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Motivation
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Katrina in the Gulf of Mexico.
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Katrina damage.
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Cormorant Alpha in a North Sea storm.
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”L9” platform in the Southern North Sea.
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A wave seen from a ship.
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Black Sea coast.
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Motivation

Rational design an assessment of marine structures:

Reducing bias and uncertainty in estimation of structural reliability.
Improved understanding and communication of risk.
Climate change.

Other applied fields for extremes in industry:

Corrosion and fouling.
Finance.
Network traffic.
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Modelling challenges
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Covariate effects:

Location, direction, season, ...
Multiple covariates in practice.

Cluster dependence:

e.g. storms independent, observed (many times) at many locations.
e.g. dependent occurrences in time.
estimated using e.g. extremal index (Ledford and Tawn 2003)

Scale effects:

Modelling X 2 gives different estimates c.f. modelling X .

Threshold estimation.

Parameter estimation.

Measurement issues:

Field measurement uncertainty greatest for extreme values.
Hindcast data are simulations based on pragmatic physics, calibrated to
historical observation.
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Multivariate extremes:

Waves, winds, currents, forces, moments, displacements, ...
Componentwise maxima ⇔ max-stability ⇔ multivariate regular
variation:

Assumes all components extreme.
⇒ Perfect independence or asymptotic dependence only.

Extremal dependence:

Assumes regular variation of joint survivor function.
Gives rise to more general forms of extremal dependence.
⇒ Asymptotic dependence, asymptotic independence (with +ve, -ve
association).

Conditional extremes:

Assumes, given one variable being extreme, convergence of distribution
of remaining variables.
Not equivalent to extremal dependence.
Allows some variables not to be extreme.

Inference:

... a huge gap in the theory and practice of multivariate extremes ...
(Beirlant et al. 2004)
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Covariates: outline
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Sample {xi , ti}ni=1 of variate x and covariate t.

Non-homogeneous Poisson process model for threshold exceedences

Davison and Smith [1990], Davison [2003], Chavez-Demoulin and
Davison [2005]

Rate of occurrence of threshold exceedence and size of threshold
exceedence are functionally independent.

Other equivalent interpretations.

Time, season, space, direction, GCM parameters ...
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Quantile regression models threshold

Data {θi , xi}ni=1, τ th conditional quantile ψ(τ, θ).

Fourier basis:

ψ(τ, θ) =

p∑
k=0

αcτk cos(kθ) + αsτk sin(kθ) and αsτ0 , 0

Spline basis:
ψ(τ, θ) =

p∑
k=0

Φθkβτk

Estimated by minimising penalised criterion Q∗τ with respect to basis
parameters (α or β):

Q∗τ = {τ
n∑

ri≥0
|ri |+ (1− τ)

n∑
ri<0

|ri |}+ λRψτ

for ri = xi − ψ(τ, θi ) for i = 1, 2, ..., n, and roughness Rψτ .
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GP models size of threshold exceedances

Generalised Pareto density (and negative conditional log-likelihood)
for sizes of threshold excesses:

f (xi ; ξi , σi , u) =
1

σi
(1 +

ξi
σi

(x − ui ))−
1
ξ
−1 for each i

lE (ξ, σ) = −
n∑

i=1

log(f (xi ; ξi , σi , ui ))

Parameters: shape ξ, scale σ.

Threshold u set prior to estimation.
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Poisson models rate of threshold exceedances

(Negative) Poisson process log-likelihood (and approximation) for
rate of occurrence of threshold excesses:

lN(µ) =

∫ n

i=1
µdt −

n∑
i=1

logµi

l̂N(µ) = δ

m∑
j=1

µ(jδ)−
m∑
j=1

cj logµ(jδ)

{cj}mj=1 counts the number of threshold exceedences in each of m
bins partitioning the covariate domain into intervals of length δ

Parameter: rate µ
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Overall:

l(ξ, σ, µ) = lE (ξ, σ) + lN(µ)

with all of ξ, σ and µ smooth with respect to t.

We can estimate µ independently of ξ and σ.
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We can impose smoothness on parameters in various ways.

In a frequentist setting, we can use penalised likelihood:

`(θ) = l(θ) + λR(θ)

R(θ) is parameter roughness (usually quadratic form in parameter
vector)
λ is roughness tuning parameter

In a Bayesian setting, we can impose a random field prior structure
(and corresponding posterior) on parameters:

f (θ|α) = exp{−α
n∑

i=1

∑
tj near ti

(θi − θj)2}

log f (ξ, σ|x , α) = l(ξ, σ, µ|x)

−
n∑

i=1

∑
tj near ti

{αξ(ξi − ξj)2 + ασ(σi − σj)2}
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Covariates: applications
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Directional

Fourier directional model for GP shape and scale at Northern North Sea
location, with 95% bootstrap confidence band.
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Spatial

Spatial model for 100-year storm peak significant wave height in the Gulf
of Mexico (not to scale), estimated using a thin-plate spline with
directional pre-whitening.
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Spatio-directional model

Cyclone Narelle, January 11th, 2013
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Narelle’s track
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Physical considerations suggest that we should expect the model
parameters to vary smoothly with respect to covariates.

n dimensional basis matrix B formulated using Kronecker products of
marginal basis matrices

B = Bθ ⊗ Bx ⊗ By

Roughness is defined
R = β′Pβ

where P is penalty matrix formed by taking differences of
neighbouring β.
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Wrapped bases allows for
periodic covariates such as
seasonality or direction.

High dimensional bases can
easily be constructed although
number of parameters
problematic.

Strength of roughness penalty is
controlled by roughness
coefficient: cross validation is
used to choose this optimally.
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(Median) Quantile Threshold
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Rate of Threshold Exceedances
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GP Scale
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GP Shape
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100-year Return Value HS100
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Multivariate: outline
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Component-wise maxima

Beirlant et al. [2004] is a nice introduction.

No obvious way to order multivariate observations.

Theory based on component-wise maximum, M.

For sample {xij}ni=1 in p dimensions:
Mj = maxni=1{xij} for each j .
M will probably not be a sample point!

P(M 6 x) =
∏p

j=1 P(Xj 6 xj) = F n(x)

We assume: F n(anx + bn)
D→ G (x)

Therefore also: F n
j (an,jxj + bn,j)

D→ Gj(xj)
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Homogeneity

Limiting distribution with Frechet marginals, GF

GF (z) = G (G←1 (e−
1
z1 ),G←2 (e−

1
z2 ), ...,G←p (e

− 1
zp ))

VF (z) = − logGF (z) is the exponent measure function

VF (sz) = s−1VF (z)

Homogeneity order -1 of exponent measure implies asymptotic
dependence (or perfect independence)!
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Composite likelihood for spatial dependence

Composite likelihood lC (θ) assuming Frechet marginals:

lC (θ) = −
n∑

i=1

n∑
j=1

log f (zi , zj ; θ)

f (zi , zj) = (
∂V (zi , zj)

∂zi

∂V (zi , zj)

∂zj
−
∂2V (zi , zj)

∂zi∂zj
)e−V (zi ,zj )

Lots of possible exponent measures with simple bivariate parametric
forms with pre-specified functions (e.g. of distance) whose parameters
must be estimated:

Smith model (Spatial Gaussian extreme value process)
Schlather model (Extremal Gaussian process)
Brown-Resnick model
Davison and Gholamrezaee model
Wadsworth & Tawn (Gaussian-Gaussian process)

See Davison et al. [2012].
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Smith model

V (zi , zj) =
1

zi
Φ(
α(h)

2
+

1

α(h)
log(

zj
zi

))

+
1

zj
Φ(
α(h)

2
+

1

α(h)
log(

zi
zj

))

with pre-specified α(h) = (h′Σ−1h)1/2 of distance h, where:

Σ =

(
σ21 σ12
σ12 σ22

)
and σ21, σ12 and σ22 must be estimated.
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Realisation from Smith model

Constructive representation, for case σ2
1 = 20, σ12 = 15 and σ2

2 = 30. Standard
Frechet marginals.
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Simulation from Smith model

Simulated samples of size N = 10, 50, 100 and 500 corresponding to K = 10, 50
and 100 spatial locations, for σ2

1 = 200, σ12 = 150 and σ2
2 = 300 with standard

Frechet marginals. Locations at random on 40× 40 grid.

Sample size N = 500, K = 10 locations.
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Maximum composite likelihood estimates

25%, 50% and 75% percentiles of MCLE estimates for N = 10 (Red), 50 (Green),
100 (Turquoise) and 500 (Purple) observations over K = 10 (Top), 50 (Centre),

and 100 (Bottom) sites.
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Schlather max-stable process

Constructive representation, based on weighted maximum of copies of
Gaussian process
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Geometric Gaussian max-stable process

Constructive representation, based on weighted maximum of copies of
exponentiated Gaussian process
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Component-wise maxima has some pros:

Most widely-studied branch of multivariate extremes.
Composite likelihood offers some promise; Bayesian inference feasible.

And many cons:

Hotch-potch of methods.
Does not accommodate asymptotic independence.
Threshold selection!
Covariates!

Parametric forms.
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Extremal dependence

Bivariate random variable (X ,Y ):

asymptotically independent if limx→∞ Pr(X > x |Y > x) = 0.

asymptotically dependent if limx→∞ Pr(X > x |Y > x) > 0.

Extremal dependence models:

Admit asymptotic independence.

But have issues with:

Threshold selection.
Covariates!

Ideas from theory of regular variation (see Bingham et al. 1987)
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(XF ,YF ) with Frechet marginals (Pr(XF < f ) = e−
1
f ).

Assume Pr(XF > f ,YF > f ) is regularly varying at infinity:

limf→∞
Pr(XF > sf ,YF > sf )

Pr(XF > f ,YF > f )
= s−

1
η for some fixed s > 0

This suggests:

Pr(XF > sf ,YF > sf ) ≈ s−
1
ηPr(XF > f ,YF > f )

Pr(XG > g + t,YG > g + t) = Pr(XF > eg+t ,YF > eg+t)

≈ e−
t
ηPr(XF > eg ,YF > eg )

= e−
t
ηPr(XG > g ,YG > g)

on Gumbel scale XG : Pr(XG < g) = exp(−e−g ).

η is known as the coefficient of tail dependence.
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Ledford and Tawn [1997] motivated by Bingham et al. [1987]

Assume model Pr(XF > f ,YF > f ) = `(f )f −
1
η

`(f ) is a slowly-varying function, limf→∞
`(sf )
`(f ) = 1

Then:

Pr(XF > f |YF > f ) =
Pr(XF > f ,YF > f )

Pr(YF > f )

= `(f )f −
1
η (1− e−

1
f )−1

∼ `(f )f 1−
1
η

∼ `(f )Pr(YF > f )
1
η
−1

At η < 1 (or limf→∞`(f ) = 0), XF and YF are As.Ind.!

η easily estimated from a sample by noting that LF , the minimum
of XF and YF is approximately GP-distributed:

Pr(LF > f + s|LF > f ) ∼ (1 +
s

f
)−

1
η for large f
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Conditional extremes

Heffernan and Tawn [2004]

Sample {xi1, xi2}ni=1 of variate X1 and X2.

(X1,X2) need to be transformed to (Y1,Y2) on the same standard
Gumbel scale.

Model the conditional distribution of Y2 given a large value of Y1.

Asymptotic argument relies on X1 (and Y1) being large.

Applies to almost all known forms of multivariate extreme value
distribution, but not all.
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(X1,X2)
PIT⇒ (Y1,Y2).

(Y2|Y1 = y1) = ay1 + yb1 Z for large values y1 and +ve dependence.

Estimate a, b and Normal approximation to Z using regression.

(Y1,Y2)
PIT⇒ (X1,X2).

Simulation to sample joint distribution of (Y1,Y2) (and (X1,X2)).

Pros:

Extends naturally to high dimensions

Cons:

Threshold selection for (large number of) models.
Covariates!
Consistency of Y2|Y1 and Y1|Y2 not guaranteed.
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Conditional extremes with covariates

On Gumbel scale, by analogy with Heffernan & Tawn (2004) we propose
the following conditional extremes model:

(Yk |Yj = yj ,Φ = φ) = αφyj + y
βφ
j (µφ + σφZ ) for yj > ψG

j (θj , τ
G
j∗)

where:

ψG
j (θj , τ

G
j∗) is a high directional quantile of Yj on Gumbel scale, above

which the model fits well
αφ ∈ [0, 1], βφ ∈ (−∞, 1], σφ ∈ [0,∞)
Z is a random variable with unknown distribution G
Z will be assumed to be approximately Normally distributed for the
purposes of parameter estimation

Settings:

In a (HS ,TP) case, φ , θj , θk , and dependence is assumed a
function of absolute covariate
In a (HS ,WindSpeed) case, φ = θk − θj , and dependence is assumed
a function of relative covariate
Jonathan, Randell, Wu Modelling extreme environments Oslo, April 2013 50 / 57



Multivariate: applications
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Environmental design contours derived from a conditional extremes
model for storm peak significant wave height, HS , and corresponding peak
spectral period, TP .
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Current profiles with depth (a 32-variate conditional extremes analysis) for
a North-western Australia location.
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Fourier directional model for conditional extremes at a Northern North
Sea location.
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Current developments
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p-spline and random field approaches to spatio-temporal and
spatio–directional extreme value models.

Composite likelihood: model (asymptotically dependent)
componentwise–maxima.

Censored likelihood: allows extension from block-maxima to
threshold exceedances.

Hybrid spatial dependence model: incorporation of asymptotic
independence using inverted multivariate extreme value distribution.
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Takk for oppmerksomheten!

philip.jonathan@shell.com
www.lancs.ac.uk/∼jonathan
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