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Abstract

This paper compares the modelling of non-stationary extreme events using such parametric models
with local parametric and semi-parametric approaches also motivated by extreme value theory. Specifi-
cally, three estimators are compared, based on (a) (local) semi-parametric moment estimation, (b) (local)
maximum likelihood estimation and (c) spline-based maximum likelihood estimation. Inference is per-
formed in a sequential manner, highlighting the synergies between the different approaches to estimating
extreme quantiles, including the T -year level and right endpoint when finite. We present a novel heuris-
tic to estimate non-stationary extreme value threshold with exceedances varying on a circular domain,
and hypothesis-testing procedures for identifying max-domain of attraction in the non-stationary setting.
Bootstrapping is used to estimate non-stationary confidence bounds throughout. We provide step-by-step
guides for estimation, and explore the different inference strategies in application to directional modelling
of hindcast storm peak significant wave heights recorded in the North Sea.

Accepted by Environmetrics, January 2021.

1 Introduction and Motivation

Statistical inference for extreme values has developed rapidly in recent years, offering considerable scope
for practical application in science and engineering. Two seemingly divergent camps of statistical thought
have emerged, proposing different approaches to extreme value modelling, yielding inferences which are
not always obviously in agreement. The work presented in this paper seeks to identify potential points of
contact between these so-called parametric and semi-parametric frameworks for extreme value inference,
to encourage better common understanding and convergence of at least some practices, in particular for
tackling non-stationary extremes.

Non-stationarity is commonplace in environmental extremes; physical processes generate extreme values
which typically vary systematically with covariates, including space and time. For the peaks-over-threshold
(POT) method, where only data exceeding a threshold are used for analysis [Balkema and de Haan, 1974,
Pickands III, 1975], various models have been proposed to capture non-stationarity, including those of
Davison and Smith [1990] and Leadbetter [1991]. In the parametric framework, non-stationarity can be
incorporated within the appropriate distribution function for threshold exceedances by allowing the distri-
bution’s (shape and scale) parameters to vary with covariates [see e.g. Coles, 2001, Chavez-Demoulin and
Davison, 2005, and references therein]. Important assumptions underpinning this approach are that the
data generating process is locally stationary and that observations from the data generating process can be
considered approximately independent given covariates.

Applications of non-stationary extreme value analysis are more numerous using parametric inference. For
example, in an ocean engineering context, Forristall [2004] performs extreme value analysis of significant wave
height for directional octants. This approach (i) accommodates directional non-stationarity (by conducting
independent inferences per directional octant) and (ii) allows extreme quantiles for specific directional sectors
to be estimated. Choice of number and widths of directional sectors is an open problem (see e.g. Ross et al.
2018, Folgueras et al. 2019). Moreover, non-stationary inference provides a number of challenges in practical
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assessment and interpretation of uncertainty and risk (e.g. Jonathan and Ewans 2007, Mackay et al. 2010,
Feld et al. 2019).

The need to incorporate a non-stationary threshold within extreme value inference is well-recognised for
environmental applications. Robinson and Tawn [1997] base their approach on a non-stationary threshold
to characterise the evolution of extreme sea currents. Northrop and Jonathan [2011] propose a covariate-
dependent threshold estimated using quantile regression, and Northrop et al. [2016] propose a cross-validation
procedure for threshold selection. We introduce a method for selection of a non-stationary threshold
amenable to both parametric and semi-parametric approaches to inference. The basic assumption is that on
a narrow region of the directional domain there is a unique physical regime which dictates the tail heaviness
of the underlying distribution although extreme events can become more (or less) frequent. In this work, we
propose a procedure for non-stationary threshold selection, which incorporates a smooth weight function to
describe the varying density of extreme observations with directional covariate on the circular domain. The
smooth weight function avoids inconsistencies stemming from the sectoring approach identified by Forristall
[2004]. The threshold selection procedure is common to both parametric and semi-parametric approaches
used for extreme value estimation.

Estimating the effects of periodic or circular covariates including direction and season in extreme value
analysis is challenging in general. Coles and Walshaw [1994] consider extreme value analysis of wind speed on
a circular domain, and Mendez et al. [2008] a seasonal model for significant wave height. Since extreme value
parameters might be expected to vary smoothly with covariate, various different smooth basis representations
(e.g. splines) for parameters of the conditional distribution of threshold exceedances, as a function of
covariate as useful (see e.g. Ugarte et al. 2012, Oumow et al. 2012, Jones et al. 2016, Zanini et al. 2020).
Covariate basis representations require careful choice of order of complexity to avoid over-parametrisation.
Some representations are attractive since basis functions have compact support on the covariate domain,
facilitating computationally efficient and stable inference (Randell et al. 2016)). In this work we consider a
parametric estimation scheme using a penalised periodic B-spline covariate representation.

An alternative approach to non-stationary extreme value analysis is to estimate parametric and semi-
parametric models which are local on the covariate domain. Local models avoid the complexity of global
covariate representations, particularly problematic for covariate intervals where extreme events are rare. In
this work we consider semi-parametric moment and local parametric maximum likelihood models.

Objectives and layout

The goal in this paper is to explore the synergies between different parametric and semi-parametric ap-
proaches to inference on extreme value data non-stationary with respect to periodic covariate. The default
parametric approach employed is maximum likelihood estimation for peaks over threshold assumed to follow
a generalised Pareto distribution, with spline descriptions of model parameter variation with covariate on
some covariate domain. For comparison, two other covariate-local stationary models are considered: the
first uses local parametric maximum likelihood estimation, and the second local semi-parametric moment
estimation; to achieve the latter we extend the semi-parametric methodology so that inference for quantities
of interest in ocean engineering is possible and meaningful. We develop (a) a new common local heuristic
procedure for extreme value threshold selection for both local parametric and semi-parametric frameworks,
and (b) local inference for generalised Pareto shape parameter, extreme value index and related quantities.

We then present a comparative study showing how the spline parametric, local parametric and semi-
parametric approaches provide complementary inference for directional extremes in terms of (a) extreme
value threshold selection, (b) extreme value model estimation and (c) extreme quantile estimation including
the T -year value and right endpoint of the support of the underlying distribution when is finite. We illus-
trate the approaches in application to directional extreme value analysis of hindcast storm peak significant
wave height recorded at a northern North Sea location offshore Norway. We conduct hypothesis tests to
characterise variation in the max-domain of attraction of the distribution of storm peak significant wave
height as a function of covariate. We hope to demonstrate that spline parametric, local parametric and
semi-parametric approaches provide complementary non-stationary extreme value inference, and that local
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parametric and semi-parametric approaches may be of practical benefit to practitioners in coastal and ocean
engineering and environmental sciences.

The remainder of the paper is organised as follows. The application to directional modelling of Hsp
s is

introduced in Section 2. Section 3 provides theoretical motivation for non-stationarity analysis. Section 4
discusses non-stationary threshold estimation and extreme value model parameter estimation. Section 5 and
Section 6 discuss estimation of extreme value parameters and extreme quantiles. Results of the North Sea
application are presented in Section 7. Finally, Section 8 provides discussion and conclusions. Appendix
A provides theoretical motivation for non-stationary inference on peaks over threshold, and Appendix B
provides algorithms for the estimation of extreme value threshold, spline generalised Pareto inference and
for the overall analysis.

2 Motivating application

The data for the motivating application is described by Randell et al. [2016], consisting of observations
of storm severity, in terms of storm peak significant wave height henceforth referred to as Hsp

s and storm
direction θ at a location in the northern North Sea. Significant wave height Hsmeasures the roughness of
the ocean surface, and can be defined as four times the standard deviation of the ocean surface elevation at
a spatial location for a specified period of observation. Hsp

s is then the maximum value of Hs observed per
time period corresponding to a storm event. Values of Hsp

s can be regarded as approximately independent
given storm peak characteristics.

The application sample is taken from the WAM hindcast of Reistad et al. [2011], which provides time-
series of significant wave height, (dominant) wave direction and season (defined as day of the year, for a
standardised year consisting of 360 days) for three hour sea-states for the period September 1957 to December
2012 at a northern North Sea location in the vicinity of the black disk in the upper panel of Figure 1. A
hindcast is a physical model of the ocean environment, incorporating pressure field, wind field and wind-wave
generation models in particular; the hindcast model is calibrated to observations of the environment from
instrumented offshore facilities, moored buoys and satellite altimeters in the neighbourhood of the location
for a period of time, typically decades. Extreme seas in the North Sea are dominated by winter storms
originating in the Atlantic Ocean and propagating eastwards across the northern part of the North Sea. Due
to their proximity to the storms, sea states at northern North Sea locations are usually more intense than
in the southern North Sea. Occasionally, the storms travel south-eastward and intrude into the southern
North Sea producing large sea states. Directions of propagation of extreme seas vary considerably with
location, depending on land shadows of the British Isles, Scandinavia, and the coast of mainland Europe,
and fetches associated with the Atlantic Ocean, Norwegian Sea, and the North Sea itself. In the northern
North Sea the main fetches are the Norwegian Sea to the North, the Atlantic Ocean to the west, and the
North Sea to the south. Extreme sea states from the directions of Scandinavia to the east and the British
Isles to the south-west are unlikely. The shielding by these land masses is more effective for southern North
Sea locations, resulting in a similar directional distribution but reduced wave heights by comparison with
northern North Sea locations.

At the location of interest, observations of storm peak significant wave height Hsp
s are isolated from

the hindcast time-series using the procedure described in Ewans and Jonathan [2008] as follows. Briefly,
contiguous intervals of significant wave height above a low peak-picking threshold are identified, each interval
assumed to correspond to a storm event. The peak-picking threshold corresponds to a directional-seasonal
quantile of Hswith specified non-exceedance probability, estimated using quantile regression. The maximum
of significant wave height during the storm interval is taken as the storm peak significant wave height Hsp

s .
The values of directional and seasonal covariates at the time of storm peak significant wave height are
referred to as storm peak values of those variables. The resulting storm peak sample consists of 2941 values.
With direction from which a storm travels expressed in degrees clockwise with respect to north, the lower
panel of Figure 1 shows a polar plot of observations of Hsp

s (in metres) versus direction θ.
The land shadow of Norway (approximately the directional interval (45◦, 210◦)) has a considerable effect
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Figure 1: Left: map showing the North Sea location. Right: polar scatter-plot of Hsp
S on the direction θ

from which waves propagate; radial scale of Hsp
s is in metres.

on the rate and size of occurrences with direction. In particular, there is a dramatic increase in both rate
and size of occurrences with increasing direction at around 210◦, corresponding to Atlantic storm events
from the south-west able to pass the Norwegian headland. We therefore expect considerable directional
variability in extreme value parameter estimates for the sample. In contrast, the magnitude of the rate of
change of both rate and size of occurrences with respect to season (not shown, but see Randell et al. 2016) is
lower. Winter storms (approximately from October to March) are more intense and frequent. Only winter
storms with storm peak events occurring in October to March including have been considered further in this
work, corresponding to a sample of 1521 storm peak values.

3 Theoretical motivation for the non-stationary case

In Section 3.1 we first summarise theoretical results and assumptions underpinning extreme value modelling
for the stationary (or omni-directional, or covariate-free) case. In Section 3.2 we then present a framework
for local modelling of non-stationary extremes with covariate over a circular directional domain. These form
the basis of inference schemes presented in Section 4.

3.1 Stationary case

Suppose the available sample consists of realisations of n independent (or weakly dependent) and identically
distributed random variables X1, X2, . . . , Xn. Since the random variables follow the same (unknown) distri-
bution function, for brevity use the symbol X to refer to any of the random variables when there is no need
to be specific. The common distribution function is then F (x) = P (X ≤ x), for every x ∈ R. We denote by
xF the right endpoint of the support of F , namely the ultimate value which bounds all possible observations
from above, xF = sup{x : F (x) < 1}. We note that xF may be less than or equal to infinity.

The extreme value (or extreme types) theorem (Fisher and Tippett 1928, Gnedenko 1943, de Haan
1970) establishes that the limit distribution of linearly normalised partial maxima Mn = max(X1, . . . , Xn)
(informally “block maxima”), with normalising constants an > 0 and bn ∈ R, must be one of only possible
three extreme value distributions: Fréchet, Gumbel or Weibull. These three types can be nested in the
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one-parameter Generalised Extreme Value (GEV) distribution. Specifically, if an and bn exist such that,

lim
n→∞

P
{
a−1n (Mn − bn) ≤ x

}
= lim

n→∞
Fn(anx+ bn) = G(x), (3.1)

for every continuity point of (non-degenerate) G, then G must be a GEV distribution with distribution
function given by:

Gξ(x) = exp
(
−(1 + ξ x)−1/ξ

)
, (3.2)

for all x such that 1 + ξx > 0. We then say that F belongs to the max-domain of attraction of the GEV,
for some ξ ∈ R, and write F ∈ D(Gξ). Parameter ξ is conventionally referred to as the shape parameter
in parametric literature, and the extreme value index (EVI) in semi-parametric literature of extremes. A
max-domain of attraction is thought of as a class enclosing all distribution functions which, in the limit, are
associated with a particular extreme value index ξ. For example, both Cauchy and Student’s t-distribution
with one degree of freedom are found in the same max-domain of attraction D(Gξ), with ξ = 1. The
Fréchet max-domain of attraction, corresponding to ξ > 0, contains all distributions exhibiting polynomial
decay, such as the Pareto, again Cauchy and Student’s t and the Fréchet itself. These distributions have
infinite right endpoint xF . All distribution functions belonging to D(Gξ) with ξ < 0, referred to as the
Weibull max-domain of attraction, are short-tailed with finite xF ; examples include the uniform and beta
distribution. For ξ = 0, a continuity argument gives Gξ=0(x) = exp

(
−e−x

)
, x ∈ R; the corresponding

Gumbel max-domain of attraction (D(Gξ) with ξ = 0, or D(G0)), of particular interest in many applied
fields due to both simplicity of inference and the great variety of distributions possessing an exponential tail
(with either xF < ∞ or xF = ∞). The normal, gamma and log-normal distributions are members of D(G0).

Extreme value inference using block maxima has been practised for many years, from the time of Gum-
bel [1958] in application to hydrology. However, in this paper, inference is based on analysis of threshold
exceedances or peaks over threshold (POT), motivated by characterisation of the max-domains of attraction
above in terms of exceedances of high threshold. Balkema and de Haan [1974] and Pickands III [1975] estab-
lished that the max-domain of attraction condition (3.1) is equivalent to the assertion that the (conditional)
distribution of X given X > u, with u near the right endpoint xF , converges to the generalised Pareto
distribution (GPD) with distribution function 1 + logGξ. Analysis of threshold exceedances is potentially
statistically more efficient than that of block maxima: in the former, all large values of threshold exceedance
in the sample are admitted, including multiple occurrences of large values belonging to same block, which
might be excluded in a block maximum analysis.

The parametric and semi-parametric approaches to extreme value analysis of threshold exceedances
considered in this paper have strong conceptual similarities, and both approaches involve estimation of
three quantities corresponding to threshold, generalised Pareto shape and scale in parametric inference,
and threshold, extreme value index (EVI) and associated scale in semi-parametric inference. There is a
large literature on estimation of shape parameter in parametric inference, and the extreme value index
in semi-parametric inference. In this work we use Maximum likelihood (ML) (Coles 2001, Smith 1987,
Davison and Smith 1990) and moment (M) estimators [Dekkers et al., 1989] as typical parametric and semi-
parametric estimators, due to their popularity. The ML estimator assumes that the limiting generalised
Pareto distribution provides an accurate description of the largest values in the sample, as though the
exceedances over a fixed threshold were drawn from an actual generalised Pareto distribution; this provides
a highly flexible framework for inference. The moment estimator builds on the concept of max-domain
of attraction, and in this sense is model-free; it is more robust: there are seldom any assurances that
exceedances of high threshold actually follow the generalised Pareto form. The moment estimator can be
viewed as intuitive, since its form involves summary statistics like averages. When goodness of fit can assessed
with reasonable accuracy, the ML estimator can be shown to be efficient for the shape parameter. There
is concern however that the maximum likelihood may be influenced by deviations of the true underlying
distribution function from the assumed generalised Pareto, resulting in extrapolation bias. For this reason,
it is sometimes preferable to consider a robust estimator building on moments to lessen the importance of
such deviations, at the expense of increased variance.

5



Viewed parametrically or semi-parametrically, choosing an appropriate extreme value threshold is funda-
mental to inference for peaks over threshold, and involves a typical bias-variance trade-off. If the threshold is
set too high, the set of threshold exceedances is small resulting in increased variance of parameter estimates.
If the threshold is set too low, the variance of the parameter estimate is reduced at the cost of increased
bias. Sensitivity to the extreme value threshold choice is a common critical feature of parametric and semi-
parametric approaches. Confirming the relative stability of estimated shape parameter (or extreme value
index) and high quantiles (such as the T -year level) with near-zero exceedance probability with respect to
threshold is a key diagnostic test for peaks over threshold analysis, addressed further in Section 6.

Given threshold, inference for peaks over threshold in the parametric setting involves estimation of
generalised Pareto shape and scale parameters, the latter being threshold-dependent; for estimation of T -
year levels, we also need to estimate the rate of threshold exceedance. In the semi-parametric setting, we
focus on estimation of extreme value index; scale and location normalising functions (akin to a > 0 and
b ∈ R in (A.5)) required for extreme quantile calculations, are estimated separately.

3.2 Non-stationary case

In the non-stationary setting, we assume that the covariate domain S is a circle, partitioned into m intervals,
with centroids θj , and write Θ for the set {θj}mj=1 of centroids; for directional analysis considered here, we
set S = [0◦, 360◦), and θj = j − 1 for j = 1, . . . ,m = 360. For each θj , we suppose there are n independent
copies

{
Xi(θj)

}n
i=1

of random variable X(θj) with distribution function Fθj (x) = P{X(θj) ≤ x}, x ∈ R. We
also assume that X(θj) and X(θj′) are independently distributed when j 6= j′. We then assume the extreme
value theorem holds on covariate neighbourhood N (θj , h) of half-width h > 0 centred at θj (see Section 4.1).
This means that condition (3.1) holds with respect to Fθj and the shape parameter (or extreme value index)
ξ(θj) governs the tail behaviour of the underlying Fθj . We also assume throughout that changes in the tail
dynamics of the data generating process are smooth, and that ξ(θ) is a smooth (unknown) function of θ ∈ S.
These assumptions justify the non-stationary parametric and semi-parametric inference procedures used in
this work.

The theoretical motivation for the non-stationary case is given in Appendix A, and summarised here.
Suppose that for each θ ∈ S, neighbourhood N (θ, h) contains N(θ) random occurrences of X. We start
by selecting k(θ) threshold exceedances on that neighbourhood, assuming a limiting generalised Pareto
distribution holds for sufficiently large N(θ). Given the initial assumption of (weak) dependence on S, tail
observations from Fθ can be viewed as peaks over threshold at each θ as follows, for any θ ∈ N (θ, h) ⊂ S.
With the notation N = n × m, let XN−k(θ):N denote the (N − k(θ))th neighbourhood-specific threshold
having selected fixed number k(θ) for that neighbourhood. To ensure integrity of statistical analysis on S,
the number k(θ) is defined using a weighting function ω(θj) > 0 so that k(θ) := [k×ω(θ)], with [·] indicating
“integer part of”, and k is the total number of largest observations retained for inference across the whole
of S. For a finite number m of directional sectors θj , the smooth function ω(θ) satisfies

∑m
j=1 ω(θj)/m = 1.

Given threshold u(θ) = XN−k(θ):N , we perform non-stationary extreme value inference for peaks over
threshold. In the parametric setting, inference involves estimation of generalised Pareto shape and scale
parameters which vary on the covariate domain; for estimation of T -year levels, we also need to estimate the
rate of threshold exceedance which also varies with covariate. The semi-parametric approach is concerned
with extrapolation beyond the sample through estimation of extreme quantiles with very small tail prob-
abilities; semi-parametric estimators are typically smooth functionals (averages, quantiles, etc.) of sample
upper order statistics, estimating extreme value index and scale function, in terms of the extreme sample
fraction k(θ)/N .

4 Non-stationary threshold selection

Here we describe an approach to non-stationary threshold selection useful for all of parametric and semi-
parametric settings. The approach exploits a heuristic criterion to select a number k = k(θ) of upper
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order statistics, and hence a random threshold on the covariate domain. Algorithm 1 of Appendix B
provides a simple implementation of the threshold selection procedure. In Section 5 we then discuss how the
estimated threshold is used in extreme value estimation using each of the parametric, local parametric and
semi-parametric approaches. Note that although threshold estimation is made here using either the semi-
parametric moment estimator (Section 4.2) or ML estimation (Section 4.3), any other consistent estimator
would be equally applicable.

4.1 Threshold selection

Let N (θj , h) be the covariate neighbourhood with centre at θj ∈ Θ and fixed radius h > 0 defined by

N (θj , h) = {θ∗ ∈ S : 0 ≤ d(θ∗, θj) ≤ h}, (4.1)

for every θj for an appropriate choice of distance d: in the directional application, we adopt wrapped-
Euclidean distance d(θ∗, θj) := min

{
|θ∗ − θj |, 360− |θ∗ − θj |

}
for θ∗ ∈ S = [0, 360). For each θj , the number

N(θj) of realisations of Xi(θj′), i = 1, . . . , n, θj′ ∈ Θ, in the neighbourhood within lag h of centroid θj is

N(θj) = |C(θj , h)|
and C(θj , h) = {Xi(θj′) | θj′ ∈ N (θj , h), i = 1, 2, ..., n} A judicious choice of h ensures a large enough number
N(θj) is present, so that the extreme value theorem holds on N (θj , h), for every θj .

We now consider a heuristic threshold selection procedure exploiting the relative density of extreme
values in N (θj , h). We seek the optimal number k∗j of the k largest observations in N (θj , h) as threshold
exceedances. Then k∗j is the solution of Sφ(k

∗
j ) = min

k
Sφ(k) with

Sφ(k) =
1

k

∑

i≤k

iφ
∣∣ξ̂i(θj)−median

(
ξ̂1(θj), ξ̂2(θj), . . . , ξ̂k(θj)

)∣∣ (4.2)

where 0 ≤ φ < 0.5, and ξ̂k(θj) is a locally consistent estimator of ξ(θj) using the k largest observations in
N (θj , h). The heuristic procedure (4.2) was introduced in the first edition of Reiss and Thomas (the most
recent edition being Reiss and Thomas 2007) and then studied in detail in Neves and Fraga Alves [2004]. It
facilitates automatic threshold choice, understood intuitively as follows. For small k, the weighted deviations
in (4.2) tend to be large due to the inherently large variance of ξ̂k(θj). As k increases, the summands in (4.2)
are expected to decrease until bias sets in and overrides the variance from which point Sφ(k) is expected to
increase again. Minimising the weighted empirical distance (4.2) is equivalent to optimising the bias-variance
trade-off by exploiting the settled behaviour of estimates {ξ̂k(θj) : k < N(θj)} for appropriate k.

We specify a covariate weight ω(θj′ ; θj) of observations for every θj′ ∈ N (θj , h) ∩ Θ relative to centroid
θj ∈ Θ using a von Mises kernel [cf. Pewsey et al., 2014], such that

ω(θj′ ; θj) :=
Kη(θj′ ; θj)∑

θj′∈N (θj ,h)

Kη(θj′ ; θj)
, (4.3)

with von Mises kernel Kη(θ; θj) := exp{η cos(θ − θj)}/(2πB0(η)) for θ ∈ S, where B0 is the modified Bessel
function of the first kind of order zero B0(η) = π−1

∫ π
0 exp[η cos(θ)]dθ. Concentration parameter η > 0

controls kernel spread: as η increases, the local density becomes more concentrated about θj ; thus η plays
a role similar to bandwidth h in (4.1), regulating degree of directional smoothness. The values of η and h
need to specified carefully during applications to reflect the characteristics of the data generating process,
and the resulting choice of k∗j reflects the extent of stationarity on N (θj , h). The corresponding optimal
estimate for non-stationary threshold is denoted u(θj) for each θj ∈ Θ.

In this section we indicate the dependence of ω(θj′ ; θj) on centroid θj explicitly for clarity. In the
discussion in Appendix A, we write ω(θj′) for notational convenience, with the dependence on θj understood.
We do not claim that this heuristic approach to extreme value threshold specification is the most effective
(e.g with respect to every estimator one might devise for extreme value index), but we have found it useful
in the application to estimation of ξ in Section 7.
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4.2 Semi-parametric estimation

Now we outline semi-parametric estimation of ξk(θj) required for threshold selection above. For each θj ∈ Θ,
we propose an adaption of the extended version of the moment estimator (Dekkers et al. 1989) for ξ(θj),
which incorporates directional weights ω(θj′ ; θj) defined in (4.3). Let h > 0 be a bandwidth such that
h = h(N(θj)) → 0 and k(θ)h → ∞, as N(θj) → ∞. The moment estimator for the extreme value index is
defined as

ξ̂Mk (θj) := M (1)(θj) + 1− 1

2

(
1−

(
M (1)(θj)

)2

M (2)(θj)

)−1
, (4.4)

with

M (l)(θj) :=
∑

C(θj ,h)

ω(θj′ ; θj)
(
logXi(θj′)− logXN(θj)−k,N(θj)

)l
1{Xi(θj′ )>XN(θj)−k,N(θj)

}, l = 1, 2, (4.5)

where XN(θj)−k,N(θj) denotes the (k + 1)th largest value in the observed sample in N (θj , h). Note only the
largest k observations in N (θj , h) contribute in (4.5). Further discussion of the moment estimator is given
in Section 5.1.

4.3 Maximum likelihood estimation

The local ML estimator ξ̂k(θj) for θj ∈ Θ for threshold selection above is obtained by maximising the
directionally-weighted log-likelihood

L
(
ξ(θj), σu(θj)

)
:=

∑

C(θj ,h)

ω(θj′ ; θj) ℓ
(
ξ(θj), σu(θj)|Xi(θj′)−XN(θj)−k,N(θj)

)
1{Xi(θj′ )−XN(θj)−k,N(θj)

>0}, (4.6)

with respect to the parameter pair
(
ξ(θj), σu(θj)

)
∈ (−1,∞)×R

+, with weights ω(θj′ ; θj) as in Section 4.2,
and

ℓ
(
ξ(θj), σu(θj)| y

)
= − log σu(θj)−

(
1 + 1/ξ(θj)

)
log
(
1 + ξ(θj) y/σu(θj)

)
(4.7)

for y = Xi(θj′)−XN(θj)−k,N(θj) when ξ(θj) 6= 0 and ℓ
(
σu(θj)| y

)
= − log σu(θj)− y/σ(θj) otherwise.

5 Non-stationary extreme value estimation

This section considers estimation of extreme value parameters and extreme quantiles. We first present
adapted versions of widely-used semi-parametric estimators for extreme value index and associated scale
function based on a known moving threshold u(θ), θ ∈ S. Then we discuss two classes of parametric
maximum likelihood estimators for generalised Pareto shape and scale. The first is a minor modification
of the local ML estimator introduced in Section 4.3. The second is motivated by a spline representation
of the variation of generalised Pareto shape and scale with respect to covariate. Section 6 then addresses
estimation of extreme quantiles using the estimated parameters.

In this and subsequent sections, we consider the non-stationary extreme value threshold u(θ) to be
determined and fixed; our focus is therefore on characterising threshold exceedances. Regardless of the
approach to extreme value estimation, the heuristic procedure of Section 4 is used to estimate u(θ).

Descriptions of the semi-parametric, local parametric and spline parametric estimation schemes are given
in Sections 5.1-5.3 below.

5.1 Local semi-parametric moment estimation

Given threshold u(θj) for θj ∈ Θ, we adopt the moment estimator for the extreme value index given by

ξ̂Mk (θj) := M (1)(θj) + 1− 1

2

(
1−

(
M (1)(θj)

)2

M (2)(θj)

)−1
(5.1)
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where moments M (l)(θj), l = 1, 2 are calculated using

M (l)(θj) =
1

k(θj)

∑

C(θj ,h)

(
logXi(θj′)− log u(θj)

)l
1{Xi(θj′ )>u(θj)} (5.2)

where k(θj) is the number of threshold exceedances in N (θj , h). Equation 5.2 corresponds to an unweighted
version of the moment estimator used for threshold estimation in Equation 4.5.

This moment estimator is motivated by the asymptotic behaviour of the k(θj)
th upper order statistics

associated with the sample of independent random variables Xi(θj′) − XN(θj)−k(θj),N(θj) on N (θj , h) as
established in the theory of extremes for threshold excesses. Conditionally on XN(θj)−k(θj),N(θj) = u(θj),

their underlying distribution function tends to F [u(θj)](t) = P
(
X(θj) − u(θj) > t|X(θj) > u(θj)

)
, for all

t > 0 [cf. de Haan and Ferreira, 2006, page 90]. Smith (1987) defined the analogous ML estimator in terms
of excesses over a high threshold u. We refer the reader to Appendix A for a precise definition of F [u], and
further details on how it approaches the GPD distribution function.

An associated scale estimator (e.g. de Haan and Ferreira 2006, Section 4.2) necessary for semi-parametric
estimation of extreme quantiles in Section 6 is then given by

âMθj

( N

k(θj)

)
:= u(θj)M

(1)(θj)
1

2

(
1− (M (1)(θj))

2

M (2)(θj)

)−1
, (5.3)

The moment estimator for the scale function a∗θj
(
N/k(θj)

)
is discussed in Appendix A(ii).

5.2 Local maximum likelihood estimation

Given threshold u(θj) for θj ∈ Θ, local ML estimation described of generalised Pareto shape ξ(θj) and scale
σu(θj) is performed by the procedure described in Section 4.3, with all directional weights ω set to unity.
For completeness, the log-likelihood to be maximised is given by

L
(
ξ(θj), σu(θj)

)
:=

∑

C(θj ,h)

ℓ
(
ξ(θj), σu(θj)|Xi(θj′)− u(θj)

)
1{Xi(θj′ )−u(θj)>0}. (5.4)

This formulation incorporates a semi-parametric approach to threshold selection within a local parametric
approach to parameter estimation: conditioned on the random number K = k(θj) of exceedances, random
exceedances of threshold u(θj) can again be viewed as independent identically distributed random variables
with distribution function converging asymptotically to the generalised Pareto (Appendix A).

5.3 Spline-based maximum likelihood estimation

Given non-stationary threshold u(θj) for θj ∈ Θ, we can also estimate a non-stationary generalised Pareto
model using the full sample of threshold exceedances, by allowing generalised Pareto shape ξ and scale σu
to be functions of θ on S. This is the type of analysis typically undertaken in environmental and ocean
engineering settings (see e.g. Northrop et al. 2016). Specifically, we assume a periodic cubic B-spline
representation for the variation of generalised Pareto shape and scale parameters with covariate (see e.g.
Chapter 5 of Wood 2017, Zanini et al. 2020). We then estimate spline coefficients using maximum penalised
likelihood estimation, regulating the roughness of shape and scale with covariate to optimise predictive
performance assessed using cross-validation.

On the index set Θ of covariate values θj , j = 1, 2, . . . ,m, we relate the values ξ(θj), σu(θj) of generalised
Pareto shape and scale to the periodic B-spline basis via basis matrix B with elements Bjb such that

ξ(θj) =

nb∑

b=1

Bjbβ
(1)
b and log σu(θj) =

nb∑

b=1

Bjbβ
(2)
b , θj ∈ Θ, (5.5)
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where nb is the number of basis functions, and the βs are basis coefficients. The sample log-likelihood L is

L(β) =
m∑

j=1

n(θj)∑

i=1

ℓ
(
ξ(θj), σu(θj)|Xi(θj)− u(θj)

)
1{Xi(θj)>u(θj)}, (5.6)

with ℓ(ξ(θj), σu(θj)|Xi(θj)−u(θj)) defined in (4.7). n(θj) denotes the number of observations in the sample at

covariate θj , β
(a) = (β

(a)
1 , β

(a)
2 , . . . , β

(a)
nb

)⊤ for a = 1, 2, and β = (β(1)⊤,β(2)⊤)⊤. We set the number of spline
knots on S to be more than sufficient to capture the anticipated parameter variability with covariate, and
then penalise parameter roughness globally to obtain a model with good predictive performance. Penalisation
is performed using first-order difference penalties for the coefficients in (5.5),

P (a) =

nb−1∑

b=1

(
β
(a)
b+1 − β

(a)
b

)2
+
(
β
(a)
1 − β(a)

n

)2
= β(a)⊤D⊤Dβ(a), a = 1, 2,

with difference matrix D given by:

D =




−1 1 0 0 · ·
0 −1 1 0 · ·
· · · · · ·
· · · · · ·
0 0 · 0 −1 1
1 0 · 0 0 −1



.

The penalised log-likelihood is then:

Lpen(β) = L(β)− λP (1) − κP (2) (5.7)

where λ and κ are smoothing parameters chosen to maximise cross-validated predictive likelihood. In
the application illustrated in Section 7, cross-validation is applied as follows. Each iteration of the cross-
validation consists in using a bootstrap resample (of the original sample of threshold exceedances) as training
set, and observations omitted from the bootstrap resample as test set. Note that the test sets corresponding
to different bootstrap resamples may therefore overlap. The training set is used to estimate the model
parameters for a grid of combinations of λ and κ, and the test set to assess prediction performance using
predictive log likelihood. The choices of λ and κ provide best predicted performance are adopted for
subsequent inferences. The procedure is outlined in Algorithm 2 in Appendix B.

6 Estimation of non-stationary extreme quantile

In this section we use extreme value estimates from Section 5 to calculate extreme quantiles, including the
right endpoint of the distribution of X(θ) when this is finite, in the semi-parametric setting (Section 6.1)
and parametric setting (Section 6.2). The stepwise inference procedure is given in Algorithm 3 of Appendix
B.

A common motivation applies for estimation of extreme quantiles in both parametric and semi-parametric
settings. Suppose that Fθ is the actual distribution function of the data generating process at direction θ ∈ S
and Qθ the corresponding quantile function; that is, Qθ = F←θ , with the left arrow indicating a generalised
inverse. Conditions (A.2) and (A.3) of Appendix A ensure that an extreme quantile F←θ (1 − p), with
1− p > Fθ(u(θ)) for some high threshold u(θ) and hence very small probability p, depends only on the tail
of the distribution function Fθ. Consequently, we can estimate an extreme quantile using linear functional
b̂θ + âθ Q

H
θ (1 − p), with QH

θ relating to a generalised Pareto distribution function Hθ. This result applies
for both parametric and semi-parametric approaches, with small differences. The most obvious difference is
that in the parametric approach, normalising constants aθ and bθ are provided by the scale and location of
the limiting generalised Pareto distribution, whereas in the semi-parametric approach these are estimated
as functionals of the sample analogue of distribution function Fθ.
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6.1 Semi-parametric-based estimation

6.1.1 Extreme quantile

In the semi-parametric setting, we assume that the number k(θ) of exceedances of threshold u(θ) is such
that k(θ) → ∞ and k(θ)/N(θ) → 0 as N(θ) → ∞. That is, the number of threshold exceedances k(θ)
remains negligible compared to the total number N(θ) of observations in N (θ, h). This condition can be
written in terms of the covariate-specific sample size n, requiring that n → ∞ implies N(θ) → ∞. The
proposed moment estimator for the extreme quantile with small probability p → 0, N(θ)p/k(θ) → 0 as
n → ∞, conditioned on threshold u(θ), is

x̂Mp (θ) = u(θ) + âMθ
( N

k(θ)

)
(

k(θ)
N(θ)p

)ξ̂M
k

(θ)
− 1

ξ̂Mk (θ)
, (6.1)

with estimated extreme value index ξ̂Mk (θ) and associated scale parameter âMθ
(

N
k(θ)

)
given in Section 5.1.

The associate scale in (6.1) is a function of the top sample fraction k(θ)/N(θ).

6.1.2 Finite right endpoint

Semi-parametric estimators for the right endpoint have received considerable attention in the literature [e.g.
Chapter 4 of de Haan and Ferreira, 2006, and connected references]. We propose a model-free, data-driven
estimator of the covariate-dependent right endpoint xFθ < ∞ for θ ∈ S, motivated by the general endpoint
estimator of Fraga Alves and Neves [2014] with non-stationary threshold u(θ). We proceed on the basis of a
suitable extreme value condition which partitions the Gumbel max-domain of attraction (with extreme value
index ξ = 0) into two classes of distributions, one with finite right endpoint, and the other right unbounded.
An example of a distribution function in the former class is the Negative Fréchet, with distribution function
Fα,β(x) = 1− exp{−(α− x)−β}, x ≤ α, α ∈ R, β > 0; simple calculations show that Fα,β belongs to D(G0)
despite having finite right endpoint xF = α < ∞. We seek a right endpoint estimator for distributions in
this D(G0) subclass.

With
{
Yi
}N(θ)

i=1
representing the random variables Xi in a particular neighbourhood N (θ, h), defined in

(4.1), we denote by Y1,N(θ) ≤ . . . ≤ YN(θ)−k(θ),N(θ) ≤ . . . ≤ YN(θ),N(θ) the corresponding ascending order

statistics, and define the general endpoint estimator of xFθ , assumed finite, for every θ ∈ S,

x̂G0 (θ) := YN(θ),N(θ) +
1

log 2

k(θ)−1∑

i=0

log
(k(θ) + i+ 1

k(θ) + i

)(
YN(θ)−k(θ),N(θ) − YN(θ)−k(θ)−i,N(θ)

)
. (6.2)

This estimator is valid for any ξ(θ) ≤ 0, and does not require prior estimation of extreme value index
[cf. Fraga Alves et al., 2017], in contrast to competitor estimators for the right endpoint proposed in the
literature.

6.2 Parametric-based estimation

6.2.1 Extreme quantile

In the parametric setting, level xp(θ) with small exceedance probability p corresponds to the quantile of
the distribution of threshold exceedances for direction θ. This suggests defining the 1/p extreme quantile
as the value xp(θ) = QH

θ (1 − p), with normalising constants set to the scale and location parameters of a
generalised Pareto function Hθ. Hence, for local parametric and spline parametric approaches, estimates of
xp(θ) of the form

x̂ML
p (θ) = u(θ) + σ̂u(θ)

(ϕ(u,θ)
p

)ξ̂(θ) − 1

ξ̂(θ)
, (6.3)
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are obtained, where ϕ(u, θ) = k(θ)/N(θ) is the sample fraction of exceedances of u(θ) within N (θ, h).
Estimation of ξ̂(θ) and σ̂u(θ) (for θ ∈ Θ) using local parametric and spline parametric approaches is discussed
in Sections 5.2 and 5.3. The extreme level estimate x̂ML

p (θ) can be interpreted as a T -year level used in
ocean engineering and hydrology: that is, the value exceeded with probability 1/T per annum. Expressions
(6.3) and (6.1) show obvious similarities, and also distinctive traits of the semi-parametric moment, local
parametric and spline parametric approaches.

For local ML estimation (Section 5.2), the values of k(θj) and N(θj) are estimated directly in Section 4.
In the spline maximum likelihood approach (Section 5.3), a smoothed version of ϕ(u, θj) is estimated as the
probability of threshold exceedance for θj ∈ Θ using logistic regression, with log-likelihood

LLgs(β) =

m∑

j=1

τj log[νj ] + (1− τj) log[1− νj ], (6.4)

where τj = k(θj)/N(θj) is the sample proportion of threshold exceedances of u(θj) at θj ∈ Θ. νj =
(1 + exp[−ηj ]) is the probability of threshold exceedance at θj , with η = {ηj}mj=1 = Bβ for B-spline basis
matrix B and parameter vector β to be estimated. Roughness penalisation of η, with optimal roughness
coefficient µ estimated by cross-validation, ensures good predictive performance. The penalised log-likelihood
thus takes the form Lpen(β) = L(β)− µP , with P = β⊤D⊤Dβ (c.f. Section 5.3).

6.2.2 Finite right endpoint

In case ξ(θ) < 0, the limiting generalised Pareto distribution function has finite right endpoint. A consistent
estimator for this right endpoint follows from (6.3) by setting p = 0

x̂ML
0 (θ) = u(θ)− σ̂u(θ)

ξ̂(θ)
. (6.5)

7 Application to storm peak significant wave height

The discussion above provides a suite of complementary approaches to non-stationary extreme value anal-
ysis incorporating elements of both parametric and semi-parametric inference, featuring a common non-
stationary extreme value threshold capturing covariate dependence of threshold exceedances. In this section,
we apply the methodology to estimation of T -year values from the sample of storm peak significant wave
height Hsp

S on storm direction θ introduced in Section 2. The mechanics of inference for extreme quantiles,
and right endpoint if appropriate, is given in Algorithm 3 of Appendix B. For brevity henceforth, we refer
to semi-parametric, local parametric and spline parametric estimators as “M”, “local ML” and “spline ML”,
with “M” indicating a moment estimator, and “ML” referring to maximum likelihood.

Exploratory analysis of the sample, supported by previous analysis by Randell et al. [2016], suggests that
the covariate domain can be partitioned into five directional sectors assumed approximately homogeneous in
terms of the characteristics of Hsp

S . Referring to Figure 1, directional sectors corresponding to the following
intervals of θ were identified. Sector 1 corresponds to θ ∈ (0◦, 50◦]∪(320◦, 360◦], for storms propagating from
the Norwegian Sea to the North; Sector 2 for θ ∈ (50◦, 140◦] corresponds to the “land shadow” of Norway,
with fetch-limited storms propagating from the coast with a more northerly direction relative to the normal
to the coast; Sector 3 is θ ∈ (140◦, 210◦], again for the Norwegian land-shadow, but with storms propagating
from a more southerly direction; Sector 4 is θ ∈ (210◦, 270◦] corresponding to storms from the Atlantic
potentially “funnelled” by the Norwegian coast; and Sector 5 with θ ∈ (270◦, 320◦], for more northerly
Atlantic storms. Further information about the underlying physics is given in Section 2. The partitioned
sample is summarised in Figure 2, using so-called “violin” plots which add kernel density estimates to a
box-whisker representation. The long-tailed behaviour of storms from the Atlantic is clear in Sectors 4 and
5, compared to the fetch-limited characteristics in storms from Sectors 2 and 3. Although Sector 4 exhibits
the largest values of threshold exceedances in Figure 2, there is evidence from the kernel density plots that
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Figure 2: Violin plots of Hsp
s observations to the total of N = 1521 data points, with n here referring to

the number of observations in each of the 5 sectors considered.

Sector 5 has a relatively long tail. In this section we seek to quantify tail-heaviness by estimating ξ(θ) using
both parametric and semi-parametric approaches, and hence estimate extreme quantiles.

Using the approach in Section 4, non-stationary thresholds u(θ) were estimated using both the local
ML and M estimator for lag h = 60◦, concentration η = 10 and parameter φ = 0.35; a sensitivity study
was conducted to ensure that threshold inference was not overly sensitive to these choices. Estimates are
shown together in Figure 3. The general trends shown by the two estimates are in agreement across the
covariate domain; for example, larger values of u(θ) are observed for storms from the Atlantic (SW to
W), and smaller values for fetch-limited directions (E to SE). Subsequent parametric and semi-parametric
inference for exceedance characteristics therefore has a relatively common starting point.

Estimates ξ̂(θj) for θj ∈ Θ from each of the M, local ML an spline ML approaches described in Section 5
are displayed in Figure 4, in terms of bootstrap means and 95% confidence intervals. Note that the M
estimate of ξ was obtained using the corresponding M estimate of u; analogously the local ML and spline
ML estimates of ξ adopt the local ML estimate of u. There is reasonable overall agreement between the three
estimates for ξ, and the estimates are also qualitatively plausible given other analyses of these data (Randell
et al. 2016) and general physical considerations. Effects of land shadows (e.g. θ ∈ (80, 150)) resulting in
lower values for ξ are clear. The spline ML estimator is smoothest with respect to θ and its confidence band
does not include zero for any direction. In contrast, ξ(θ) = 0 is suggested by semi-parametric and local
parametric estimators, most obviously for the M estimator, implying that the data generating distribution
may lie in the Gumbel max-domain of attraction.

Identifying domains of attraction

Given the evidence in Figure 4, it is interesting to consider whether we can identify intervals with ξ(θ) < 0,
ξ(θ) = 0 (and ξ(θ) > 0 in principle) for θ ∈ S (c.f. choice of domain of attraction, see Fraga Alves et al. 2017).
We attempt this using two sets of hypothesis tests. In the first test, we adopt null hypothesis Fθ ∈ D(G0)
versus the two-sided alternative F ∈ D(Gξ)ξ 6=0. Four different test statistics are considered, three of which
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Figure 3: Polar plot of extreme value thresholds u(θ) from the M (orange) and ML (blue) estimators. Storm
direction θ is the direction from which waves propagate; radial scale of Hsp

s is in metres.

-0.50

-0.25

0.00

0.25

0 100 200 300

θ

ξ^
M

-0.50

-0.25

0.00

0.25

0 100 200 300

θ

ξ^
M

L

-0.50

-0.25

0.00

0.25

0 100 200 300
θ

ξ^
B

-s
p
lin

e
s

Figure 4: Bootstrap mean and corresponding 95% confidence intervals for ξ̂(θj), θj ∈ Θ based on: M (left),
local ML (middle) and spline ML (right) estimators.
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Figure 5: Bootstrap mean and corresponding 95% confidence intervals for the ratio (R, R), Greenwood-
type (G, G) and Hasofer-Wang (HW, W ) (left) and likelihood ratio (LR, D) (right) test statistics for ξ = 0.
Horizontal lines in both panels indicate asymptotic critical values at significance level α = 5%. In the left
panel: dashed lines for R test (-1.305 and 3.676); dot-dashed lines for G and W (± 1.96). In the right panel:
dashed line at 3.84.

are semi-parametric

Rk,n(θ) :=

max
C(θ,h)

(
Xi(θj)− u(θj)

)

E(1)(θ)
− log k(θ)

Gk,n(θ) :=

√
k(θ)

4

(
E(2)(θ)
(
E(1)(θ)

)2 − 2

)

Wk,n(θ) :=

√
k(θ)

4

(
1

1 +
[
E(2)(θ)/

(
E(1)(θ)

)2 − 2
] − 1

)

based on moment spacings

E(l)(θ) =
1

k(θ)

∑

C(θ,h)

(
Xi(θj)− u(θj)

)l
1{Xi(θj)>u(θj)} for l = 1, 2

in the notation of Section 5; these test statistics are discussed in Fraga Alves et al. [2017] and references
therein. The ratio test (R) assesses the relative contribution of the maximum to the average of the excesses
over the given threshold u. For the R test, the null hypothesis Fθ ∈ D(G0) is rejected at level α ∈ (0, 1) if
Rk,n(θ) < gα/2 or Rk,n(θ) > g1−α/2, where gε is the ε-quantile of the Gumbel distribution, gε = − log(− log ε).
The Greenwood-type test (G) and the Hasofer and Wang test (HW) are moment-based, and associated
critical regions follow from the central limit theorem. The critical region for the two-sided test of nominal
size α for T ∗ ∈ {G,W} is given by |T ∗k,n(θ)| > z1−α/2, with zε denoting the ε-quantile of the standard normal
distribution.

When ξ(θ) > −1/2, a parametric test statistic based on the generalised Pareto distribution is available
(c.f. Section 3.1 and Appendix A). Asymptotic normality of ML estimators for peaks over threshold gives
rise to a likelihood ratio (LR) test using deviance statistic

D(θ) = 2
{
L(ξ̂(θ), σ̂u(θ))− L(0, σ̂u(θ))

}
(7.1)

to test the hypothesis, where L is the log-likelihood in (5.4). At level α, the null hypothesis is rejected when
the observed value for D exceeds the (1− α)-quantile of the χ2

1 distribution [see e.g. Coles, 2001].

15



Results using the four test statistics are illustrated in Figure 5. The values for test statistics G and HW lie
generally on or beyond their critical values as a function of θ, providing evidence to reject the null hypothesis
that ξ(θ) = 0 at the significance level α = 5%. We note that upward crossings of the indicated α = 5%
critical barriers in the HW test sample path evidence an underlying short tailed distribution belonging the
Weibull max-domain, whereas for the G-test, the Weibull max-domain is reflected in the downward crossings
of corresponding α = 5% critical barriers. The value of the R test statistic lies generally on or near its lower
critical value, again providing some support for the Weibull max-domain of attraction; we note that this test
statistic is recognised as being somewhat more conservative than G and HW, particularly for near-rejection
in favour of the Weibull domain.

The semi-parametric approach provides a further possibility (Neves and Pereira 2010, Fraga Alves and
Neves 2014) for hypothesis testing, specifically to test for a Gumbel max-domain of attraction with infinite
right endpoint as null hypothesis, versus an alternative hypothesis of any max-domain of attraction with
ξ(θ) ≤ 0 and xFθ < ∞. No similar parametric test exists, since in the parametric setting a generalised
Pareto distribution with ξ(θ) = 0 corresponds to the exponential distribution which is right unbounded. In
this sense, the semi-parametric approach provides a better framework for tackling the statistical assessment
of a finite upper bound. For every θ ∈ S, we test H0 :

(
Fθ ∈ D(G0) and xFθ = ∞

)
versus H1 :

(
Fθ ∈

D(Gξ)ξ≤ 0 and xFθ < ∞
)
using the test statistic T given by

Tk,n(θ) :=
1

k(θ)

∑

C(θ,h)

Xi(θj)− u(θj)− âθ
(
N/k(θ)

)

maxC(θ,h)
(
Xi(θj)− u(θj)

) 1{Xi(θj)>u(θj)}, (7.2)

with M estimator â provided in (5.3). At the significance level α ∈ (0, 1), the null hypothesis is rejected
whenever

√
k log k |Tk,n(θ)| > z1−α/2, where zα = Φ←(α) denotes the α-quantile of the standard normal dis-

tribution function. Results using the test statistic T are shown in Figure 6. The null hypothesis of an infinite
upper bound is rejected at the α = 5% level for the majority of the directional domain, except notably for
storms emanating from approximately (310◦, 360◦), around 50◦ and around 160◦. From a physical perspec-
tive, these observations can be explained by occurrences of storms from the Norwegian Sea ((310◦, 360◦)),
funnelling from the north-east along the Norwegian coast (50◦), and rare occurrences of dominant wave
directions from the Norwegian coast (160◦). We summarise the results of hypothesis tests concerning choice
of max-domain of attraction in Figure 7, and note directional intervals of ξ(θ) = 0, ξFθ < ∞ corresponding
to storms from the Atlantic funnelled along the Norwegian coast from south-west to west, and along the
Norwegian coast from north to north-east.

Estimating extreme quantiles and right endpoints

We use expressions (6.1) and (6.3) to estimate quantiles xp(θ) using M, local ML and spline ML estimators.
Assuming N0 storm occurrences in observation period T0, the T -year directional level corresponds to the
value xp(θ) such that P{X(θ) > xp(θ)} = (T0/N0) × T−1. Figure 8 gives a matrix rose-plots of estimated
directional 100-year and 10, 000-year levels with accompanying 95% bootstrap confidence bands. There is
general qualitative agreement between the three estimates for 100-year level (top row) and 10, 000-year level
(bottom row), in terms of bootstrap mean. Uncertainties from the M estimation are somewhat larger, as
might be expected recalling the evidence of ξ estimation in Figure 4. Not surprisingly, estimated extreme
levels for directions with short fetches (θ ∈ [60, 140)◦) are low, whereas those corresponding to long fetches
from the Atlantic Ocean and Norwegian Sea (θ ∈ [310, 360) ∪ [0, 60)◦) are high. These findings are broadly
in line with those from hypothesis testing in Figure 7. Estimated 100-year levels for Hsp

s are between 15m
and 20m the most severe sectors, in terms of bootstrap mean and confidence bands. The same is true of
bootstrap means at the 10, 000-year level except for M-related estimates which exceed 20m. Randell et al.
[2016] report 100-year values from a directional-seasonal parametric analysis of approximately 14m for the
Atlantic sector.

Figure 7 indicates there is significant evidence in the Hsp
s sample for concluding that the underlying

distribution is right bounded on much of the directional domain. This suggests that estimation of the right
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Figure 6: Bootstrap mean and corresponding 95% confidence intervals for the T-test statistic. The horizontal
dashed lines correspond to the asymptotic critical values at the significance level α = 5%, i.e. the normal
quantiles which are solutions of |zε| = 1.96.

Figure 7: Polar plot showing combined deductions from tests of hypotheses for max-domain of attraction of
Hsp
s at the α = 5% significance level. Orange: ξ(θ) = 0, xFθ = ∞; yellow: ξ(θ) = 0, xFθ < ∞; blue: ξ(θ) < 0.

The original directional sample of Hsp
s on direction θ is also shown as black dots.
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Figure 8: Rose diagrams for the 100-year (top) and 10, 000-year (bottom) levels based on M (left), local
ML (middle) and spline ML (right) estimators. Bootstrap means and corresponding 95% confidence bands
are displayed as a function of direction measured clockwise from north.
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Figure 9: Rose diagrams for the finite right endpoint of Hsp
s . Three estimators are used: the general estimator

(left), the local ML (middle) and spline ML (right) estimators. Bootstrap means and corresponding 95%
confidence bands are displayed as a function of direction measured clockwise from north.

endpoint xFθ might be usefully attempted. Three estimators are considered, as described in Section 6. The
local ML and spline ML estimators for xFθ are only appropriate when ξ(θ) < 0, whereas the semi-parametric
general estimator does not require estimation of ξ(θ) at all, but imposes the constraints ξ(θ) ≤ 0, xFθ < ∞
by construction. To ensure fair comparison of the estimates for xFθ , we therefore repeated the local ML and
spline ML generalised Pareto fits of Section 5, with the domain of ξ restricted to ξ(θ) < 0. The left panel
of Figure 9 shows estimates using general estimator (6.2). The centre and right panels show estimates from
local ML and spline ML estimation, with ξ(θ) constrained to be negative everywhere. Clearly, maximum
likelihood estimation becomes more challenging as the true shape parameter ξ approaches zero from below,
with numerical optimisation routines more than often experiencing convergence issues [e.g. Gomes and Neves,
2008, for a comparison between M and ML within the univariate semi-parametric setting]. Estimates from
the general estimator (left panel) are surprisingly low compared with those for local ML and spline ML, and
with semi-parametric estimates of the 100- and 10,000-year values using the moment estimator, shown in
Figure 8. Agreement between the three estimators for the finite right endpoint cannot be expected to be
nearly as good as that observed for T -year level, since the estimators are rather different in nature.

Local ML and spline ML estimates (Figure 9, centre and right panels) show some agreement particularly
for westerly, and north to north-easterly directions, where Figure 7 suggests ξ(θ) = 0 and xFθ < ∞; the
local ML estimator provides considerably more uncertain estimates, because of input estimates for ξ(θ) near
zero. The general endpoint estimator exhibits small variance in comparison, a distinctive trait that might
be attributed to the simplicity in form not requiring external estimation of ξ; the small variance of this semi-
parametric estimator has been proved both theoretically and via extensive simulation studies (Fraga Alves
and Neves 2014). Increased uncertainty in the general endpoint estimator (Figure 9) corresponds to regions
in Figure 7 for which ξ(θ) = 0 and xFθ = ∞. A study of the sensitivity of the general endpoint estimator to
specification of h and k(θ) was undertaken, particularly due to the low estimates it yields. The study revealed
that the general endpoint estimator is in fact remarkably stable with respect to both h and k(θ). We must of
course keep in mind that all of the estimates in Figure 9 assume a finite right endpoint, whereas the evidence
from Figure 7 is that this is not the case for all directions. Note further that the asymptotic distribution for
the general endpoint estimator is non-normal, and therefore the estimated bootstrap 95% confidence bounds
offer a limited view of its asymptotic variance. A similar remark applies to the local-ML estimator for the
right endpoint of the generalised Pareto distribution for the irregular case for ξ ∈ (−1,−1/2].

In summary, application of the parametric and semi-parametric methodologies developed in Sections 4-6
above to the sample of directional storm peak significant wave height suggests that estimates for ξ, and
100-year and 10, 000-year levels are in good qualitative agreement. Where differences occur, they can be
explained in terms of specific modelling assumptions made, rather than in terms of fundamental differences
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in the underlying approaches to extreme value analysis.

8 Discussion and conclusions

This paper presents a framework for inference on non-stationary peaks over threshold, reconciling approaches
from semi-parametric and parametric extreme value analysis, in application to directional ocean storm
severity. The key components of the framework are (a) estimation of non-stationary extreme value threshold,
and (b) estimation of tail characteristics from threshold exceedances, including extreme quantiles and finite
right endpoint when appropriate. Threshold estimation is performed using a non-stationary extension of a
heuristic approach for semi-parametric moment (M) and parametric maximum likelihood (ML) estimators.
Tail characteristics and extreme quantiles are then estimated, based on semi-parametric M, local parametric
ML and spline ML estimators. Given threshold, the two streams of extreme value inference mirror each
other. In the spline ML approach, a penalised B-splines representation with compact support is used: each
basis function is non-zero on a specific interval of the covariate domain. This feature plays a similar role to
bandwidth of directional neighbourhoods in the semi-parametric M and parametric local ML approaches.

We also consider estimators for the non-stationary finite right endpoint, including extension of the semi-
parametric general estimator of Fraga Alves and Neves [2014]. Hypothesis tests, used to characterise the
max-domain of attraction of storm peak significant wave height as a function of direction, suggest that the
distributions of storm peak significant wave height for storms from the Atlantic and Norwegian Sea are
unbounded above.

Inferences regarding directional thresholds for storm peak significant wave height are in good agree-
ment over the covariate domain. Estimates for 100 and 10, 000-year levels are also in reasonable agreement.
Estimates for the right endpoint are more different across approaches, and are influenced by the specifics
of modelling assumptions made associated with the different estimation strategies. For the application
considered, both parametric and semi-parametric inference provides similar characterisations of extreme
non-stationary ocean environments. Indeed, we illustrate how ideas from the semi-parametric and para-
metric schools of thought can be used in tandem to exploit the desirable features of the approaches, whilst
overcoming some obvious pitfalls. For example, threshold estimation (used for both semi-parametric and
parametric analysis) is motivated by an inherently non-parametric heuristic in Section 4.

Parametric approaches to non-stationary extremes are relatively well-studied due in part to the wide
range of flexible covariate representations for generalised Pareto parameters for threshold exceedances, and
associated methods for regression and assessment of model fit. In contrast, from a semi-parametric perspec-
tive, an exact generalised Pareto correspondence need not be assumed, offering greater flexibility. However,
avoiding a particular model choice from the outset generally results in increased uncertainty of estimates for
ξ and high quantiles. Nevertheless, we show in this work that semi-parametric and parametric approaches
perform rather similarly when set up reasonably. We hope that the fusion of ideas from parametric and
semi-parametric approaches to extreme value analysis outlined in this article provide a basis for increased
understanding and quantification of extreme phenomena in environmental and engineering applications.
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A Basis for inference on directional extremes via the POT method

The contents of this appendix build on Appendix B of de Haan et al. [2015]. This paper offers added
flexibility to the latter by allowing ξ = ξ(s) to vary with s ≥ 0, where s might represent direction θ, or time
or some other covariate. As a consequence, the right endpoint does not need to be assumed constant in s.
We will not delve into the theoretical details in terms of explicit smoothness and boundedness conditions
needing to be in place particularly by assuming h = hn > 0. These are clearly beyond the scope of this
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paper, but we envisage that the probabilistic underpinning to this work will stem from Chapter 9 of de Haan
and Ferreira [2006].

For direction s ≥ 0, let
(
X1(s), X2(s), . . . , Xn(s)

)
be a vector of i.i.d. random variables with common

distribution function Fs(x), for all x ∈ R, absolutely continuous with right endpoint xFs ≤ ∞. Assume
Fs ∈ D(Gξ(s)), for some ξ(s) ∈ R and for every s ≥ 0, i.e., that condition (3.1) holds locally for each s. In
this setting, Theorem 1.1.6 of de Haan and Ferreira [2006] ascertains that it is possible to replace n with
t running over the real line in such a way that (3.1) becomes equivalent to the following extreme value
condition: there exists a positive function a∗s such that

lim
t↑xFs

1− Fs

(
t+ xa∗s(t)

)

1− Fs(t)
=

logGξ(s)(x)

logGξ(s)(0)
, (A.1)

for all x with 1+ ξ(s)x > 0. The limit in (A.1) is the tail distribution function (also known as survival func-

tion) of the generalised Pareto (GP) distribution with shape parameter ξ(s) ∈ R, given by
(
1+ξ(s)x

)−1/ξ(s)
.

The extreme value condition (A.1) is often key for describing rare events’ behaviour in lieu of the dual max-
domain of attraction characterisation F ∈ D(Gξ).

(i) Parametric approach

Taking a parametric view, the peaks over threshold (POT)-domain of attraction condition (A.1) prescribes
the GP distribution as the proper fit to the normalised exceedances given these are above a certain high
threshold near the right endpoint xFs . With minimal notational changes around a fixed (deterministic)
threshold u, it is straightforward to see that condition (A.1) implies

lim
u↑xFs

∣∣∣P{X1(s) ≤ x+ u |X1(s) > u} −Hξ(s),u,σ(u)(x)
∣∣∣ = 0, (A.2)

locally uniformly in x > u, for each s ≥ 0, with σ(u) > 0 (we omit the subscript s on σ and µ below) for

simplicity of notation) and Hξ,µ,σ(x) := 1 −
(
1 + ξ(x − µ)/σ

)−1/ξ
, for all x such that 0 < Hξ,µ,σ(x) < 1,

with location µ ∈ R and scale σ > 0. Informally, F
[u]
s (x) := P{X1(s) ≤ x+ u |X1(s) > u} ≈ Hξ(s),u,σ(u)(x),

for all x > 0 and u near the right endpoint xFs , with the scale parameter implicitly defined in terms of s
through the threshold u(s).

For each s, the limiting relation (A.2) provides the probabilistic underpinning for fitting a GP distribution
function to the unconditional tail distribution function Fs(x) := 1 − Fs(x) with x sufficiently large. This
becomes more evident since

Fs(x) = (1− Fs(u))F
[u]
s (x) + Fs(u),

from which
Fs(x) =

(
1− F [u]

s (x)
)
(1− Fs(u)) ≈

(
1−Hξ(s),u,σ(u)(x)

)
(1− Fs(u)), (A.3)

for x > u, as u → xFs . Finally, we note that

(
1−Hξ(s),u,σ(u)(x)

)
(1− Fs(u)) = Hξ(s),µ∗,σ∗(u)(x), (A.4)

where µ∗ − u = σ(u)UH

(
1 − Fs(u)

)
, σ∗(u) = σ(u)

(
1 − Fs(u)

)ξ(s)
, and UH standing for the tail quantile

function pertaining to the standard GPD, that is

UH(t) :=

(
1

1−Hξ(s),0,1

)←
(t) =

tξ(s) − 1

ξ(s)
,

for all t ≥ 1 (the left arrow indicates the left-continuous inverse). The representation (A.4) facilitates the
view that, in practice, changes in the threshold (e.g. through covariates) will be reflected in the scale
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parameter. In turn, the approach for inference is reflected in the way we go choose to go about the term
1 − Fs(u) for this to become statistically meaningful. In order to able to perform large sample inference
drawing on the POT-GPD framework streamlined above, we now make the threshold dependent on the
sample size n and u = u(n) will naturally become larger as n goes to infinity. A parametric approach
typically advocates for a large enough threshold to be fixed and inference to be conducted on the basis of
the resulting POT framework, whereby the expected number of exceedances above the selected threshold
is a random number Ks, say, satisfying (n/Ks)(1 − Fs(un)) → 1 in probability, as n → ∞. This suggests
estimation of (1− Fs(u)) via the analogous tail empirical distribution function (stepping up by 1/n at each
observation) evaluated at u, adding up to 1−Ks/n in the above, associated with the random number Ks of
exceedances of u at direction (or location) s. Hence, for a given (fixed) ks, the location and scale parameters
in (A.4) become:

µ∗(s) = u+ σ(u)UH

(
1− ks

n

)
,

σ∗(u) = σ(u)
(
1− ks

n

)ξ(s)
.

Therefore, the crux of parametric inference for extremes values lays in the estimation of the shape and scale
parameters, respectively, ξ(s) and σs = σ∗(u).

(ii) Semi-parametric approach

It will be notationally cleaner to express the argument (A.1) in terms of the pertaining tail quantile function
Us :=

(
1/(1 − Fs)

)←
. Note that Us(t) is non-decreasing and provides a straightforward link to an extreme

quantile, with the right endpoint representing the ultimate quantile: limt→∞ Us(t) = Us(∞) = xFs . To
this effect, we make t in (A.1) depend on the (possibly unknown) sample size n at each location s through
replacing it by Us(n/ks), where ks is an intermediate sequence of positive integers such that ks = ks(n) → ∞
and ks/n → 0, as n → ∞. This is possible because (A.1) holds uniformly in x. Hence, we have for the left
hand-side of (A.1):

1− Fs

(
Us(n/ks) + x as

(
Us(n/ks)

))

1− Fs

(
Us(n/ks)

) =
n

ks

(
1− Fs

(
Us(n/ks) + x a⋆s(n/ks)

)
,

with a⋆s(n/ks) = as
(
Us(n/ks)

)
.

For simplicity, we consider regularly spaced independent vectors
(
X1(s), X2(s), . . . , Xn(s)

)
, s = 1, 2, . . . ,m, . . .

with i.i.d. components, with partial tally of N = n × m ∈ N observations across the whole system, and
where n is potentially unknown (without affecting inference on extremes), yet assumed large (n → ∞). In
this setting, the basic extreme value condition is (cf. (A.3)):

lim
n→∞

N

k ω(s)

{
1− Fs

(
Us

( N

ω(s)k

)
+ x a⋆s

( N

ω(s)k

))}
= 1−Hξ(s),0,1(x), (A.5)

for all x with 1+ξ(s)x > 0, uniformly in s = 1, 2, . . ., with ω > 0 a continuous and smooth function satisfying
(1/m)

∑m
s=1 ω(s) → 1, as m → ∞, i.e. the resulting sequence of weights {ω(m)}m∈N is Cesàro summable.

The latter is to maintain integrity, also ensuring that the stationary case is well-defined. In particular,
the case of complete stationarity, corresponding to omni-directional data in the context of this paper, is
recovered if ω(s) is identically one over the stipulated range for s. The interest lies in the estimation of the
various extreme value indices ξ(s), and the scale and location terms, respectively a⋆s(N/ks) and Us(N/ks),
now with ks := [ω(s)×k] and [•] standing for integer part. Since the N -th order statistic XN−ks:N (s) is close
to Us(N/ks), if ks → ∞, ks/N → 0, as N → ∞, we shall adopt it, as the usual estimator for the threshold
Ûs(N/ks) = XN−ks:N (s). The random adaptive threshold in this setting emulates the non-stationarity
mirrored in the scale σs > 0 which features the parametric setting (i).
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The role of the of the (deterministic) function ω can perhaps be better understood if the domain of
attraction condition (A.5), characterising non-stationary POT, is formulated in terms of their respective
inverse functions intervening in both hand-sides. To this end, we use t → ∞ in place of N/k → ∞, so that
(A.5) translates into:

lim
t→∞

t
{
1− Fs

(
Us

( t

ω(s)

)
+ x a⋆s

( t

ω(s)

))}
= ω(s)

(
1−Hξ(s),0,1(x)

)
,

which, by inversion in terms of t/y = 1/
{
1 − Fs

(
Us(t/ω(s)) + x a⋆s(t/ω(s))

)}
, and similarly for y/ω(s) =

(1 + ξ(s))−1/ξ(s) on the right hand side, yields the desired condition:

lim
t→∞

Us(t/y)− Us(t/ω(s))

a⋆s(t/ω(s))
=

(ω(s)/y)ξ(s) − 1

ξ(s)
,

for all y > 0. In particular, putting y = 1, and by virtue of a⋆s being a regularly varying function at infinity
with index ξ(s), uniformly in s ∈ S [cf. de Haan and Ferreira, 2006], i.e. lim a⋆s(tx)/a

⋆
s(t) = xξ(s), x > 0, we

obtain the following condition on the “moving” threshold:

lim
t→∞

Us(t/ω(s))− Us(t)

a⋆s(t)
=

(ω(s))−ξ(s) − 1

ξ(s)
. (A.6)

In case ξ(s) = 0, for some s, then the limit in the above reads as log(ω(s)). Furthermore, if the right
endpoint is finite, i.e. xFs < ∞, then a⋆ > 0 satisfies a⋆s(t) → 0, as t → ∞, and Fs ∈ D(Gξ(s)), with ξ(s) ≤ 0,
which entails that Us(t) is asymptotic to Us(t/ω(s)), for ω(s) ∈ (0,∞). The smooth function ω(s) primarily
reflects the amplitude in extremes rather than their magnitude or severity.

B Algorithms

This appendix provides algorithms for estimation of local non-stationary threshold and optimal spline rep-
resentation. It also provides an algorithm for the complete extreme value analysis given non-stationary
extreme value threshold.

B.1 Local non-stationary threshold selection

Algorithm 1 Non-stationary threshold estimation for local estimators

1: Specify lag h, concentration η and parameter φ;
2: for θj ∈ Θ do

3: Estimate weights ω(θj′) for θj′ ∈ Θ;
4: for k = 1, . . . , N(θj)− 1 do

5: Use the k largest values in N (θj , h) to obtain ξ̂k(θj) using (4.6) or (4.4);
6: Calculate Sφ(k);
7: end for

8: Set k∗j = argmin
k

Sφ(k);

9: Identify threshold u(θj) with the (k∗j + 1)th largest value with direction in N (θj , h);
10: end for

B.2 Penalised maximum likelihood B-spline estimation

B.3 Estimation of T -year level and finite right endpoint

The procedure for estimation of an extreme level and of the right endpoint, if appropriate, for any of the three
methods is summarised in the following algorithm for clarity. The algorithm assumes that the non-stationary
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Algorithm 2 Maximum penalised likelihood for non-stationary periodic B-spline representation

1: Evaluate B-spline basis functions on index set Θ;
2: Specify sets of values of smoothing penalty coefficients λ and κ to consider;
3: for each choice of λ do

4: for each choice of κ do

5: for each of a number of bootstrap resamples do
6: Estimate model parameters using bootstrap resample;
7: Use estimated model to predict test observations (not occurring in bootstrap resample);
8: Calculate the predictive log-likelihood;
9: end for

10: Accumulate total predictive log-likelihood;
11: end for

12: end for

13: Select pair of values of λ and κ with best predictive performance, and evaluate spline coefficients for
these choices of roughness coefficients.

threshold u(θ), θ ∈ S has been pre-determined through Algorithm 1 in connection with the adopted local
estimators for ξ.
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Algorithm 3 Extreme quantile (including T -year level) and finite right endpoint estimation using M, local
ML and spline ML based estimators.

1: Specify data sample; non-stationary threshold u(θ); period of sample T0, period T ;
2: Isolate set of directional threshold exceedances;
3: if M then

4: Specify window half-width h;
5: else if local ML then

6: Specify window half-width h;
7: else if spline ML then

8: Specify values of smoothing coefficients λ and κ to consider;
9: Specify details for B-spline basis function construction;

10: end if

11: for each of a large number of bootstrap resamples do
12: Generate bootstrap resample from sample of threshold exceedances;
13: if M then

14: Count number k(θ) of threshold exceedances in N (θ, h);
15: Count number N(θ) of observations in N (θ, h) ;
16: Estimate ξ(θ) on N (θ, h) using (5.1);
17: Estimate aθ on N (θ, h) using (5.3);
18: Estimate high quantile with p << 1/N(θ) value using (6.1);
19: Estimate finite right endpoint (xFθ < ∞) using (6.2);
20: else if local ML then

21: Count number k(θ) of threshold exceedances in N (θ, h);
22: Count number N(θ) of observations in N (θ, h) ;
23: Estimate ξ(θ), σu(θ) on N (θ, h) using (5.4);
24: Estimate T -year value using (6.3);
25: Estimate right endpoint (when ξ(θ) < 0) using (6.5);
26: else if spline ML then

27: Estimate optimal smoothing parameters λ, κ and hence estimate ξ(θ), σu(θ) (Algorithm 2);
28: Estimate optimal smoothing parameter µ and fraction τ(θ) of threshold exceedances by logistic

regression using (6.4);
29: Estimate T -year value using (6.3), with τ̂(θ) in place of k(θ)/N(θ);
30: Estimate right endpoint (when ξ(θ) < 0) using (6.5);
31: end if

32: Accumulate bootstrap estimates for parameters, extreme levels or quantiles and for the right end-
point;

33: end for

34: Calculate bootstrap means and confidence intervals for parameters, T -year values and endpoint.
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