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Outline

Motivation

� A method for detecting, locating and quantifying sources of gas emissions
to the atmosphere

� From remotely obtained atmospheric gas concentration measurements

Issues

� Potentially large background gas concentrations (≈ 1800ppb for CH4)

� Need to detect small signals (≈ 5− 35ppb for CH4)

� Gas dispersion determined by prevailing wind conditions

Approach

� Plume model represents gas dispersion between source and measurement
location

� Measured concentration is sum of contributions from sources and
relatively smooth background

� Infer source locations, source emission rates, background level, plume
biases and uncertainties
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Smoke plumes (Gaussian plume in far field)
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Survey aircraft (≈ 50ms−1, ≈ 200m above ground)
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Motivating test applications

Synthetic problem

� Known wind field, sources and background, 10 sources

Landfill

� 2 landfill regions, probable diffuse sources

� Wind field from UK met–office global circulation model

Flare stack

� Single elevated near–point source

� Wind field from UK met–office global circulation model

� Coastal location
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Synthetic problem revealed
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(a) two passes x–y (b) first pass in time (c) second pass in time
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Landfill from above
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Landfill measurements
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Flare stack
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Flare stack measurements (wind direction bias)
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Model formulation

y = As + b + ε

� y: measured concentrations

� A: assumed known from plume model

� s: sources to be estimated

� b: background to be estimated

� ε: measurement error (assumed Gaussian), variance to be estimated

HJGRK, JSM 2012, San Diego Locating gas emissions
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Plume model

� Red: Source height H

� Blue: Source half–width w

� Magenta: Downwind offset δR

� Cyan: Horizontal offset δH

� Green: Vertical offset δV

� ABL height: D

� Horizontal extent: σH = δR tan(γH) + w

� Vertical extent: σV = δR tan(γV )

� Opening angles: γH , γV
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Background model

Requirements

� Positive and smoothly–varying, spatially and temporally

� Basis function representation: b = Pβ

� We use Gaussian Markov random field

� Explicit spatial dependence due to wind transport incorporated

Random field prior

f (β) ∝ exp{−µ
2

(β − β0)TJβ(β − β0)}

� Jβ is sparse, P = I

� Fast estimation

HJGRK, JSM 2012, San Diego Locating gas emissions
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Inference strategy

Initial point estimation

� Sources and background

� Source locations assumed on fixed grid

� Fast estimation of starting solution for Bayesian inference

Subsequent Bayesian inference

� Sources, background, measurement error, wind–field parameters, ...

� Grid-free sources modelled using Gaussian mixture model

� Reversible jump MCMC inference

� Quantified parameter uncertainties and dependencies

HJGRK, JSM 2012, San Diego Locating gas emissions



Int Mdl Inf Rsl Cnc Str PntEst BsnInf

Initial point estimation

Background prior

f (β) ∝ exp{−µ
2

(β − β0)TJβ(β − β0)}

Source prior (Laplace)
f (s) ∝ exp{−λ‖Qs‖1}

Likelihood
f (y|s,β) ∝ exp{− 1

2σ2
ε
‖As + Pβ − y‖2},

Posterior
f (s,β|y) ∝ f (y|s,β)f (s)f (β)

Maximum a-posteriori estimate

argmins,β
1

2σ2
ε
‖As + Pβ − y‖2 + µ

2
(β − β0)TJ(β − β0) + λ‖Qs‖1
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Bayesian inference

Parameters

� Source locations z, “widths” w and emission rates s for mixture of m
sources

� Random field background parameters β

� Measurement error standard deviation σε

� Wind–direction correction δφ

� Others (e.g. plume opening angles)

� Call these θ which can be partitioned {θκ,θκ}

Full conditional
f (θκ|y,θκ) ∝ f (y|θκ,θκ)f (θκ|θκ)

Inference tools

� Gibbs’ sampling

� Reversible jump

� (Metropolis–Hastings)

HJGRK, JSM 2012, San Diego Locating gas emissions
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Synthetic

(a) initial (b) median (c) 2.5% (d) 97.5%
HJGRK, JSM 2012, San Diego Locating gas emissions
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Landfill

(a) initial (b) median (c) 2.5% (d) 97.5%
HJGRK, JSM 2012, San Diego Locating gas emissions
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Flare stack

(a) initial (b) median (c) 2.5% (d) 97.5%
HJGRK, JSM 2012, San Diego Locating gas emissions
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Flare stack

(a) background in time (b) residual vs measured concentration
initial (red); posterior median (black)

Wind direction correction of 18o

HJGRK, JSM 2012, San Diego Locating gas emissions
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Conclusions and on–going work

Conclusions

� Data structure and management

� Flexible inference using combination of standard methods

� Good performance on synthetic and field applications

� Scalability from iterative estimation

On-going work

� Multiple flights, multiple wind data sources

� Enhanced plume model

� Internal calibration

� Improved prior characterisation of sources, intermittent sources

� Simultaneous inference using multiple measurement types

� Optimal design

� Line-of-sight applications

Slides and extended abstract at www.lancs.ac.uk/∼jonathan
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