Return values subject to uncertainty

Philip Jonathan

Lancaster University, Department of Mathematics & Statistics, UK. Shell Research Ltd., London, UK.

ISSC-ITTC Workshop (Slides at www.lancs.ac.uk/~jonathan)

Jonathan Return values June 2021 1 / 23

Acknowledgement

- Lancaster: Jon Tawn and Jenny Wadsworth
- Shell: David Randell
- Return values: Jonathan et al. [2021]
- A better approach: Towe et al. [2021]

Ionathan

Overview

- Return values
- Problem: incorporating estimation (epistemic) uncertainty
- Possible estimators
- Theoretical orderings of estimators
- Simulation study
- Conclusions and a better way

What is a return value?

- Random variable *A* represents the maximum value of some physical quantity *X* per annum
- The *N*-year return value x_N of *X* is then defined by the equation

$$F_A(x_N) = \Pr(A \le x_N) = 1 - \frac{1}{N}$$

• Typically $N \in [10^2, 10^8]$ years

4/23

Jonathan Return values June 2021

An alternative definition

- \circ Random variable A_N represents the N-year maximum value of X
- The *N*-year return value x'_N of *X* can be found from F_{A_N} for large *N*, assuming independent annual maxima since

$$F_A(x_N) = 1 - \frac{1}{N}$$

 $\Rightarrow F_{A_N}(x_N) = \left(1 - \frac{1}{N}\right)^N \approx \exp(-1)$

June 2021

5/23

Jonathan Return values

Estimating a return value

- To estimate x_N , we need knowledge of the distribution function F_A of the annual maximum
- We might estimate F_A using extreme value analysis on a sample of independent observations of A
- \circ Typically more efficient to estimate the distribution $F_{X|X>\psi}$ of threshold exceedances of X above some high threshold ψ using a sample of independent observations of X, and use this in turn to estimate F_A and x_N
- How is this done?

Jonathan Return values

6/23

Estimating a return value

 \circ Asymptotic theory suggests for high threshold $\psi \in (-\infty, \infty)$ that

$$F_{X|X>\psi}(x|\psi,\sigma,\xi) = 1 - \left(1 + \frac{\xi}{\sigma}(x - \psi)\right)_{+}^{-1/\xi}$$

for $x > \psi$, shape $\xi \in (-\infty, \infty)$ and scale $\sigma \in (0, \infty)$

- The full distribution of *X* is $F_X(x) = \tau + (1 \tau)F_{X|X>\psi}(x)$ where $\tau = \Pr(X \le \psi)$
- Thus

$$F_A(x) = \Pr(A \le x) = \sum_{k=0}^{\infty} f_C(k) F_X^k(x)$$

where C is the number of occurrences of X per annum, with probability mass function f_C to be estimated (say with a Poisson model with parameter λ)

So what's the problem?

Jonathan Return values June 2021 7 / 23

Parameter uncertainty

- x_N can be estimated easily in the absence of uncertainty
- In reality, we estimate parameters λ , ψ , σ and ξ from a sample of data, and we cannot know their values exactly
- How does this epistemic uncertainty affect return value estimates?
- A number of different plausible estimators for return values under uncertainty
- Different estimators perform differently (bias and variance)
- Which estimators are likely to perform reasonably in fairly general circumstances?
- Is it even sensible or desirable to estimate return values?

Return values

8/23

Incorporating uncertainty

• If a distribution $F_{Y|Z}$ of random variable Y is known conditional on random variables Z, and the joint density f_Z of Z is also known, the unconditional predictive distribution \tilde{F}_Y can be evaluated using

$$\tilde{F}_{Y}(y) = \int_{\zeta} F_{Y|Z}(x|\zeta) f_{Z}(\zeta) d\zeta$$

• Th expected value of deterministic function g of parameters Z given joint density f_Z is

$$E[g(\mathbf{Z})] = \int_{\zeta} g(\zeta) f_{\mathbf{Z}}(\zeta) d\zeta$$

 $\circ \zeta = (\lambda, \psi, \sigma, \xi), Y = A \text{ (or } Y = A_N)$

(ロ) (레) (토) (토) (토) (연)

9/23

Return value estimated using expected values of parameters, $x_N(E[\mathbf{Z}])$

• Motivated by the widespread approach of ignoring uncertainty in parameters ζ for estimation of return values

$$x_{N1} = x_N(E[\mathbf{Z}])$$

- \circ Simply plug in the mean parameter estimates $E[\mathbf{Z}] = \int_{\zeta} \zeta f_{\mathbf{Z}}(\zeta) \ d\zeta$
- A related estimator converging to x_{N1} with increasing N, would be $x'_N(E[\mathbf{Z}])$
- Similar choices of estimator could be based on mode(Z), median(Z), ...

◆□ → ◆□ → ◆ 差 → ● ● りへの

Jonathan Return values June 2021 10 / 23

Expected quantile of distribution of *A* with NEP 1 - 1/N, $E[x_N(\mathbf{Z})]$

$$x_{N2} = E[x_N(\mathbf{Z})] = \int_{\zeta} x_N(\zeta) f_{\mathbf{Z}}(\zeta) d\zeta$$

- Solve for quantile $x_N(\zeta)$ of the distribution of A with NEP 1-1/N for a large number of parameter choices ζ , and then take the mean
- A related estimator $E[x_N'(\mathbf{Z})]$ is the expected quantile of distribution of A_N with NEP $\exp(-1)$ (converges to x_{N2} as N increases)

(□) (∰) (Ē) (Ē) Ē 90,0

Jonathan Return values June 2021 11 / 23

Quantile of predictive distribution of A with NEP 1 - 1/N, $\tilde{Q}_A(1 - 1/N)$

First calculated the predictive distribution \(\tilde{F}_A \)

$$\tilde{F}_A(x) = \int_{\zeta} F_{A|Z}(x|\zeta) f_{Z}(\zeta) d\zeta$$

integrating over parameter uncertainty

• Then find the $1 - \frac{1}{N}$ quantile of \tilde{F}_A

$$\tilde{F}_A(x_{N3}) = 1 - \frac{1}{N}$$

- Write briefly as $x_{N3} = \tilde{Q}_A(1 1/N)$, where \tilde{Q}_A is the predictive quantile (or inverse) function corresponding to \tilde{F}_A
- This would be the "obvious go-to" Bayesian estimate

4□ > 4ⓓ > 4틸 > 4틸 > 틸 ♥9

Quantile of predictive distribution of A_N with NEP $\exp(-1)$,

$$\tilde{Q}_{A_N}(\exp(-1))$$

 \circ First calculated the *N*-year predictive distribution F_{A_N}

$$\tilde{F}_{A_N}(x) = \int_{\zeta} F_{A_N|\mathbf{Z}}(x|\zeta) f_{\mathbf{Z}}(\zeta) d\zeta$$

integrating over parameter uncertainty

 \circ Then find the $\exp(-1)$ quantile of \tilde{F}_{A_N}

$$\tilde{F}_{A_N}(x_{N4}) = \exp(-1)$$

• Write briefly as $x_{N4} = \tilde{Q}_{A_N}(\exp(-1))$, where \tilde{Q}_{A_N} is the predictive quantile function corresponding to \tilde{F}_{A_N}

Jonathan Return values June 2021 13 / 23

Summary

- Take average over uncertain parameters, and plug in to return value calculation $q_1 = x_{N1} = x_N(E[Z])$
- Calculate return value for all sets of estimates independently, then take average $q_2 = x_{N2} = E[x_N(Z)]$
- Calculate "average" annual maximum distribution, then take 1-1/N quantile $q_3 = x_{N3} = \tilde{Q}_A(1 - 1/N)$
- Calculate "average" N-year maximum distribution, then take $\exp(-1)$ quantile $q_4 = x_{N4} = \tilde{Q}_{A_N}(\exp(-1))$

- Without parameter uncertainty, all these estimators are equivalent
- With parameter uncertainty, all these estimators are different

Ionathan Return values June 2021

Theoretical inequalities

We can show that the estimators have orderings, e.g.

Inequality		Condition
<u>I1</u>	$q_3 \ge q_4$	Always
I2	$q_2 > q_0$	$\xi_1 > \max(\xi_0, 0)$
I3	$q_3 > q_2$	$1 > \xi_1 > \max(\xi_0, 0)$
I4	$q_1 > q_0$	$\xi_0, \xi_1 < 0, \sum_i \sigma_i / \sum_i (-\xi_i) > \sigma_0 / (-\xi_0)$
I5	$q_2 > q_0$	$\xi_0, \xi_1 < 0, (1/m) \sum_i (\sigma_i/(-\xi_i)) > \sigma_0/(-\xi_0)$
_I6	$q_3 > q_0$	$\xi_0, \xi_1 < 0, \max_{k \in \{1, 2, \dots, m\}} (\sigma_k / (-\xi_k)) > \sigma_0 / (-\xi_0)$

- GP parameter set $\mathcal{Z} = \{\xi_i, \sigma_i\}_{i=1}^m$ ordered s.t. $\xi_1 = \operatorname{argmax}_i(\xi_i)$
- ξ_0 and σ_0 are the true underlying data-generating parameters
- Condition $N \to \infty$ applies to all these cases
- Not specific to maximum likelihood estimation of GP parameters

June 2021

15 / 23

Simulation study

- Data from GP distribution, $\xi_0 \in -0.4, -0.35, ..., +0.1, \sigma_0 = 1$
- Sample sizes $n=10^2$, 10^3 and 10^4 , and $\lambda=10^2$ events annually
- Return periods $N = 10^2$ and 10^4 years
- $m = 10^5$ sample realisations
- Fractional bias in return value

$$\frac{q_j}{q_0} - 1$$

Bias in exceedence probability

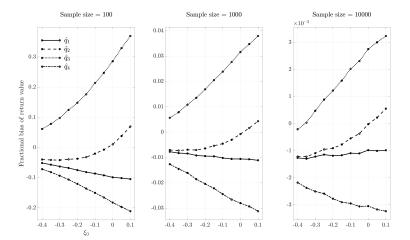
$$\Pr(A > q_j) - \frac{1}{N}$$

Bias in log exceedence probability (important for estimation)

$$\log_{10}(\Pr(A > q_j)) - \log_{10}(\frac{1}{N})$$

Jonathan Return values June 2021 16 / 23

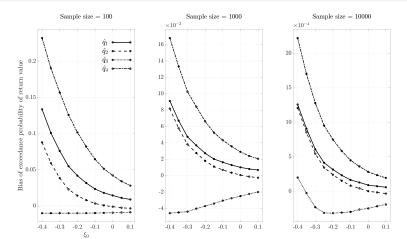
Fractional bias in return value, N = 100 years, $\lambda = 100$ annually



- o $n/\lambda \Rightarrow 1$, 10, 100 years of data to predict 100 year return value
- $q_3 > q_2 > q_1 > q_4$, and q_2 shows lowest bias

Jonathan Return values June 2021 17 / 23

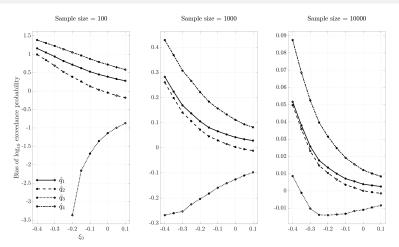
Bias in exceedance probability, N=100, $\lambda=100$



- q₃ underestimates exceedance probability
- q_2 shows lowest bias for $\xi_0 > -0.2$

Jonathan Return values June 2021 18 / 23

Bias in log exceedance probability, N=100, $\lambda=100$



- \circ q_3 underestimates exceedance probability (huge for small n)
- q₂ generally shows lowest bias

Ionathan

Return values June 2021 19 / 23

Findings

- Different estimators ⇒ different estimates and systematic bias
- Why? $E(g(\mathbf{Z})) \neq g(E(\mathbf{Z}))$ in general
- ∘ Worse for small sample size n, and \rightarrow 0 as $n \rightarrow \infty$
- $\circ \ E[x_N(\mathbf{Z})]$ less biased, estimated from F_A or F_{A_N}
- $\tilde{Q}_A(1-1/N)$ is "obvious go-to", but poor performance \Rightarrow Intuitively, better to take averages at end of calculation **only**
 - ⇒ Decision-theoretic approach better
- Maximum likelihood estimation used here; other inference schemes examined also; lots of other estimators possible!
- o Uncertainties in return values are also large!
- Do safety factors elsewhere in the design process require return values with assumed characteristics?
- Discussion of differences in return values only makes sense when they have been calculated using the same approach

Ionathan Return values June 2021 20 / 23

Decision-theoretic approach

- \circ Consider structural loading R over some period for structural strength r_0
- Define a loss function, e.g. $L(R|r_0) = \mathbb{I}(R > r_0)$
- Estimate conditional distribution $F_{R|\mathbf{Z}}(r|\zeta)$ for uncertain environmental parameters ζ (computationally challenging!)
- Calculate expected loss

$$E(L|r_0) = \int_{\zeta} \int_{r} L(r|r_0) f_{R|\mathbf{Z}}(r|\zeta) f_{\mathbf{Z}}(\zeta) dr d\zeta$$

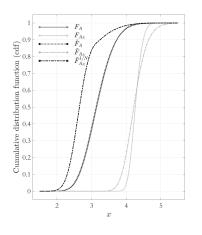
- Adjust r_0 so that $E(L|r_0)$ is acceptably small
- Propagate uncertainty in full through design calculation, and integrate over uncertain parameters at the very end
- No need for return values

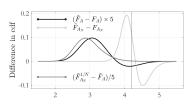
Jonathan Return values June 2021 21 / 23

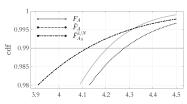
References

- P. Jonathan, D. Randell, J. Wadsworth, and J.A. Tawn. Uncertainties in return values from extreme value analysis of peaks over threshold using the generalised Pareto distribution. Ocean Eng., 220:107725, 2021.
- R. Towe, E. Zanini, D. Randell, G. Feld, and P. Jonathan. Efficient estimation of distributional properties of extreme seas from a hierarchical description applied to calculation of un-manning and other weather-related operational windows. Submitted to Ocean Engineering, draft at www.lancs.ac.uk/~jonathan, 2021.

q_3 , q_4 and their uncertainties







• $\xi_0 = -0.2$, sample size $n = 10^3$ and N = 100 years

Jonathan Return values June 2021 23 / 23