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a b s t r a c t

Changepoint analysis is used to detect changes in variability within GOMOS hindcast time-series for

significant wave heights of storm peak events across the Gulf of Mexico for the period 1900–2005. To

detect a change in variance, the two-step procedure consists of (1) validating model assumptions per

geographic location, followed by (2) application of a penalized likelihood changepoint algorithm.

Results suggest that the most important changes in time-series variance occur in 1916 and 1933 at

small clusters of boundary locations at which, in general, the variance reduces. No post-war

changepoints are detected. The changepoint procedure can be readily applied to other environmental

time-series.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In the Gulf of Mexico, hindcasts such as GUMSHOE (Ocean-
weather, 1990) and GOMOS (Oceanweather, 2005) are frequently
used in offshore design. Motivated in part by recent extreme
hurricane events, some authors have examined hindcasts more
critically in recent years. For example, for the 1900–2005 GOMOS
hindcast, Cooper and Stear (2006) suggest that the intensity of
some storms in the early 20th century is underestimated. A
potential cause of underestimation is that meteorologists recon-
structing early storms relied on coastal rather than offshore
observations (see discussion in Section 4). There is a suspicion
within the community that such hindcasts may be inhomoge-
neous in time. Cooper and Stear further suggest that, when pre-
1950 storms are neglected, the six occurrences of category 4+
hurricanes in 2004–5 (Charlie, Ivan, Dennis, Katrina, Rita, Wilma)
do not ‘‘look as extraordinary’’. They also note the presence of a
near-decadal cycle with peaks at around 1970, 1980, 1995 and
2004–5. As a result, the veracity of the pre-1950 portion of the
data set is in doubt, and a number of practitioners currently only
use post-1950 data in design (see for example Berek et al., 2007;
American Petroleum Institute, 2007). Similar discussions also
surround other databases, see for example Landsea et al. (2004).
ll rights reserved.
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Here, we investigate potential changes in variance (as opposed to
change in mean or regression) for time series of significant wave
height for the 1900–2005 GOMOS hindcast. At each of 2658 locations
in the US sector of the Gulf of Mexico (see for example Fig. 5(a)), we
isolate storm peak significant wave height, HS

sp, for 315 hurricane
events (see Section 3 for further details of data). A time series plot for
two typical locations, X and Y, are shown in Fig. 1(a) and (c),
respectively. The maximum value of greater than 12 m occurs shortly
before 1920 at both X and Y. Fig. 1(a) and (c) show the mean profile
for HS

sp across all spatial locations, together with a 95% confidence
band for the mean. Variation at X and Y in time is consistent with Gulf
mean variation, which interestingly shows an upward trend in HS

sp

peaking before 1920. Fig. 1(b) and (d) give corresponding histograms,
which suggest a heavy-tailed distribution for HS

sp.
Detecting changes in time series quickly and accurately is of

interest to a wide range of disciplines, including bioinformatics (Lio
and Vannucci, 2000; Erdman and Emerson, 2008), network traffic
analysis (Kwon et al., 2006), climatology (Reeves et al., 2007),
econometrics (Andrews, 1993; Perron and Yabu, 2009) and engineer-
ing (Labeyrie, 1991; Willsky and Jones, 1976). Given a sample of time
series fyt : tA1, . . . ,ng, a changepoint occurs if there exists a time k,
where 1rkrn�1, such that the distributions of {y1,y,yk} and
{yk+1,y,yn} are different with respect to some criterion. For example:
(a)
 Change in mean: in this case yt has mean

mt ¼
m1, trk

mn, tZkþ1

(
,

where m1amn.
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Fig. 1. Time plots and histograms of Hsp
S for two typical locations, X ((a) and (b)) and Y ((c) and (d)). A smoothed polynomial fit of the mean (across locations at a given time)

and a 95% confidence band for the mean is also shown.
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(b)
 Change in regression: Assume that Xt and Zt are mutually
independent and identically distributed sequences with
EðZtÞ ¼ 0, EðZ2

t Þ ¼ 1, b1abn and g1agn. Then

Yt ¼
b1þg1XtþsZt , trk

bnþgnXtþsZt , tZkþ1

(
:

Change in variance: in this case yt has variance
(c)
s2
t ¼

s2
1, trk

s2
n, tZkþ1

(
,

where s2
1as2

n.
We are typically interested in, (i) testing whether a change has
occurred; (ii) estimating the location of the change; (iii) estimat-
ing the degree of change; (iv) providing a measure of confidence
around the estimated changepoint (see Carlstein et al., 1994;
Chen and Gupta, 2000).
This article uses changepoint analysis to identify potential
occurrences (in time) of change in variance of HS

sp, independently
per spatial location for 2658 locations from GOMOS. Section 2
introduces the changepoint method and demonstrates its perfor-
mance on simulated data. Section 3 applies the method to GOMOS
HS

sp. The paper concludes with a discussion and suggestions for
future work.
2. Detecting changes in variance

Several changepoint methods to detect a change in variance
exist, including cumulative sums of squares (Inclan and Tiao,
1994), control charts (Hawkins et al., 2003), Bayesian posterior
odds (Fearnhead, 2006) and penalized likelihood methods (Yao,
1988). We adopt a penalized likelihood approach using the
Schwarz Information Criterion (SIC), proposed by Yao (1988).
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Changepoint detection, per location in GOMOS, proceeds as a
two-step estimation. In the first step, we estimate the most likely
time point in the time series corresponding to a changepoint
using maximum likelihood. Then, once the most likely time point
has been estimated, we use a penalized likelihood deviance to
estimate whether this potential changepoint is more consistent
with random variation in the time series, or whether it should be
considered as a true changepoint.

For a sequence {yi}i¼1
n of independent Normal random

variables with parameters fm,sig
n
i ¼ 1, respectively, we define the

null hypothesis, H0 and the alternative H1, for a change in
variance:

H0 : s1 ¼ s2 ¼ . . . ¼ sn :¼ sð1Þ;

H1 : sð1Þ :¼ s1 ¼ . . . ¼ skaskþ1 ¼ . . . ¼ sn :¼ sð2Þ:

Here, k is the unknown changepoint location, and m, sð1Þ (and sð2Þ)
are unknown parameters. Note the assumptions of constant mean
and Normality throughout. The (negative) log-likelihood of the
sample is given by l¼

Pn
i ¼ 1ðyi�mÞ2=s2

i þ
Pn

i ¼ 1 log2psi. To
estimate k of the changepoint, we calculate l under the
alternative hypothesis, lðH1ðm̂,ŝð1Þ,ŝð2ÞÞ; kÞ, independently for each
kAð2 : n�2Þ. The estimated changepoint location k̂ is defined as
k̂ ¼ argminklðH1ðm̂,ŝð1Þ,ŝð2ÞÞ; kÞ.

Having estimated k̂, the Schwarz penalized (negative) log-
likelihood ln is given by l� ¼ lþ q

2 logn, where q is the number of
parameters in the models corresponding to the null hypothesis
(q¼2) and the alternative (q¼3). The deviance statistic
l¼ l�ðH1ðm̂,ŝð1Þ,ŝð2ÞÞ; k̂Þ�l�ðH0ðm̂,ŝð1ÞÞÞ is used in a significance
test. The null hypothesis (of no change at k̂) is rejected when
l4ca for Type I error rate a and critical value ca (see Chen and
Gupta, 2000). Note that only the order of data is required for
analysis; precise times of storm peak events are not incorporated.

To find multiple changepoints, we first apply the detection
method to the whole time series. If no changepoint is detected we
stop. Otherwise we partition the time series at the changepoint
and apply the detection method to each partition independently.
This procedure is iterated (see Algorithm 1) until no further
changepoints are detected. As we are effectively re-analyzing the
time series at each iteration the confidence level, a, is no longer
the overall Type I error for the analysis. An efficient variant of the
0.00
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Algorithm 1. The Changepoint Algorithm
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Input:
 A set of data of the form, (y1,y2,y,yn).
A test statistic lð�Þ dependent on the data.
An estimator of changepoint position k̂ð�Þ.

A rejection threshold ca.
Initialise:
 Let C¼ |, S ¼ f½1,n�g.
Iterate while Sa|
1. Choose an element of S; denote this element as [s, t].

2. If lðys:tÞoca, remove [s, t] from S.

3. If lðys:tÞZca then:
� remove [s, t] from S;

� calculate r¼ k̂ðys:tÞþs�1 and add r to C;
� if ras add [s, r] to S;
� if rat�1 add [r+1, t] to S.

Output the set of changepoints recorded C.

To quantify the performance of the changepoint detection
method, we conduct a brief simulation study using time-series
realizations of length 200. The first 100 iid data points were taken
from a standard normal distribution, the second 100 data points
were simulated from a normal distribution with mean 0 and
variance s2. We considered six scenarios, each with different values
of s: s2 ¼ 1, 1.25, 1.5, 2, 3 and 4. The first scenario, corresponding to
that of no changepoint, is used to estimate the false-positive rate.
Remaining scenarios correspond to increasingly large changes in
variance. We simulated 10,000 independent data sets for each
scenario. Fig. 2(a) shows response operating characteristic (ROC)
curves of empirical Type I error against empirical power. As the ratio
of variances increases, more power is available to detect changes
correctly. Satisfactory power is obtained for variance ratios greater
than 3. As Fig. 2(b) demonstrates, for small changes of variance
(variance ratio r2), we cannot detect changes with confidence. The
simulation study suggests that, when looking for a large change
(variance ratio Z3), one should use a small a value to ensure that
the true location of the change is detected. A more comprehensive
related study has been conducted by Eckley et al. (2010).
Index

5

50 100 150 200

oint (true value is 100) for fixed a¼ 0:05 and varying s.
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3. GOMOS analysis

We consider storm peak significant wave height values from
the proprietary GOMOS Gulf of Mexico hindcast Study (Ocean-
weather, 2005), for the period September 1900–September 2005
inclusive. Data are available (at 30-min intervals) for a total of
4363 grid locations, at a grid spacing of 0.1251 in both latitude and
longitude. Following the approach of Jonathan and Ewans (2009),
we retain 2658 ‘‘non-boundary’’ locations defined as follows. At a
non-boundary location, it is possible to place a square box of
dimensions 11�0.1251 centered at the location, such that all
locations in the box belong to the full hindcast. In this way, non-
boundary locations do not include coastal US regions and deep-
water locations near Mexican water. The 315 storm events were
isolated, common to all non-boundary locations. For each storm
period for each location, we isolated storm peak significant wave
height, HS

sp for subsequent analysis.
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Fig. 3. Time plots and histograms of Box–Cox transformed Hsp
S for two typical locations

locations at a given time) and a 95% confidence band for the mean is also shown.
For each of the 2658 spatial locations independently, we apply
the changepoint method (as described in Section 2) to identify
changes in variance with the time series for HS

sp. However, as
noted in Section 2, we must first confirm that distributional
assumptions underlying the changepoint method are not violated.

Box–Cox transformation to Normality: Fig. 1(b) and (d) show that
the distribution of HS

sp is heavy-tailed. Yet the changepoint method
described is appropriate only for Normally distributed data. We
cannot therefore proceed with changepoint analysis until data are
transformed to approximate Normality using the Box–Cox trans-
formation (Cunha and Guedes Soares, 1999). Transformation of
variables has been used in a number of contexts within the ocean
engineering literature. For example, Ferreira and Guedes-Soares
(2002) use the Box–Cox transformation in their approach to model
significant wave height and peak spectral period jointly. Eastoe
and Tawn (2009) use the transformation as a preprocessing step
to model non-stationary time-series in extreme value analysis.
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For our analysis, the parameter l in the Box–Cox transform is
selected for each location so that the distribution of the
transformed data is approximately Normal. Following transforma-
tion, the corresponding time series plots and histograms (in Fig. 3,
for locations X and Y, following the format of Fig. 1) show that time
series are now approximately Normal. A Kolmogorov–Smirnov test
for Normality (Smirnov, 1939) confirms this.

First-differencing to remove mean fluctuation: Fig. 3(a) and (c)
also show the Gulf mean trend in HS

sp following Box–Cox
transformation. It is clear that, at our two typical locations X

and Y, and through the Gulf, the assumption of constant mean
required for application of the changepoint method cannot be
justified. However, after first-differencing the time series,
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the mean (across locations at a given time) and a 95% confidence band for the mean is al

of a changepoint at location Y, see also Table 1.
de-trended data (Fig. 4(a) and (c)) appear to have approximately
constant mean in time at X and Y, respectively; the mean profile is
also constant in time. Moreover, data at X and Y are still
approximately Normally distributed according to Fig. 4(b) and
(d). This is confirmed per location using a Kolmogorov–Smirnov
test for Normality.

Changepoints detected: Having ensured that distributional
assumptions are not violated, we proceed with changepoint
analysis. Separate analyses were performed for each of 2658
GOMOS locations under consideration. A relatively small number
of significant changepoints were detected. Interestingly times of
occurrence of these changepoints show considerable clustering, as
illustrated in Table 1. For different levels of nominal significance,
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Table 1
Results of changepoint analysis on first differenced Box–Cox transformed significant wave heights at each of 2658 locations.

First differenced Box-Cox transformed significant wave heights

a No. of significant locations with storm at date (yyyy–mm)

(1900–10) (1905–10) (1916–11) (1925–09) (1925–12) (1933–09)

0.1 3 3 55 5 10 25

0.05 2 – 29 – – 2

0.01 – – – – – –
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a, the table shows that changepoints are detected in October
1900, October 1905, November 1916, September 1925, December
1925 and September 1933. The most prevalent changepoint time
is November 1916, for which changepoints are detected at 55 of
the 2658 locations (at a¼ 0:1). Spatially, changepoints tend to
occur at locations near the boundaries of our GOMOS region,
as illustrated in Fig. 5(a) (for a¼ 0:1) and 5(b) (for a¼ 0:05).
In Fig. 5(a) and (b), points are coloured and sized according to the
estimated variance ratio (sð2Þ=sð1Þ or sð1Þ=sð2Þ, whichever is larger).
The majority (71%) of all changepoints detected correspond to
decreases in variance.

As expected, the number of significant changepoints decreases as
the confidence level for the changepoint test increases. The optimum
confidence level depends on the ratio of pre to post changepoint
variances (see Section 2). For detecting variance change ratios of
between 2 and 3, a¼ 0:1 is optimal. At this level, changepoints were
found at 101 individual spatial locations. To verify we examined pre
to post change variances for each location. Of the 101 changepoints,
42 had a variance ratio between 2 and 3.

For detecting a change ratio of between 3 and 4, a¼ 0:05 is
appropriate. Fig. 5(b) shows locations where a change in variance
was detected at the 0.05 level, points coloured black corresponding
to ratios larger than 3. Ratios for the two black locations in Fig. 5(b)
are particularly large (b4). However, as there are no changes in
variance found at the 0.01 level, we conclude that these
changepoints are probably just due to random variation. This
appears reasonable given the date of the change (October 1900).
4. Discussion

This paper discusses a penalized likelihood approach to detect
changes in variance in oceanographic time-series data. The
analysis requires two modifying steps to ensure that assumptions
underlying the changepoint method are satisfied: (i) a Box–Cox
transformation to Normality, followed by (ii) de-trending using
first differences. A simulation study of the performance of the
changepoint method suggests that a relatively large change in
variance is required for detection with reasonable certainty.

Interestingly, the changepoints detected correspond to specific
events in the period 1900–1933. Somewhat surprisingly, no
changepoints are detected post 1933 for values of parameter a
considered. This suggests that changes occurring pre 1933 are
more significant than anything after 1933, and we might infer
that the period 1934–2005 provides a relatively stable interval (in
terms of variance) for design purposes. There is a solid body of
knowledge concerning developments of observational and nu-
merical modelling contributing to the hindcast post-war, which
we might have anticipated would be reflected in changepoints in
storm peak significant wave height from GOMOS. For instance:
pre-1944, observations of hurricanes relied mainly on land-
crossings and occasional ship reports. From 1945 to 1960, early
aerial reconnaissance observations became available; in the
period 1960 to 1990, improved areal reconnaissance (at increas-
ing frequency) and satellite data could be used; post-1990, yet
further improvements to observational and modelling methods
occurred. Yet it appears from the current analysis that uncertainty
of observational data pre 1934 might be of greater consequence in
terms of variance of storm peak significant wave height. The
apparent clustering of detected changepoints in time and space
requires further explanation.
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There is also interest in assessing the spatial variability of HS
sp in

the Gulf of Mexico. To investigate this, and to demonstrate the
flexibility of the changepoint method for variance established in
Section 2, we performed a brief study of local spatial variance in time.
At each of the 2658 spatial locations, we calculated (per storm event)
the variance, s2

ij of HS
sp across an 11�11 spatial neighbourhood

centered at the location of interest for each storm i¼1,y,315 and
spatial location j¼1,y,2658. We then seek to detect changes in
variance (in time) of fs2

ijg
315
i ¼ 1 for each j¼1,y,2658. To satisfy

distributional assumptions, Box–Cox transformation to Normality,
followed by first-differencing, was necessary. Changepoints in
October 1900 were the only significant events at all a levels.

One criticism of the current approach is the impact of data
transformations to satisfy assumptions which underpin the
changepoint method; in particular, whether both Box–Cox trans-
formation and first differencing might alter inherent data structure
and therefore the detection of changepoints. For identification of
changepoint times this approach is valid as we preserve the order
of the data. However, these are concerns if one wished to estimate
values of variance changes. To address this concern, we might
extend the current method to incorporate alternative (Weibull or
Generalized Pareto) distributional assumptions. This would, we
believe, be a valid and interesting extension to the changepoint
literature, but would need accompanying numerical estimation of
method performance under heavy-tailed assumptions. To avoid
prior removal of non-constant mean, we might use Box–Cox
transformed data (which pass the Normality test) and monitor for
changes in both time series mean and variance. This is a more
challenging problem, but ideas from Dynamic Linear Modelling
suggest how this adaptation might be achieved. It would be useful
to evaluate numerically the effects of Box–Cox transformation on
the performance of the changepoint method and to consider
alternative approaches, such as fractional differencing (Granger,
1986), for de-trending. We might consider fully non-parametric
changepoint methods, applied directly to unadjusted data; how-
ever, there are currently few reliable approaches. Future work in
this area should also include detection of changes in higher order
structure or distributional quantiles; an extreme value analysis
may find that the number of extreme events has changed over
time. If the assumption of a parametric distribution proves
complicated or contrived, a wavelet approach for detecting changes
within non-stationary time series may be preferred.
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