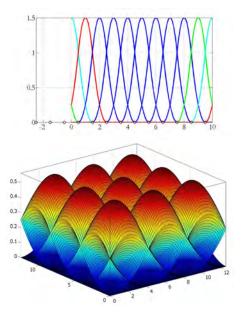
$$B = B_{\theta} \otimes B_{x} \otimes B_{y}$$

Roughness is defined

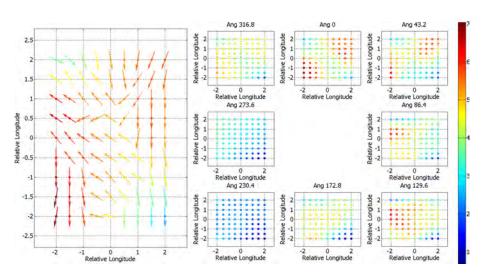
$$R = \beta' P \beta$$

where P is penalty matrix formed by taking differences of neighbouring β .

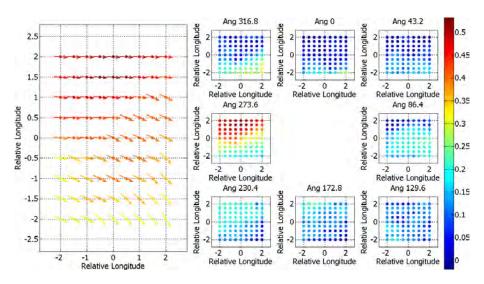
- Wrapped bases allows for periodic covariates such as seasonality or direction.
- High dimensional bases can easily be constructed although number of parameters problematic.
- Strength of roughness penalty is controlled by roughness coefficient: cross validation is used to choose this optimally.



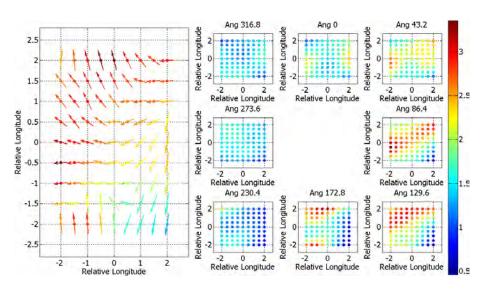
(Median) Quantile Threshold



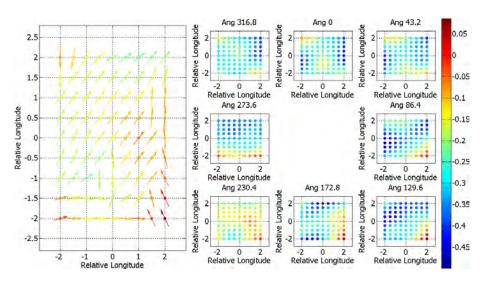
Rate of Threshold Exceedances



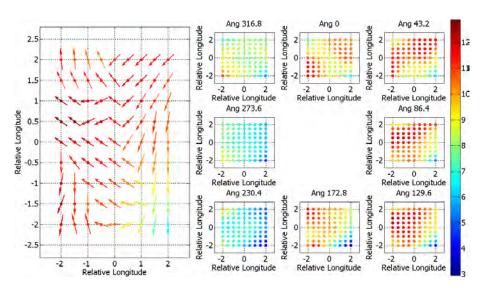
GP Scale



GP Shape



100-year Return Value H_{S100}



Multivariate: outline

Component-wise maxima

- Beirlant et al. [2004] is a nice introduction.
- No obvious way to order multivariate observations.
- Theory based on component-wise maximum, M.
 - For sample $\{x_{ij}\}_{i=1}^n$ in p dimensions:
 - $M_j = max_{i=1}^n \{x_{ij}\}$ for each j.
 - M will probably not be a sample point!
- $P(M \leqslant x) = \prod_{j=1}^{p} P(X_j \leqslant x_j) = F^n(x)$
 - We assume: $F^n(a_nx + b_n) \stackrel{D}{\rightarrow} G(x)$
 - Therefore also: $F_j^n(a_{n,j}x_j+b_{n,j})\stackrel{D}{ o} G_j(x_j)$

Homogeneity

Limiting distribution with Frechet marginals, G_F

•
$$G_F(z) = G(G_1^{\leftarrow}(e^{-\frac{1}{z_1}}), G_2^{\leftarrow}(e^{-\frac{1}{z_2}}), ..., G_p^{\leftarrow}(e^{-\frac{1}{z_p}}))$$

- $V_F(z) = -\log G_F(z)$ is the **exponent measure** function
- $V_F(sz) = s^{-1}V_F(z)$

Homogeneity order -1 of exponent measure implies asymptotic dependence (or perfect independence)!

Composite likelihood for spatial dependence

• Composite likelihood $I_C(\theta)$ assuming Frechet marginals:

$$I_{C}(\theta) = -\sum_{i=1}^{n} \sum_{j=1}^{n} \log f(z_{i}, z_{j}; \theta)$$

$$f(z_{i}, z_{j}) = \left(\frac{\partial V(z_{i}, z_{j})}{\partial z_{i}} \frac{\partial V(z_{i}, z_{j})}{\partial z_{j}} - \frac{\partial^{2} V(z_{i}, z_{j})}{\partial z_{i} \partial z_{j}}\right) e^{-V(z_{i}, z_{j})}$$

- Lots of possible exponent measures with simple bivariate parametric forms with pre-specified functions (e.g. of distance) whose parameters must be estimated:
 - Smith model (Spatial Gaussian extreme value process)
 - Schlather model (Extremal Gaussian process)
 - Brown-Resnick model
 - Davison and Gholamrezaee model
 - Wadsworth & Tawn (Gaussian-Gaussian process)
- See Davison et al. [2012].

Smith model

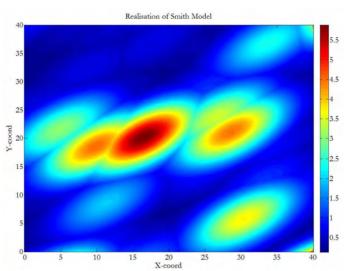
$$V(z_i, z_j) = \frac{1}{z_i} \Phi(\frac{\alpha(h)}{2} + \frac{1}{\alpha(h)} \log(\frac{z_j}{z_i})) + \frac{1}{z_j} \Phi(\frac{\alpha(h)}{2} + \frac{1}{\alpha(h)} \log(\frac{z_i}{z_j}))$$

with pre-specified $\alpha(h) = (h'\Sigma^{-1}h)^{1/2}$ of distance h, where:

$$\Sigma = \left(egin{array}{cc} \sigma_1^2 & \sigma_{12} \ \sigma_{12} & \sigma_2^2 \end{array}
ight)$$

and σ_1^2 , σ_{12} and σ_2^2 must be estimated.

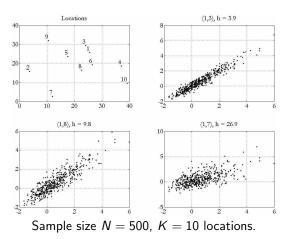
Realisation from Smith model



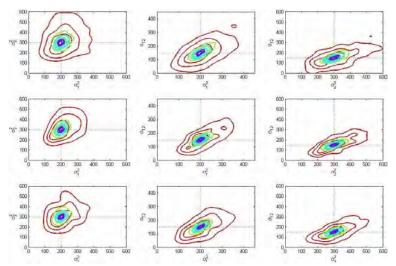
Constructive representation, for case $\sigma_1^2=20$, $\sigma_{12}=15$ and $\sigma_2^2=30$. Standard Frechet marginals.

Simulation from Smith model

Simulated samples of size N=10, 50, 100 and 500 corresponding to K=10, 50 and 100 spatial locations, for $\sigma_1^2=200$, $\sigma_{12}=150$ and $\sigma_2^2=300$ with standard Frechet marginals. Locations at random on 40 \times 40 grid.

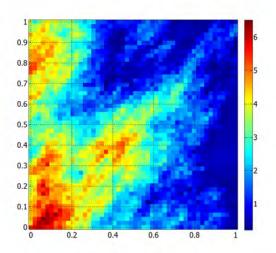


Maximum composite likelihood estimates



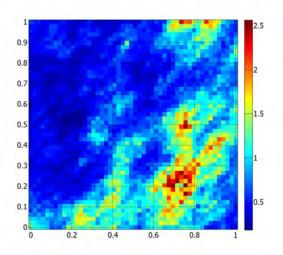
25%, 50% and 75% percentiles of MCLE estimates for N=10 (Red), 50 (Green), 100 (Turquoise) and 500 (Purple) observations over K=10 (Top), 50 (Centre), and 100 (Bottom) sites.

Schlather max-stable process



Constructive representation, based on weighted maximum of copies of Gaussian process

Geometric Gaussian max-stable process



Constructive representation, based on weighted maximum of copies of exponentiated Gaussian process

- Component-wise maxima has some pros:
 - Most widely-studied branch of multivariate extremes.
 - Composite likelihood offers some promise; Bayesian inference feasible.
- And many cons:
 - Hotch-potch of methods.
 - Does not accommodate asymptotic independence.
 - Threshold selection!
 - Covariates!
- Parametric forms.

Extremal dependence

- Bivariate random variable (X, Y):
- asymptotically independent if $\lim_{x\to\infty} Pr(X>x|Y>x)=0$.
- asymptotically dependent if $\lim_{x\to\infty} Pr(X > x | Y > x) > 0$.
- Extremal dependence models:
 - Admit asymptotic independence.
- But have issues with:
 - Threshold selection.
 - Covariates!
- Ideas from theory of regular variation (see Bingham et al. 1987)

- (X_F, Y_F) with Frechet marginals $(Pr(X_F < f) = e^{-\frac{1}{f}})$.
- Assume $Pr(X_F > f, Y_F > f)$ is **regularly varying at infinity**:

$$lim_{f\to\infty} \frac{Pr(X_F>sf,Y_F>sf)}{Pr(X_F>f,Y_F>f)} = s^{-\frac{1}{\eta}} \text{ for some fixed } s>0$$

This suggests:

$$\begin{array}{lll} Pr(X_{F} > sf, \, Y_{F} > sf) & \approx & s^{-\frac{1}{\eta}} Pr(X_{F} > f, \, Y_{F} > f) \\ Pr(X_{G} > g+t, \, Y_{G} > g+t) & = & Pr(X_{F} > e^{g+t}, \, Y_{F} > e^{g+t}) \\ & \approx & e^{-\frac{t}{\eta}} Pr(X_{F} > e^{g}, \, Y_{F} > e^{g}) \\ & = & e^{-\frac{t}{\eta}} Pr(X_{G} > g, \, Y_{G} > g) \end{array}$$

on Gumbel scale X_G : $Pr(X_G < g) = \exp(-e^{-g})$.

 η is known as the **coefficient of tail dependence**.

- Ledford and Tawn [1997] motivated by Bingham et al. [1987]
- Assume model $Pr(X_F > f, Y_F > f) = \ell(f)f^{-\frac{1}{\eta}}$
 - $\ell(f)$ is a **slowly-varying** function, $\lim_{f \to \infty} \frac{\ell(sf)}{\ell(f)} = 1$
- Then:

$$Pr(X_{F} > f | Y_{F} > f) = \frac{Pr(X_{F} > f, Y_{F} > f)}{Pr(Y_{F} > f)}$$

$$= \ell(f)f^{-\frac{1}{\eta}}(1 - e^{-\frac{1}{f}})^{-1}$$

$$\sim \ell(f)f^{1-\frac{1}{\eta}}$$

$$\sim \ell(f)Pr(Y_{F} > f)^{\frac{1}{\eta}-1}$$

- At $\eta < 1$ (or $\lim_{f \to \infty} \ell(f) = 0$), X_F and Y_F are **As.Ind.**!
- η easily estimated from a sample by noting that L_F , the minimum of X_F and Y_F is approximately GP-distributed:

$$Pr(L_F > f + s|L_F > f) \sim (1 + \frac{s}{f})^{-\frac{1}{\eta}}$$
 for large f

Conditional extremes

- Heffernan and Tawn [2004]
- Sample $\{x_{i1}, x_{i2}\}_{i=1}^n$ of variate X_1 and X_2 .
- (X_1, X_2) need to be transformed to (Y_1, Y_2) on the same **standard Gumbel** scale.
- Model the **conditional** distribution of Y_2 given a large value of Y_1 .
- Asymptotic argument relies on X_1 (and Y_1) being large.
- Applies to almost all known forms of multivariate extreme value distribution, but not all.

- $\bullet (X_1, X_2) \stackrel{PIT}{\Rightarrow} (Y_1, Y_2).$
- $(Y_2|Y_1 = y_1) = ay_1 + y_1^b Z$ for large values y_1 and +ve dependence.
- Estimate a, b and Normal approximation to Z using regression.
- $\bullet (Y_1, Y_2) \stackrel{PIT}{\Rightarrow} (X_1, X_2).$
- Simulation to sample joint distribution of (Y_1, Y_2) (and (X_1, X_2)).
- Pros:
 - Extends naturally to high dimensions
- Cons:
 - Threshold selection for (large number of) models.
 - Covariates!
 - Consistency of $Y_2|Y_1$ and $Y_1|Y_2$ not guaranteed.

Conditional extremes with covariates

On Gumbel scale, by analogy with Heffernan & Tawn (2004) we propose the following conditional extremes model:

$$(Y_k|Y_j=y_j,\Phi=\phi)=\alpha_\phi y_j+y_j^{\beta_\phi}(\mu_\phi+\sigma_\phi Z) \text{ for } y_j>\psi_j^G(\theta_j,\tau_{j*}^G)$$

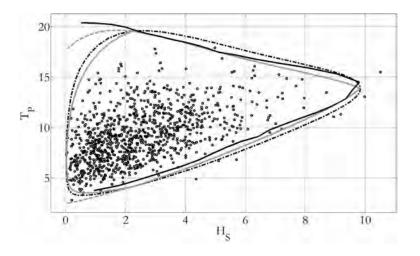
where:

- $\psi_j^G(\theta_j, \tau_{j*}^G)$ is a high directional quantile of Y_j on Gumbel scale, above which the model fits well
- $\alpha_{\phi} \in [0,1]$, $\beta_{\phi} \in (-\infty,1]$, $\sigma_{\phi} \in [0,\infty)$
- Z is a random variable with **unknown** distribution G
- Z will be assumed to be approximately Normally distributed for the purposes of parameter estimation

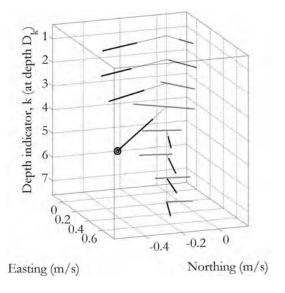
Settings:

- In a (H_S, T_P) case, $\phi \triangleq \theta_j \triangleq \theta_k$, and dependence is assumed a function of absolute covariate
- In a $(H_S, WindSpeed)$ case, $\phi = \theta_k \theta_j$, and dependence is assumed a function of relative covariate

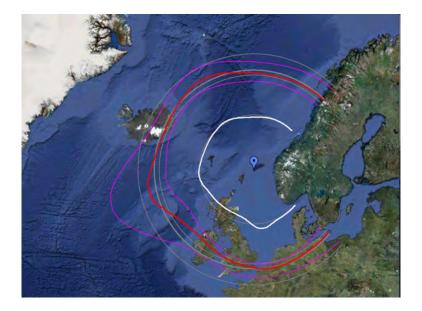
Multivariate: applications



Environmental **design contours** derived from a conditional extremes model for storm peak significant wave height, H_S , and corresponding peak spectral period, T_P .



Current profiles with depth (a 32-variate conditional extremes analysis) for a North-western Australia location.



Fourier **directional** model for conditional extremes at a Northern North Sea location.

Current developments

- **p-spline** and **random field** approaches to spatio-temporal and spatio-directional extreme value models.
- Composite likelihood: model (asymptotically dependent) componentwise—maxima.
- Censored likelihood: allows extension from block-maxima to threshold exceedances.
- **Hybrid spatial dependence model**: incorporation of asymptotic independence using inverted multivariate extreme value distribution.

Takk for oppmerksomheten!

philip.jonathan@shell.com www.lancs.ac.uk/~jonathan

- J. Beirlant, Y. Goegebeur, J. Segers, and J. Teugels. *Statistics of Extremes: theory and applications.* Wiley, 2004.
- N. H. Bingham, C. M. Goldie, and J. L. Teugels. Regular variation. Cambridge University Press, 1987.
 V. Chavez-Demoulin and A.C. Davison. Generalized additive modelling of sample
- V. Chavez-Demoulin and A.C. Davison. Generalized additive modelling of sample extremes. *J. Roy. Statist. Soc. Series C: Applied Statistics*, 54:207, 2005.
- A. C. Davison. Statistical models. Cambridge University Press, 2003.
- A. C. Davison, S. A. Padoan, and M. Ribatet. Statistical modelling of spatial extremes. *Statistical Science*, 27:161–186, 2012.
- A.C. Davison and R. L. Smith. Models for exceedances over high thresholds. *J. R. Statist. Soc. B*, 52:393, 1990.
- J. E. Heffernan and J. A. Tawn. A conditional approach for multivariate extreme values. J. R. Statist. Soc. B, 66:497, 2004.
- P. Jonathan and K. C. Ewans. Statistical modelling of extreme ocean environments with implications for marine design: a review. *Ocean Engineering*, 62:91–109, 2013.
- A. W. Ledford and J. A. Tawn. Modelling dependence within joint tail regions. *J. R. Statist. Soc. B*, 59:475–499, 1997.
- A. W. Ledford and J. A. Tawn. Diagnostics for dependence within time series extremes. *J. Roy. Statist. Soc. B*, 65:521–543, 2003.