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Abstract:

Geoscientists frequently are interested in defining the overall trend in x-y 
data clouds using techniques such as least squares regression. Yet often 
the sample data exhibits considerable spread of y-values for given x-
values, which is itself of interest. In some cases the data may exhibit a 
distinct visual upper (or lower) ‘limit’ to a broad spread of y-values for a 
given x-value, defined by a marked reduction in concentration of y-
values.  As a function of x-value, the locus of this “limit” defines a “limit 
line”, with no (or few) points lying above (or below) it. Despite numerous 
examples of such situations in geoscience, there has been little 
consideration within the general geoenvironmental literature of methods 
used to define limit lines (sometimes termed ‘envelope curves’ when 
they enclose all data of interest).  In this work, methods to fit limit lines 
are reviewed.  Many commonly applied methods are ad-hoc and 
statistically not well founded, often because the data sample available is 
small and noisy. Other methods are considered which correspond to 
specific statistical models offering more objective and reproducible 
estimation.  The strengths and weaknesses of methods are considered 
by application to real geoscience data sets.  Wider adoption of statistical 
models would enhance confidence in the utility of fitted limits and 
promote statistical developments in limit fitting methodologies which are 
likely to be transformative in the interpretation of limits.  Supplements, a 
spreadsheet and references to software are provided for ready 
application by geoscientists.       
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30 I Introduction

31 Ordinary least squares regression analysis commonly is used to define the statistical relationship 

32 between one or more explanatory variables ( ) and a response variable ( ).  Where a relationship 𝑋 𝑌

33 exists, the trend can be linear or non-linear.  Due to inherent instability in environmental systems, 

34 the influence of additional unidentified explanatory variables, and the uncertainty in the 

35 measurement procedures used to define x-y data pairs, usually there is considerable scatter in a 

36 data plot of y-values on x-values.  For ordinary least squares the uncertainty or randomness is 

37 assumed to lie within the measurements of the dependent variable  and not within the 𝑌

38 independent variable .  Where uncertainty occurs in both and  other methods such as errors-𝑋 𝑋 𝑌

39 in-variables regression, total least squares regression and the reduced major axis method apply.  

40 Herein, we restrict our attention largely to applications using or motivated by the ordinary least 

41 squares method.  The paper is written for non-specialists in statistical line fitting so supplements, 

42 a spreadsheet and references to software are provided for some methods.  However, users are 

43 strongly recommended to seek the advice of professional statisticians in fitting any limit lines.  

44 Often interest lies not with identifying the central trend to the x-y data, but with whether the x-y data 

45 tend to indicate that maximum values of  occur for given values of  .  In similar vein, a 𝑌 𝑋 = 𝑥

46 minimum limit may occur in some data sets. Below, mainly we explore the issue of defining the 

47 trends in maxima, although the same procedures apply to defining minima.   In the case where 

48 maxima are expected or suspected to occur, identifying the trend line of maximal values of  for 𝑌

49 any given series of values of become a focus of enquiry.  Given sufficient maximum values of , 𝑋 𝑌

50 a clear limit may be visually evident, with smaller values of  defining scatter below the limit line.  𝑌

51 More often, a limited sample size of x-y pairs means that there is no clearly defined limit although 

52 one may be suspected to exist from the data scatter, or a limit can reasonably be assumed or is 

53 known from theory. Limit lines also are referred to as envelope curves. 

54 Overarching Objective of the Data Analysis
55
56 Herein we review various methods that have been used to fit limit lines. Although sometimes theory 

57 has informed the fitting of limit lines in the literature, oftentimes such consideration is lacking.  The 

58 researcher should consider what are the known or expected key characteristics of the expected 

59 limit lines in terms of the likely effect on the decisions that might arise from the analysis.  Thus, it 

60 is beneficial if the form of the likely limit line can be specified or parameterised from theory.  Where 

61 theory is lacking, logical reasoning can be applied, informed by previous considerations of 

62 empirical x-y data pairs similar to the target set of observations.  These two approaches may 

63 involve writing down the options for the form of the equations relating  and : e.g. and 𝑋 𝑌 𝑌 =  𝑓(𝑋) 

64 considering the implications of fitting functions of different form.  Rather than just utilizing the 

65 existing data set, the simple procedure outlined above can assist in deciding where additional x-y 

66 data points should be collected to improve understanding of the form of the limit line function and 
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67 the quality of the final fit.  Knowledge of some or all these issues can make it easier to specify how 

68 to estimate limit lines.

69 Figure 1 near here

70

71 2 Approaches to limit line estimation – a statistician view

72 This section seeks to provide an intuitive but rational framework within which the fitting of limit lines 

73 can be discussed, motivated by elementary statistical thinking. Thereafter in Section 3, the relative 

74 merits of different approaches to estimation of limit lines, known to be used by practitioners and 

75 reported in the literature, are considered with respect to this framework. 

76

77 It is assumed that the researcher has a data set or sample of pairs of points , which a priori is (𝑥,𝑦)

78 believed to be characterised by one or more defined limit lines.   It is assumed that the existence 

79 and characteristics of the limit lines are informed at least to some extent by the data. Typically, it 

80 is assumed that given any value  of , the corresponding values of  are independently distributed.  𝑥 𝑋 𝑌

81 Within our schema, methods for estimating limit lines can be considered to fall into four categories: 

82 inspection, theory, joint statistical models and conditional statistical models, discussed in turn 

83 below.

84  

85 2.1 Inspection

86 Where the scatter of  data tend to define a boundary, the most frequently used approach is to (𝑥,𝑦)

87 draw a line by eye: i) just outside of the data cloud, or ii) through selected data points along the 

88 margin of the data cloud (e.g. a convex hull might be adopted).  The nature of the line, for example, 

89 linear or non-linear might be constrained by any known or expected theoretical or previous 

90 empirical behaviour of the phenomenon.

91 2.2 Theoretical limit

92 In some situations, a theoretical function defining an expected limit line can be considered along 

93 with the data plot and the relationship between this function and the empirical data can be 

94 considered. Such an approach is related to defining tolerance limits or a specification, which can 

95 be completely independent of the distribution of the plotted sample statistic. 

96

97 2.3 Joint statistical models

98 Joint statistical models, like their conditional counterparts discussed in Section 2.4, are attractive 

99 since they introduce a degree of objectivity into the estimation of limit lines (certainly in contrast to 

100 inspection). The challenge is to specify the statistical model for the limit line in a manner such that 
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101 (a) the model can be estimated reasonably using a sample of data, and (b) observations for which 

102 modelling assumptions appear invalid can be identified using appropriate diagnostics, and the 

103 model rejected in favour of better-fitting alternatives.

104 Joint statistical modelling treats both  and  variables as random (with upper-case letters used to 𝑋 𝑌

105 indicate this) and seeks to estimate their joint distribution  . Limit lines might then be 𝑓{𝑋,𝑌}(𝑥,𝑦)

106 defined in terms of a contour in x-y with given statistical properties. For example, points on the 

107 contour might correspond to some fixed (low) probability density ; or the closed 𝑓{𝑋,𝑌}(𝑥,𝑦) = 𝑝

108 contour may define a region of x-y space with desired probability (typically near unity). A simple 𝑝 

109 example might be an ellipse of minimum enclosed area which encloses all the observations. See 

110 Ross et al (2019) for a discussion of contour construction in the context of environmental 

111 engineering. The portion of the contour corresponding to large y-values might be used as the limit 

112 line. 

113 More generally appropriate models might be used to describe the marginal characteristics of 

114 variable  independently of the variable . Then, after marginal transformation to standard scale, 𝑋 𝑌

115 a dependence or copula model (see Joe, 2014) could be used to describe the joint structure of the 

116 data on standard uniform margins. 

117 The joint statistical model therefore can be rather complex. In contrast, conditional statistical 

118 models (discussed next) characterise the distribution of  for different fixed values . Note the 𝑌|𝑥 𝑥

119 close relationship between joint and conditional distributions: for continuous random variables  𝑋

120 and , e.g., we can write , relating joint and conditional densities.𝑌 𝑓{𝑋,𝑌}(𝑥,𝑦) =  𝑓{𝑌│𝑋}(𝑦│𝑥)𝑓𝑋(𝑥)

121

122 2.4 Conditional statistical models for 𝑌|𝑥

123

124 The data can be used to estimate a statistical model for  given .  These models assume that 𝑌 𝑋 = 𝑥

125 the response is random or uncertain, whereas the value  of the explanatory variable is known and 𝑥

126 free of uncertainty.  Note that more sophisticated approaches (e.g. hierarchical Bayesian inference) 

127 exist which build considerably on the basic conditional model structure considered here. There are 

128 many types of conditional model, as outlined in more detail below.

129  

130 2.4.1 Linear regression

131 An initial assumption might be a simple linear regression relationship 

132 𝑌 = 𝑎 + 𝑏𝑥 + 𝜎𝜖

133 between  and  might apply.  Here the intercept and slope parameters are  and ,  is the 𝑌 𝑥 𝑎 𝑏 𝜎

134 measurement standard deviation and  is a random variable with standard Gaussian 𝜖

135 distribution.  Extensions to linear regression models, allowing for uncertain explanatory variables 

136  also, known as errors-in-variables models, include total least squares. In cases where the 𝑋
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137 overall data spread in  is not excessive relative to that in , regression analysis can be used to 𝑌 𝑥

138 define the trend and confidence limits for  (henceforth  where possible for brevity) for 𝑌|𝑋 = 𝑥 𝑌|𝑥

139 any value of .  A selected confidence limit can assist in positioning an appropriate limit line.  This 𝑥

140 approach applies in cases where the chosen confidence limit encloses all or most of the data points.  

141 The linear regression can be refined in many ways to make it more suitable as a representation of 

142 a limit line. These refined regression models are referred to further in Section 3.

143

144 2.4.2 Parametric model

145 Generalising linear regression, it might be assumed that the probability distribution of  is no 𝑌|𝑥

146 longer a Normal distribution, but rather some other distribution the parameters of which have 

147 known functional forms in . The objective of the data analysis is then to estimate these parameters 𝑥

148 using techniques such as maximum likelihood estimation; Pawitan (2001) provides an excellent 

149 introduction. The limit line for given  might then correspond to an extreme quantile of the 𝑥

150 distribution  estimated under the parametric model. Coles (2001, Chapter 4) provides 𝑌|𝑥

151 illustrations using extreme value analysis.

152

153 2.4.3 Non-parametric model

154 Extending Section 2.4.3, there is no need to assume a parametric form for the parameters of the 

155 distribution of , whilst seeking to estimate an extreme quantile of . Instead, we might assume 𝑌|𝑥 𝑌|𝑥

156 e.g. that the variation of these parameters with  can be described in terms of a linear combination 𝑥

157 of basis functions (such as splines) defined on the domain of . The model fitting would then 𝑥

158 amount to estimating basis coefficients, and hence the specific form of parameter variation with . 𝑥

159 A popular approach in this situation is quantile regression, which estimates the quantile  of 𝑄(𝑥)

160  for given value of  with a specific non-exceedance probability .  Koenker (2005) and Hao and 𝑌 𝑥 𝜏

161 Naiman (2007) provide excellent introductions to the theory and applications of quantile regression. 

162 A limit line might then correspond to  as a function of  for an extreme non-exceedance 𝑄(𝑥) 𝑥

163 probability e.g. =0.95. 𝜏

164  

165 2.4.4 Mixture model

166 Another approach which can be considered non-parametric is a mixture model for x (Maller et 𝑌|

167 al., 1983; Kaiser et al., 1994 in the geoenvironmental literature). Here, it is assumed that  is 𝑌|𝑥

168 drawn from one of a number of different linear regression models. The modelling task is to estimate 

169 the parameters of all the regression models, and the probability that a given  pair in the data (𝑥,𝑦)

170 was drawn from each of the linear regression models.  An expectation–maximization (EM) 

171 algorithm can be used to achieve maximum likelihood estimation. McLachlan et al. (2019) provide 

172 a useful review of finite mixture modelling. 

173  

174 2.4.5 Conditional models for 𝑌|𝑌 > 𝑢(𝑥), 𝑥
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175 Because the focus of interest is in the largest values of  for given , it might be reasonable to 𝑌 𝑥

176 focus attention on a sub-set of the data for which  exceeds some threshold  (which might 𝑌|𝑥 𝑢(𝑥)

177 itself be defined using quantile regression). In this case a local model can be fit to the sub-sample, 

178 using any of the techniques mentioned in 3.1-3.4. One choice of parametric model with strong 

179 asymptotic motivation might be an extreme value model, under which Y|Y>u(x), x might follow a 

180 generalised Pareto distribution with unknown shape and scale parameters to be estimated.  A 

181 shape parameter estimated to be negative would indicate the existence of a finite upper limit for 

182  which might be taken as the limit line. A positive shape parameter estimate would indicate that 𝑌|𝑥

183 no upper limit to the distribution of  exists; in this case, the limit line for  might be defined as 𝑌|𝑥 𝑌|𝑥

184 an extreme quantile of the distribution  estimated using the fitted parametric 𝑌|𝑥

185 model. Sophisticated applications of extreme value analysis are prevalent in some environmental 

186 sciences, including hydrology; Coles (2001) provides an introduction. 

187

188 3 Approaches to limit line estimation – a practitioner view

189 This section lists some of the methods used by practitioners, and reported in the literature, for 

190 estimation of limit lines. With reference to Section 2, this section also provides an outline of the 

191 strengths and weakness of the various approaches. Methods are listed in approximate order of 

192 increasing complexity.

193 Inspection (see Section 2.1) fits a line that often is referred to as an envelope curve and can ‘over-

194 predict’ the limit line if the line is drawn such that all data points lie below it.  The ‘true’ limit line 

195 could lie closer to the data than it is actually drawn. In this case no data points actually occur at 

196 the limit − which is counterintuitive.  The method has the advantage that eye-defined complex limits 

197 can be drawn which might be difficult to define mathematically, or which might lack theoretical 

198 justification. This latter advantage also can be considered a disadvantage, as subjectivity is 

199 involved in positioning the line.  If the purpose of fitting the line is merely to draw attention to the 

200 possible presence of a limit then inspection is useful but it lacks objectivity. Examples of this kind 

201 abound in the literature:  for example, Innes (1983) fitted curves through the outermost data points 

202 to define empirical lichen growth curves. 

203 Theoretical limit (see Section 2.2) is a powerful means to define limiting lines.  Theoretical curves 

204 can be added to a graph without consideration of the empirical data, in which case the method 

205 cannot be considered a fitting procedure.  However, oftentimes theoretical curve fitting makes use 

206 of the empirical data and so can be regarded as a fitting procedure.  The relationship between the 

207 trend of the theoretical curve, the position of individual data points, the configuration of clouds of 

208 related points and the relative plotting positions of clouds can result in reflection as to the accuracy 

209 of the individual data point values, the relationship between clouds, or consideration as to whether 

210 the theory needs revision.  Fitting of a theoretical curve, independently of any consideration of the 

211 empirical data, can be epitomized by the classic concept of bedload transport efficiency (Bagnold, 
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212 1966) whereby Bagnold (1980; see also Carling 1985) compared empirical data with an efficiency 

213 maximum function that effectively constitutes a limit line.  In contrast, Kaiser et al., (1994) used 

214 ecological theory of limiting factors, informed by empirical data, to develop several statistical 

215 approaches to fit limit lines to limnic biological process data.  A worked example is provided in 

216 section 5 and within Supplement 1.

217

218 Environmental contours (see e.g. Ross et al 2020, and Section 2.3) are popular in coastal and 

219 offshore engineering. For two random variables and , a closed contour is sought which encloses 𝑋 𝑌

220 a subset of the domain of the random variables with a given probability  just below unity. Regions 𝑝

221 outside the subset are considered rare or extreme. The contour line itself can also be considered 

222 a limit line. The location of the contour typically requires that a joint model for variables and  is 𝑋 𝑌

223 established. Extreme value analysis (see Section 2.4.5) is often an important ingredient in the 

224 estimation of the joint model.  

225 In selective regression, the limit line might be defined using a prior linear regression  𝑦 =  𝑎 +  𝑏 𝑥

226 through the whole sample (see Section 2.4.1). The limit line would also be linear in , with the 𝑥

227 same slope b as the linear regression line, and an increased value of intercept , such that 𝑎 ∗ 𝑦 =  

228 forms the appropriate limit line.  A linear limit line located in this way is referred to as 𝑎 ∗ + 𝑏 𝑥 

229 selective regression, because it can be used to exploit knowledge of just some of the  (𝑥,𝑦)

230 observations in the sample for analysis. We might consider fitting a linear regression (with fixed 

231 slope  from the whole-sample regression) to a selected sub-sample of large values of  for 𝑏 𝑌|𝑥

232 different , as a more systematic procedure to estimate . Because confidence limits for linear 𝑥 𝑎 ∗

233 functions are non-linear, the analyst might also exploit knowledge of confidence limits from a 

234 whole-sample regression to select an appropriate value of  in selective regression, such that 𝑎 ∗

235 the limit line is equivalent roughly to the selected confidence limit.  Such an approach is similar to 

236 the concept of applying ‘control limits’ also known as ‘natural process limits’ used in system 

237 monitoring where, if there are sufficient normally distributed  values of  for a given value of , a 𝑌 𝑥

238 limit is placed at a distance of ±3 standard deviations (SD) from empirical estimate for the mean of 

239 . For normally distributed values of  for given , 99.73% of all the plot points on the chart will 𝑌|𝑥 𝑌 𝑥

240 fall within the ±3 SD limit.  Thus only 0.27% of data points should lie above the limit line. 

241 In selective linear regression, a whole-sample simple linear regression can be used to inform the 

242 location of the limit line. The draw-back is that it can be difficult to select which data points should 

243 be considered relevant for the specification of a new intercept , especially difficult where the 𝑎 ∗

244 data spread poorly defines a limit and where outliers are frequent.  Selection of the points used to 

245 define the limit is largely subjective.  In the example (Fig. 1A), fortunately there are no distinct 

246 outliers and the regression lines were fitted through an eye-selected set of ‘outer’ points.  In this 

247 example, the, procedure leaves no points above the limit lines, but where outliers exist the 
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248 procedure is clearly unsatisfactory unless the outliers are excluded objectively.  Thus, assessing 

249 the influence of outer points can assist in the decision making (see below).  In selective linear 

250 regression, the offset limit curve can be assumed to have the same form as the least squares 

251 regression function fitted to all the data; however, this may not always be the case.  Clearly, the 

252 method cannot apply when the spread of the data visually indicates that the limit line does not have 

253 the same trend as the least-squares model applied to the complete sample (e.g. Fig. 1A).  In many 

254 cases the data spread is not considered and the analyst simple fits a curve parallel to the least-

255 squares fit to all data (Fig. 1B).  However, if there are sufficient normally distributed data for  given 𝑌

256 , then placing a limit at ±3 standard deviations (SD) from the central tendency of the trend is 𝑥

257 rational and reproducible.  As examples, Gaume et al., (2009) and Tarolli et al.(2007) fit limit lines 

258 to extreme flood data (flood envelope curves) using selective regression, whilst Castellarin (2007) 

259 briefly reviews the history of this approach to the development of flood envelope curves, and 

260 introduces a probabilistic method to consider the likelihood of floods exceeding the limit curves.  

261 More robust statistical methods are preferable, including linear quantile regression (Fig. 1C).  In 

262 this example, visual inspection indicates that there is a significant number of potential outliers 

263 above the 0.90 quantile, in contrast to the situation within Fig. 1 A & B.  So, in the case of Fig. 1C, 

264 identification of the appropriate quantile and identifying outliers needs addressing further.  The 

265 example in Fig. 1C is considered again below.

266

267 The iterative selective regression procedure of Maller et al. (1983) is an iterative least squares 

268 procedure in which data points are down-weighted according to their distance from a trial line to 

269 obtain a new line.  This latter line forms the basis for the next iteration.  This procedure is equivalent 

270 to fitting the least squares line through an objectively-derived subset of the data.  For consistency 

271 with our notation, we refer to this approach as iterative selective regression, although Maller et al. 

272 (1983) referred to it as a trimming method. Simulations of the estimates for the iterative selective 

273 regression approach show that small biases occur, but the estimates of slope and intercept are 

274 approximately normally distributed and are reproducible by other operators. The solution is not 

275 uniquely determined, but the accepted fitted line usually is taken to be the solution that includes 

276 the greatest number of data points.  Carling (1987) used the Maller et al., (1983) method to fit a 

277 limit line to define a maximum lichen growth curve.  Guidance notes on implementing the Maller et 

278 al. (1983) method and an Excel work sheet are archived on Github (Carling et al., 2021).

279

280 Parametric model fitting (see Section 2.4.2) is widespread in environmental sciences. Once the 

281 parameters of the model have been estimated by fitting to the complete sample, the limit line can 

282 be specified and easily calculated e.g. in terms of a quantile of the conditional distribution . 𝑌|𝑋 = 𝑥

283 Fundamental physical and statistical considerations often motivate the choice of parametric model. 

284 For example, for count data a Poisson model might be appropriate (see e.g. Chavez-Demoulin 

285 and Davison 2005). For measurements of contaminant levels in soils, a log-normal or gamma 
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286 distribution is often appropriate. The simple linear regression model of Section 2.4.1 is an example 

287 of parametric model fitting using a Gaussian assumption. Polynomial models of the form e.g. 

288 , and response surface models of the form e.g. 𝑌|(𝑋 = 𝑥) = 𝑎𝑥 + 𝑏𝑥2 +𝑐𝑥3 +𝜎𝜖 𝑌|(𝑋1 = 𝑥1,𝑋2 = 𝑥2

289  (in terms of two covariates  and ) are also examples of ) = 𝑎𝑥1 +𝑏𝑥2 +𝑐𝑥2
1 +𝑑𝑥2

2 +𝑒𝑥12 +𝜎𝜖 𝑋1 𝑋2

290 parametric models suitable to define limit lines. Davison and Ramesh (2000), Hall and Tajvidi 

291 (2000) and Ramesh and Davison (2002) developed local likelihood models for smoothing sample 

292 extremes of single series. Response surface methodology (RSM) is a tool that was introduced in 

293 the early 1950s by Box and Wilson (1951). RSM is a collection of mathematical and statistical 

294 techniques that is useful for the approximation and optimization of multivariate stochastic models 

295 of 3D surfaces.  For example, Shirazi et al. (2020) applied RSM techniques to multivariate data to 

296 fit optimal maximum response surfaces related to factors controlling soil erosion using an objective 

297 function they termed the desirability function.

298

299 Eberhardt and Thomas (1991), considering environmental systems, recommend the Box and 
300 Lucas method to obtain optimal parameter estimates of response surfaces; thus effectively 

301 defining limit lines. Box and Lucas is a relatively robust approach but implementation needs a 

302 higher level of statistical competency, although software is available to fit a selection of functions 

303 (e.g. Originlab®).  The original use was to define a complex curve through few data points which 

304 are believed to be the optimal (or in our case maximal) values of  for given , to thus assist in 𝑌 𝑥

305 choosing further values of  to sample for . As new data are added the line is optimized again.  𝑥 𝑌

306 The procedure assumes that the trend of the final fitted line defines the outer limit of the region 

307 within which data might be expected to occur, or which points are operationally acceptable.  Thus, 

308 the method is heavily dependent on some prior knowledge of the expected behaviour of maximal 

309 values of  as a function of . Box and Lucas (1959) did not consider the case where there are 𝑌 𝑥

310 many sub-optimal values of , which is the focus of this paper.  Consequently, there is an issue as 𝑌
311 to the initial section of points for fitting in cases where many sub-optimal values of  exist. 𝑌

312 Quantile regression (see Section 2.4.3) is capable of modelling any specific quantile of the 

313 conditional distribution  including the tails (corresponding to say the 95% quantile).  𝑌|𝑋 = 𝑥

314 However, good performance requires sufficient data to characterise  reasonably as a function 𝑌|𝑥

315 of . To estimate the 95% quantile we therefore need considerably more than 1/(1-0.95)=20 𝑥

316 observations of  in the vicinity of each value of  of interest; for the 99% quantile, in excess of 𝑌 𝑥

317 100 observations are required locally for each . Compared with linear regression, quantile 𝑥

318 regression is computationally somewhat more demanding, and typically performed using software 

319 such as R, PYTHON or MATLAB. Extensions of quantile regression to estimate non-crossing 

320 quantiles simultaneously corresponding to different non-exceedance probabilities are 

321 computationally more demanding still. Cade (2017) provides an outline of the method for 

322 environmental sciences.  A simple example is presented as Fig. 1C and a further example is 

323 provided in Supplement 2. 
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324 The mixture model of Maller et al., (1983; Kaiser et al., 1994, and see Section 2.4.4) needs a 

325 reasonably high level of statistical competency.  In outline, values of  are assumed to be drawn 𝑌
326 from a mixture of Gaussian distributions. The mean and standard deviation of each mixture 

327 component is linearly related to a ‘fullness’ random variable drawn from . The mean of each [0,1]
328 mixture component is also related to  by a linear regression. During inference, a set number of 𝑥
329 `fullness’ values is considered, and the parameters of the linear regression and the mixture 

330 component from which each particular pair  are drawn are estimated. The final choice of limit (𝑥,𝑦)

331 line to adopt given the inference is the choice of the investigator.  

332

333 Extreme value analysis (see Section 2.4.5) is used widely in environmental science to define 

334 return values for processes such as rainfall, temperature, storm, wildfire and earthquake severity, 

335 extreme occurrences of which are hazardous. The -year return value is defined by the equation 𝑇 𝑃

336 , where  is the annual maximum of random variable . The distribution of  is (𝑌𝐴 > 𝑦) = 1/𝑇 𝑌𝐴 𝑌 𝑌𝐴

337 estimated based on a sample of data using extreme value analysis (see e.g. Coles 2001). The 

338 return value can be also be defined conditional on a co-variate , as  . In 𝑋 𝑃(𝑌𝐴 > 𝑦|𝑋 = 𝑥) = 1/𝑇

339 this case, a different return value is estimated for each value of  of  (see e.g. Davison and Smith 𝑥 𝑋

340 1990).  Further details and a software reference are found in Supplement 3. 

341

342 4. Practical issues

343 A number of practical issues arise in attempting to estimate limit lines from a sample of data. In 

344 this section, we provide an overview of some of the issues that are likely to be of concern to the 

345 practitioner. These include identification of outliers, breakpoints and mixed samples, and the 

346 quantification of uncertainty of inference.

347 4.1 Identifying outliers

348 In regression modelling (Section 2.4), observations with large residuals (outliers) or high leverage 

349 are problematic, since they may violate the assumptions underlying the model and cast doubt on 

350 the outcome of a regression. Outlier detection and regression diagnostics naturally have a large 

351 statistical literature; the works of Wetherill et al. (1982) and Cook and Weisberg (1982) provide 

352 introductions. Traditionally when assessing a dataset before conducting linear regression, outliers 

353 were identified by eye from inspection of the x-y scatterplots. Objectively identified outliers likely 

354 lie above any proposed limit line so their identification is critical when fitting limit lines. 

355 Unusually large values of  and  can be identified by examination of extreme quantiles of marginal 𝑌 𝑋
356 statistics.  Alternatively, if sufficient data for  occur for a given , or within some neighbourhood 𝑌 𝑥
357 of , then outliers can be identified from examining histograms of  for each  of interest.  Within 𝑥 𝑌|𝑥 𝑥
358 a linear regression context, model diagnostics such as the diagonal elements of the so-called hat 

359 matrix, and Cook’s distance can be used to identify observations with high leverage and influence 
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360 respectively. Large values of model fit residuals are indicative of outliers. It is also generally useful 

361 to examine so-called studentized residuals. These diagnostics are explained in many statistical 

362 treatises, and are often included in statistical software packages, so we do not elaborate further.

363 For joint modelling of bivariate data (Section 2.3), Mahalanobis distance and similar metrics can 

364 be used to identify data points which are unusual with respect to that metric.  In a regression 

365 context, when the occurrence of outliers can be attributed to one or more additional data-

366 generating processes (over and above those responsible for the bulk of the sample), then more 

367 sophisticated techniques including mixture modelling can be used to simultaneously estimate ‘bulk’ 

368 and ‘outliers’ (e.g. Aitkin and Tunnicliffe Wilson 1980, Yu et al. 2015).

369 4.2 Identifying breakpoints

370 It is possible that an attempt to estimate a limit line with given characteristics (e.g. linearity) through 

371 x-y data does not yield satisfactory results. If the limit line is estimated using a statistical procedure, 

372 then lack of fit can be quantified. In such cases, more general models for the limit line should be 

373 sought. The relative performance of different models for the limit line can then be compared, and 

374 the best model adopted (e.g. Wetherill et al. 1986). Sometimes it may be appropriate to consider: 

375 (1) whether the data might exhibit breakpoints or changepoints in the x-y relationship, or; (2) 

376 whether a model admitting a non-linear relationship between variates is appropriate (e.g. Zanini et 

377 al. 2020). Figure 1C illustrates this issue. Here, the slope of the limit line clearly changes at wind 

378 speed around 10 ms-1; it might therefore be appropriate to fit a piecewise linear limit line as 

379 illustrated. However, physically we know that water waves are generated by the wind via frictional 

380 drag forcing, which implies alternative approaches including a linear limit line for y on the square 

381 of x, or a quadratic quantile regression limit line might be appropriate. However, the relationship 

382 observed at a specific location is unlikely to follow the quadratic form exactly, due to various effects 

383 including fetch-limitation, wind-field non-stationarity, bathymetric effects in shallower water etc. For 

384 this reason, fitting a piecewise linear form for a limit line is a pragmatically sound way to proceed; 

385 in practice, a larger number of piecewise segments might probably be used. In fact, exactly this 

386 approach is frequently used in ocean engineering to specify an extreme value threshold, and 

387 amounts to an approximate non-parametric quantile regression (see Section 2.4.3). 

388 In general, identifying breakpoints or changepoints in a sample can be important in the 

389 interpretation of a physical process (e.g. Ryan et al., 2002). The modelling challenge is to identify 

390 one or more breakpoints in  in the sample such that limit lines using data in each of the resulting 𝑥
391 sub-sets can be estimated more parsimoniously than using the complete sample. Often, prior 

392 empirical knowledge, or theory, can be used to locate the breakpoints in terms of x-values. Then 

393 separate regression models (or other approaches from Section 2) might be adopted for each sub-

394 set to estimate limit lines.  When the location of a breakpoint is uncertain, data points close to the 

395 expected breakpoint first can be considered to fall into one group and then considered to be part 
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396 of the other group to influence the regression line trends, thus repositioning the expected 

397 breakpoint. 

398 Identification of breakpoints also can be achieved as part of the statistical inference. For example, 

399 optimal partitioning of the x-domain into  intervals, on each of which piecewise constant or 𝐾
400 piecewise linear regression models are estimated, can be performed (see Ryan et al. 2002, Yang 

401 et al. 2016). 

402 4.3 Identifying mixed samples

403 Sometimes, it is possible that the sample for analysis corresponds to observations of a mixture of 

404 different data-generating processes. In this situation, we might expect that limit lines would be 

405 more appropriately estimated for the individual processes from which the mixture is composed. It 

406 might therefore be useful to perform prior partitioning of the sample into two or more groups using 

407 data for both  and . This outcome can be accomplished using cluster analysis when there is no 𝑌 𝑋
408 prior knowledge of group membership or using one of a large variety of classification techniques 

409 (including random forests and support vector machines) when some knowledge of group 

410 membership is available. For the two-group case, discriminant analysis (Brereton, 2009; Dixon and 

411 Brereton, 2009) is another popular choice. As mentioned in the context of outlier detection above, 

412 more sophisticated statistical techniques to model the mixture explicitly can also be employed.

413 4.4 Quantifying uncertainty 

414 Quantifying the uncertainty of estimates of limit lines is generally important if those estimates are 

415 to be trusted. Some of the approaches described in Sections 2 and 3 do not involve an explicit 

416 quantitative model for the relationship between  and ; it is difficult therefore to quantify the 𝑌 𝑋
417 uncertainty with which these limit lines are estimated.  Other methods from Section 2 and 3 make 

418 combined use of a data sample and a statistical model; for these methods and the limit lines they 

419 produce, it is therefore possible to quantify uncertainty using well-established approaches.

420 Sources of model uncertainty can be considered aleatory (due to the inherent natural variation of 

421 the process we are modelling, which will always be present) or epistemic (due to inadequate data, 

422 measurement procedures, model specification etc., the effects of which we could in principle 

423 eliminate with enough effort).  

424 When a regression-type model for  is being estimated, there are broadly two approaches 𝑌|𝑋 = 𝑥

425 to the quantification of uncertainty. The first approach adopts Bayesian inference. The key steps 

426 are (a) specification of full probabilistic data-generating model, (b) specification of a joint prior 

427 distribution for all the parameters in the model, (c) estimation of the joint posterior distribution of all 

428 parameters by conditioning on a sample of data using Bayes theorem, (d) diagnosing model 

429 performance, and estimation of posterior predictive credible intervals for structure variables of 

430 interest, such as a limit line. Many statisticians view Bayesian inference as the preferred strategy 

431 for model building and decision making, but it often suffers because of the difficulty of specifying 
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432 reasonable prior distributions for parameters, and the computational complexity of inference. 

433 Bishop (2006) and Gelman et al. (2015) provide introductions.

434 The second approach to uncertainty quantification is based on assessing the variability of 

435 inferences from models estimated using resamples of the original data sample. Different 

436 resampling techniques, including cross-validation, bootstrapping and randomised permutation 

437 testing provide relatively simple pragmatic approaches to estimate the performance of statistical 

438 models, to estimate uncertainties of predictions, and perform significance tests. Resampling 

439 approaches are widespread in the applied literature, especially when there is some ambiguity 

440 about the appropriateness of the model being used. However some might claim that resampling 

441 approaches lack the overall coherence and elegance provided by the Bayesian approach. There 

442 is a huge literature on resampling methods; Good (2006) provides an introduction. The works of 

443 Molinaro et al. (2005), Hesterberg (2015) and Lehr and Ohm (2017) provide useful practitioner 

444 perspectives.

445 4.5 Measurement error and heteroscedasticity 

446 In many data sets, measurements of both  and  are made with error. That is, we cannot measure 𝑌 𝑋

447 either  or  precisely. Uncertainty in  can be accommodated relatively easily in the distributional 𝑌 𝑋 𝑌

448 assumption made for . However, uncertainties in  are more problematic to handle 𝑌|𝑋 = 𝑥 𝑋

449 appropriately in simple statistical models. The presence of measurement errors causes increased 

450 bias and uncertainty in fitted statistical models, leading to erroneous inferences about limit lines. 

451 Using Bayesian inference, we can routinely specify a measurement error model for both  and . 𝑌 𝑋

452 Alternatively, we can extend conventional regression models to so-called errors-in-variables 

453 models.

454 In a simple linear regression model, we make the assumption that the variance of  does  𝑌|𝑋 = 𝑥

455 not change with the value of . However, in many applications, this is not the case, and the data 𝑋

456 are said to exhibit heteroscedasticity. This feature can again be accommodated by extending the 

457 regression model.

458 4.6 Model selection

459 Model selection is a procedure to select one among many candidate models. Typically we select 

460 a model with the best performance for the task at hand. However, there may be many competing 

461 issues relevant for good model selection other than quantitative performance, such as model 

462 complexity and interpretability. In many practical situations, a model which is straightforward to 

463 estimate, interpretable and gives reasonable performance, is preferrable over a considerably more 

464 complex model which is less interpretable and gives only slightly improved performance.

Page 13 of 36

http://mc.manuscriptcentral.com/PiPG

Progress in Physical Geography

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

14

14

465 There are essentially two approaches to model selection. In general, probably the wisest approach 

466 is based on the assessment of predictive performance of the model, preferring the candidate 

467 model with best predictive performance. Predictive performance is assessed by quantifying out of 

468 sample error; that is, how well a model performs on data that were not used to fit the model in the 

469 first place. There are many approaches to quantifying predictive performance, including (1) 

470 partitioning the original data into two groups, using one group to fit a model, and the other group 

471 as an unseen test set to estimate predictive performance, and (2) cross-validation, in which the 

472 original sample is partitioned into a number of subsets which are withheld one at a time, serving 

473 as test sets for models estimated using all the remaining sets; an estimate of predictive 

474 performance is then accumulated over all the test sets. The second approach to model selection 

475 attempts to quantify model performance using fitting performance of the model. However, 

476 because fitting performance is typically an over-optimistic assessment of predictive performance, 

477 the fitting performance score is usually penalised by a measure of model complexity; more complex 

478 models receive higher penalties. A number of related performance measures, including the Akaike 

479 Information Criterion (AIC). Bayesian Information Criterion (BIC), and Minimum Description Length 

480 (MDL) are available. Pawitan (2001, Sections 13.5-13.6), Davison (2003, Section 4.7) and Kuhn 

481 and Johnson (2018, Section 4.8) provide a useful discussion.

482 5. Examples of current fitting procedures

483 In this section we make use of three different data sets to illustrate the strengths and weaknesses 

484 of fitting limit lines using some of the simpler methods introduced above.  For conciseness, we 

485 have focussed on those simpler methods.  The issues that arise using simpler methods also apply 

486 to, and would inform the application of, more advanced statistical procedures.  The application 

487 here of simpler methods does not imply that more sophisticated approaches could not be explored 

488 beneficially in the case of these examples.  

489 The first example consists of a complex of several data sets which, taken together, define a visual 

490 upper limit line for which an upper limit is expected from theory.  This example is used to 

491 demonstrate the use of three relatively simpler methods together with fitting of a theoretical function 

492 that makes use of the empirical data.

493 The second example consists of a single data sets that is inadequate to clearly define a visual 

494 upper limit line, although a limit is reasonably expected from prior studies. This example is used to 

495 demonstrate the use of three relatively statistically robust methods.

496 The third example consists of a single data set for which the variance in y increases rapidly as the 

497 value of x increases, and both upper and lower limit lines are required.  Solutions derived using a 

498 simple robust method are contrasted to inspection functions.

499

500 Example 1: Catastrophic outburst floods from dammed lakes
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501 Figure 2 serves as an example of the issues that arise from fitting limit lines using Inspection, 

502 Selective Regression and application of a data-informed Theoretical Limit.  The data sets 

503 collectively represent the relationship between measured volumes of released lake water (V) and 

504 the estimates of the peak discharge (Qp) downstream due to catastrophic lake failure (O’Connor 

505 et al., 2013).  It may be expected that variation in breaching mechanisms, channel geometry and 

506 roughness (amongst other controls) will mediate the downstream translation of the flood wave so 

507 that different peak discharge values might be obtained for the same initial lake volumes.  However, 

508 if the discharge from the lake is constrained by the initial geometry of the

509

510 Figure 2 near here

511 eroding breach (e.g. critical flow control), or by the way the flood translates down system, there 

512 should be an upper limit to the scatter of peak discharge values.  The data in Fig. 2 considered 

513 collectively, or as separate data sets, provide some support for the critical flow control as is detailed 

514 below.  

515

516 Inspection and selective regression: The green curve is fitted by inspection ( ) to 𝑄𝑝 = 0.1286𝑉0.83

517 pass through the three outlying ‘landslide group’ data points.  The four green points attract attention 

518 because, on log-log coordinates, the four points trace out a straight line lying above the main data 

519 spread.  Having fitted the green curve, the red ‘constructed group’ data point (lying above the green 

520 curve) is defined as an outlier a posteriori, by the simple fact that it lies above the green limit line.  

521 Note that this definition of the outlier is unsatisfactory given that robust methods (noted above) are 

522 available to determine leverage.  All other data points are included within the limit, but forward 

523 extrapolation of the limit line means that the curve increasingly deviates away from the observed 

524 data.  A curve fitted through the four ‘landslide group’ data points (selective regression on a data 

525 sub-set), using least-squares regression, provides a similar curve (  and is 𝑄𝑝 = 0.1168𝑉0.83)

526 preferred to the eye-fitted curve for reasons explained prior.  

527

528 Selective regression with optimal a*: A least-squares regression of the ‘physical model’ data 

529 defines the trend of that data set which, when extrapolated forwards (not shown) passes through 

530 the centre of the mass of other data sets.  This consilience between the two groups of data suggest 

531 that the small-scale model results reproduce well the central tendency of behaviour of large natural 

532 dam failures across several orders of magnitude.  Interestingly, such an extrapolation might define 

533 an upper limit line for ‘Ice dams – subglacial tunnelling’, although we do not explore the implications 

534 herein.  However, to define a limit line for the majority of data, the trend of the ‘physical model’ data 

535 can be adjusted by adding increments to the intercept value, a*, until sufficient data points fall 

536 below the limit.  In the example provided, the intercept value is increased (Selective regression 

537 with optimal a*) by a factor of ten such that although ten data points lie outside the limit, the black 
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538 line provides a reasonably satisfactory visible limit to the data spread, notably that of the 

539 ‘constructed group’ and ‘moraine group’ data sets.  A small increase in the intercept value would 

540 readily include seven more data points leaving only three as outliers.  By adjusting the intercept 

541 value the exponent of the trend line is preserved, implying that the central tendency growth function 

542 for ‘physical model’ data also can define the behaviour of data at the upper limit to the larger-scale 

543 dam-break data.  By such systematic exploration of central tendency and limits, consideration can 

544 be given to: i) the relationship of one data set to another; and ii) the consistency of data point 

545 plotting positions within the individual data sets.  Further, iii) the positions of some individual data 

546 points come under scrutiny and; iv) possible theoretical constraints on the data plotting positions 

547 may become evident.  

548 Theoretical Limit: A theoretical critical flow control might be considered to provide an upper limit to 

549 the data spread in Fig. 2.  The theoretical derivation is provided as Supplement 1 but the basic 

550 facts are as follows.  Failure of earthen and ice dams often is associated with initial establishment 

551 of a critical-flow depth (hc) at the breach that determines the peak outflow discharge (Walder and 

552 O’Connor, 1997; O’Connor and Beebee, 2009).  Larger volume (V) lakes tend to have greater 

553 depths (h) and so have the propensity to develop rapid failures with greater critical flow depths; 

554 thus hc  h.  Assuming that the ouflow breach, and thus the critical flow depth, will be larger for ∝

555 larger water bodies, the maximum discharge Qp should be proportional to the lake volume efflux 

556 (V).  O’Connor and Beebee (2009) showed that a critical flow control can be approximated as: 

557

558 , (1)𝑄𝑝 = p𝑔1/2ℎ𝑐
5/2

559  

560 where g is the acceleration due to gravity and p is a proportionality coefficient.

561

562 The V-data in Fig. 2 are used to calculate , so defining the values of hc and p in Equation 1 can 𝑄𝑝

563 be seen as a fitting procedure, rather than just adding a theoretical function to the graph. Equation 

564 1 provides a theoretical basis for the slope (b) of the green limit line.  The slope of Eq. 1 is practically 

565 coincident with both the line drawn by inspection and the least-squares power function (b = 0.83) 

566 obtained using selective regression on a data sub-set (as reported above), matching the position 

567 of these two curves when p = 1.0.  It is beyond the scope of this paper to discuss the reasons why 

568 the limit line constructed using theory has a steeper gradient than that devised using selective 

569 regression with optimal a*.  Nevertheless, fitting the various limit lines leads to considerations such 

570 as that the theory applied may be too restrictive, or the small-scale physical model data may not 

571 adequately represent larger natural systems.   

572

573 Example 2: Lichen growth curve to date flood deposits
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574 Figure 3 serves as an example of the issues that arise from fitting limit lines using parametric 

575 mixture modelling. The data considered (Carling, 1987) define the relationship between the 

576 diameter of the largest lichen thalli on dated gravestones in Teesdale, northern England (Fig. 1B).  

577 Such lichen growth curves can be used to date the surface of rocks that have been transported by 

578 floods or glaciers in the same region for which the calibration data were obtained.  The supposition 

579 is that geophysical flows transport, abrade and destroy any pre-existing lichens, such that lichen 

580 growth only occurs once the rocks are stable in a deposit. In this manner flood gravel bars and 

581 glacial moraines can be dated.  The species of lichen (Huilia albocaerulescens) used by Carling 

582 (1987) tends to produce circular thalli which, after an initial rapid growth phase of  a few years only, 

583 tend to steadily increase linearly in size with age.  Eventually lichens reach senescence, at which 

584 time lichen thalli cease to grow, grow more slowly, or being to break-up.  Consequently, any 

585 maximum linear growth function can only be extended to a given x:y breakpoint value beyond 

586 which maximum growth does not apply (Cooley et al.  2006).  Beyond this point, either a separate 

587 lower-gradient function is fitted for the senescence phase, or, if a single function is fitted it must 

588 account for the growth and senescence phases (Innes, 1983). In ideal growth conditions, lichens 

589 will achieve a maximum diameter during the rapid growth phase. Data scatter occurs below an 

590 expected upper limit to the x:y data pairs occurs for a number of reasons, including: pollution, the 

591 date on the gravestone being added some time after erection; differences in the rock type, aspect, 

592 and occasional cleaning of gravestones.

593

594 Box and Lucas: The data shown in Fig. 3 produces an upper limit line (blue curve) when using the 

595 Originlab® procedure, that is of the same form as a conventional least-squares exponential fit 

596 (orange curve) through all the data.  Both curves are constrained to have an origin at T equals 

597 zero, although other intercepts could be specified.  A linear least-squares zero-intercept fit to all 

598 the T ≤ 190 data pairs (not shown), to represent only the growth phase, statistically would be a 

599 less good fit (r2 = 0.31) than the orange curve.  The fitted limit is that which maximizes the r2 value 

600 for eight outer points, so other curves could be selected if desired.  The points that lie just above 

601 the Dmax exponential solution were determined to do so by the final choice of the curved fitted.  The 

602 fitted line intuitively is acceptable as it encloses 93% of the data points, but a higher curve could 

603 equally be obtained to enclose more data points.  

604

605 Mixture modelling: An expectation–maximization (EM) algorithm was used to fit the red curve in 

606 Fig. 3 following the mixture model of Maller et al., (1983). The least-squares trimming method of 

607 Maller et al., (1983) leads to a solution (green curve) that is similar to selective regression (which 

608 fits a least-squares function to an arbitrary selection of data points), but the degree of objectivity in 

609 curve fitting is greater using mixture modelling.  The solution is not uniquely determined, but the 

610 accepted fitted line usually is taken to be the solution that includes the greatest number of data 

611 points.  In the case of the data in Fig. 3, a limit was derived after eight iterations which enclosed 
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612 95% of all data points and which passes through a further 4% leaving two points just above the 

613 curve.  The fitted curve: Dmax = 0.815T + 24.33 lies slightly below the red curve fitted using EM 

614 algorithm which enclosed all data points. 

615

616 Figure 3 near here

617

618 As lichens often exhibit initial rapid growth, followed by a linear growth phase, followed by an 

619 exponential decline during senescence (Cooley et al.  2006), a bipartite or tripartite limit line might 

620 be preferable, although in the case of the data in Fig. 3 there are inadequate data to define a 

621 separate senescence phase.  However, it would be more satisfying if recourse was made to 

622 biologically-based theoretical models of lichen growth (Childress and Keller, 1980) to determine 

623 what form of function should be fitted that mimics the growth of lichens.      

624

625 Example 3: Variation in energy expenditure required to fracture pebbles

626 Figure 4 serves as an example of the issues that arise from fitting limit lines using Inspection and 

627 and Iterative Selective Regression. Figure 4 reproduces the data shown in Fig. 1A, with additional 

628 limit lines fitted.  The data published originally by Tuitz et al. (2012) were presented in this graphical 

629 context by Carling & Fan (2020)   The data represent the variation in experimentally-derived energy 

630 expenditures recorded using a laboratory point-load test to fracture river pebbles.  It is known from 

631 theory and empirical measurements in prior published studies of facture processes that the energy 

632 should increase in a linear manner for the range of pebble sizes considered here.  However, as 

633 pebble size increases the number and complexity of flaws in the pebbles also increases such that 

634 the variance in the y-data increases as a function of x.  Carling & Fan (2020) only wished to draw 

635 attention to the data spread and eye-fitted the red-dotted lines to delimit the data spread.  The 

636 lower and upper blue fitted limit lines were obtained after seven and nine iterations respectively 

637 using iterative selective regression. 

638 Figure 4 near here

639
640 6. Concluding Discussion
641
642 Researchers sometimes wish to define boundaries, upper or lower limits to samples of data, and 

643 hence to the distributions from which those samples are drawn.  In choosing an approach to 

644 achieve this, the researcher should be as specific as possible about the objective of their data 

645 analysis. Consideration should be given as to how the inferences derived from the analysis will be 

646 used further to inform decisions.  In some fields, including hydrology and environmental 

647 engineering, there are specific concerns regarding characterisation of extreme values of the data-

648 generating process.  In these areas, techniques motivated by extreme value theory are relatively 

649 commonplace to quantify the (joint) tails of distributions from samples, and to estimate extreme 

650 quantiles including upper bounds for conditional distributions such as . However, in many other 𝑌|𝑥
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651 fields, estimation of boundaries or limit lines has received little or no attention.  Rather weak ad-

652 hoc methods, making limited use of available data and quantitative modelling, have been applied. 

653 On occasion, statistical methods such as linear regression, devised to characterize the general 

654 nature of data spread  have been adapted to locate possible limit lines.  Rarely have statistical 𝑌|𝑥

655 approaches which specifically seek to characterise the tail  been used. Often a limited 𝑌|𝑌 > 𝑢, 𝑥

656 number of observations precludes statistical modelling. Specifically, for the applications illustrated 

657 in Figures 1(B), 2, 3 and 4, sample size is sufficient to attempt relatively simple regression models 

658 for , including quantile regression; however, it would not be feasible to quantify the conditional 𝑌|𝑥

659 tail  using extreme value analysis. Sometimes, weaker ad-hoc methods are adopted 𝑌|𝑌 > 𝑢, 𝑥

660 because of a lack of awareness or appreciation that more principled approaches may be useful.  

661 In general, ad hoc methods should not be used in cases where more principled statistical 

662 procedures can be applied, because the latter are clearly defined mathematical models making 

663 use of available data, are reproducible and allow quantification of uncertainty.  Whereas ad hoc 

664 methods introduce uncertainty with respect to interpretation, adoption of statistical procedures 

665 allows both authors of articles and readers to further explore the implications of the fitted functions 

666 in a rational manner.

667

668 In the absence of theoretical knowledge as to the form of a limit line, the qualitative procedure of 

669 inspection is a useful initial means to consider the likely form of a function.  Indeed, the intuitive 

670 understanding of how the data behaves can assist in statistical model formulation, yet at the same 

671 time inspection can lead to false inferences as to the likely behaviour of a limit.  The quantitative 

672 nature of data allows objective fitting of a statistical function, which can then be compared with the 

673 intuitive expectations of the analyst.  Given that a variety of statistical models are available, it is 

674 important to consider at the outset the purpose of the fitting exercise and to choose the method 

675 that is most appropriate to satisfy the objective.  Fitting statistically derived limit lines is especially 

676 powerful in those cases where the theoretical limit is either well-known or the behaviour is 

677 reasonably expected.  In these cases, the close agreement of the statistically fitted limit with a 

678 theoretically derived line can be confirmatory.  In contrast, significant discrepancies between the 

679 two curves may indicate deficiencies with the data sample: additional data may be required, or the 

680 quality of existing data may be suspect.  Discrepancies may also highlight theoretical or model 

681 inadequacies: the possibility that other covariates are affecting y- or x-values, or that the theory 

682 may need revision.  

683

684 In the examples provided herein (section 5) it is evident that the application of different methods 

685 produces different limit lines.  In some applications these discrepancies may not be significant.  As 

686 previously noted, the identification of extreme behaviour within environmental systems can be very 

687 important for instance in hazard mitigation.  In such critical situations the development of limit lines 

688 rationally informed by empirical evidence, statistical and physical theory is preferable.  Although 
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689 this conclusion may seem obvious, there are many examples in the literature of limit lines fitted 

690 without consideration of existing theory.  For example, surprisingly, limit lines are often fitted to 

691 define the relationship between the maximum flood discharges generated from given catchment 

692 areas without consideration of the maximum probable flood (MPF).  The MPF is the theoretical 

693 expectation (e.g. Shalaby, 1994; USFERC, 2001) and it would be informative to compare the 

694 statistically derived flood limit lines with the theoretical functions.  Where theory is unavailable, 

695 consideration should be given as to whether the application of different methods tends to lead to 

696 convergence in terms of the form and trend of several limit lines. In general however, identifying 

697 the subset of methods that provide consistent estimates of limit lines is likely only to be possible 

698 once the details of the problem and data have been understood. Building an appreciation for the 

699 relative performance of different methodologies via simulation study for a specific problem type is 

700 useful and standard practice in the statistics literature. However, the number of potential problem 

701 types is huge, and therefore the specifics of the problem of interest first need to be clearly defined 

702 before the simulation study is undertaken.

703

704 The use of advanced statistically methods in contrast to simple ones readily can be justified 

705 (Jomelli et al. 2010), especially when there is plentiful empirical evidence.   Not least, given the 

706 inevitable ambiguity in fitting of limit lines, it is important to reason systematically whilst recognizing 

707 the uncertain evidence that even large data sets offer (e.g. using Bayesian analysis).    However, 

708 situations occur where the x-y data points are few, or their disposition on the scatter plot render 

709 the application of sophisticated methods impracticable or impossible.  Such situations usually 

710 indicate that additional data are required, or that stronger assumptions about the data-generating 

711 process are necessary.  Regardless, the procedure used to fit a limit line should be documented 

712 sufficiently clearly that limit line estimation given a sample of data can be reproduced with 

713 confidence.  Fitting a limit by Inspection alone rarely can be justified.  

714

715 The advantage of a statistical approach in general is that it provides a rational, reproducible basis 

716 for inference, and hence a sound basis for learning: different practitioners working independently 

717 can be reasonably expected to make the same inference given a sample of data. The performance 

718 of a model is dependent on the quality of information used to infer it. It is not reasonable in general 

719 to expect that a statistical model provides a “better result” than a visual fit, since a well-informed 

720 visual fit may be superior to a badly specified statistical model. However, it is also self-evident than 

721 an ill-informed visual fit can lead to spectacularly bad inferences.

722

723 The outline taxonomy or road map provided in Section 2 provides an overview of the range of 

724 statistical methodologies available for estimation of limit lines, and references to statistical texts 

725 which explain methodologies in more detail. Choice of the appropriate methodology will be problem 

726 specific. When dealing with an unfamiliar problem, seeking the advice of a statistician is likely to 
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727 be beneficial. Given the uncertainty that can pertain to model fitting, we conclude by providing 

728 some signposts that may assist in the decision-making process of limit line fitting:

729

730  Define the objective of the analysis: for what purpose will the fitted limit line be used? 

731 Consider how this informs the analysis to be undertaken

732  Assess the data to hand, the characteristics of the measurement used to gather 

733 data, and likely sources of uncertainty. Are the measurements independent (given 

734 covariates)? Are the data representative? What is the potential for gathering further 

735 relevant data?

736  Determine if theory allows the form of the limiting function to be defined

737  Determine whether a statistical model can be adopted for the data-generating 

738 process and fitted to the data. Limit lines may then be estimated using the fitted 

739 statistical model. What form of statistical model is likely to me more appropriate? 

740 Otherwise consider what form of limit line curve might be appropriate from 

741 knowledge of the system behaviour

742  Assess the appropriate level of sophistication of the statistical model or limit line 

743 curve, guided by parsimony. Is it likely that (unknown, unmeasured) covariates are 

744 in play? Should breakpoints be considered?

745  In fitting the statistical model or limit line, always assess fitting performance using 

746 diagnostic plots and tools. Assess potential outliers. 

747  Seek to quantify uncertainties in the fitted model (line), and propagate those 

748 uncertainties to subsequent decisions made using the fitted model (line)

749
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896

897 Figure Captions

898 Figure 1: Examples of limit line fits. A) Central tendency in the relationship between the size to 

899 pebbles and the energy required to break them is defined by least squares regression (blue curve). 

900 Uncertainty in the energy required increases as a function of the pebble size.  Limit lines (red) are 

901 defined using Inspection (explained in text); B) Lichen growth curve: Central tendency defined by 

902 zero-intercept (blue) regression curve; Limit line (grey) defined by simple linear regression with 

903 adjusted intercept (explained in text) to enclose all data points. C) Significant wave height as a 

904 function of wind speed at a location in the north-east Atlantic, with piecewise-linear quantile 

905 regressions at the 0.9 quantile level fitted independently to the data below and above the median 

906 x-value of 10 ms-1;  Pebble data from Tuitz et al., (2012); Lichen data from Carling (1987); wave 

907 data from Reistad et al., (2011). 

908

909 Figure 2:  Empirical data define the relationship between the flood volume and the peak discharge 

910 of water released from catastrophic failures of dammed lakes.  Brown curve is the least-squares 

911 fit to the physical model data; Limit line (black) fitted to all the data using selective regression with 

912 optimal a*; Limit line (green) fitted by inspection of a data sub-set.  The equivalent theoretical 

913 equation, , is essentially the same as the green line (see main text).𝑄𝑝 =  𝑔1/2(ℎ𝑐)5.2

914 Figure 3: Empirical relationship between the date on gravestones and the diameter of lichen thalli 

915 in 1986. Data from Carling (1986).  The red curve was fitted using an EM algorithm. The green 

916 curve was fitted using the Maller et al. (1983) trimming method.  The blue curve was fitted using 

917 the Box & Lucas (1959) method. The orange curve was fitted to all the data using a least-squares 

918 exponential fit.

919

920 Fig. 4: Variation in experimentally-derived energy expenditures recorded using point load test 

921 applied to fracture water-worn pebbles. Red curves were fitted by visual inspection.  Blue curves 

922 were fitted using selective regression. 

923

924 Figure S1: Representation of the spread of x-y data wherein the variance of  increases as 𝑌|𝑋 = 𝑥

925 a function of .  The data shows the burned area of forest (on logarithm base 10 scale) against 𝑥
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26

926 background atmospheric temperature, taken from Cortez and Morais (2007), available at 

927 https://archive.ics.uci.edu/ml/datasets/Forest+Fires .The red, orange and blue lines represent 

928 estimated linear quantile regression lines for the 0.9, 0.5 and 0.1 quantile levels. The black curves 

929 illustrate Gaussian density fits to the conditional distribution of  for different choices of .𝑌|𝑋 = 𝑥 𝑥

930

931

932

933
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1 Supplement 1: Theoretical limit
2

3 A theoretical critical flow control might be considered as follows.  Failure of earthen and ice dams 

4 often is associated with initial establishment of a critical-flow depth (hc) at the breach that 

5 determines the peak outflow discharge (Walder and O’Connor, 1997; O’Connor and Beebee, 2009): 

6 Larger volume lakes tend to have greater depths (h) and so have the propensity to develop rapid 

7 failures with greater critical flow depths; thus hc  h.  Assuming that the ouflow breach, and thus ∝

8 the critical flow depth, will be larger for larger water bodies, the maximum discharge Qp should be 

9 proportional to the lake volume efflux (V).  The scale values of h or hc  are unknown for the cases 

10 considered and have to be estimated, as follows.  To derive estimates of h we note that many 

11 dammed lakes in V-shaped valleys have a geometry that approximates a tetrahedron, being deep 

12 at the dam, shallowing and narrowing up valley.  An equilateral triangle with length, W, forms a 

13 vertical plane at the dam, with the apex of the tetrahedron denoting the upstream extent (L) of the 

14 lake, which has a triangle water-surface area.  Assuming a regular tetrahedron (W = L), then 𝑊 =  

15   and, from Pythagorus’ theorem the water depth at the dam face, . 2(3𝑉)
1
3 ℎ =  𝑊2 ― (1

2𝑊)2

16

17 For the landslide dams plotted in Fig. 2, O’Connor and Beebee (2009) determined:

18

19  (1)ℎ𝑐 > 0.2𝑉0.14 ℎ0.58

20

21

22 O’Connor and Beebee (2009) showed that a critical flow control can be approximated as: 

23

24 , (2)𝑄𝑝 = p𝑔1/2ℎ𝑐
5/2

25  

26 where g is the acceleration due to gravity and p is a proportionality coefficient.

27

28

29 Given that hc calculated from Eq. 1 represents a minimum value for landslide dams, the 

30 proportionality coefficient in Eq. 2 subsumes the fact that the true value of hc likely will be greater 

31 than calculated using equation 1, but also reflects the fact that L > W and hc ≤ h.  Using values of 

32 hc derived from the landslide dam V-data, Equation 2 provides the theoretical basis for the slope 

33 (b) of the green limit line.  The slope of Eq. 2 is practically coincident with both the eye-drawn line 

34 and least-squares power function (b = 0.83) reported in the main text, matching the position of 

35 these two curves when p = 1.0.  It is beyond the scope of this paper to discuss the reasons why 

36 the limit line constructed using theory has a steeper gradient than that devised using regression 

37 analysis.  Nevertheless, fitting the various limit lines leads to considerations such as that the theory 
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2

2

38 applied may be too restrictive, or the small-scale physical model data may not adequately 

39 represent larger natural systems.   

40 Supplement 2: Quantile regression

41 Figure S1 near here

42

43 Figure S1 presents an example of regression data for which the variance of the response increases 

44 as the predictor increases and there is a visual upper limit to the data spread. In this case, a 

45 quantile regression model provides a suitable mechanism to estimate limit lines as discussed 

46 below. The data represent burned area of forest as a function of background atmospheric 

47 temperature.

48

49 In contrast, a simple linear regression model will not provide a suitable basis for estimation of limit 

50 lines, essentially because the model is not appropriate to characterise the data-generating process. 

51 For the data in Figure S1, a least squares regression for a response  onto the predictor  models 𝑌 𝑥

52 the conditional mean  as a linear function of , and assumes that the distribution of 𝐸 (𝑌 І 𝑋 = 𝑥) 𝑥

53  is Normal with constant variance, not influenced by the value . It does not therefore 𝑌|𝑋 = 𝑥 𝑥

54 capture the increasing conditional variance  and more generally the conditional 𝑣𝑎𝑟 (𝑌 І 𝑋 = 𝑥)

55 distribution  of  given . 𝑌|𝑋 = 𝑥 𝑌 𝑥

56

57 The black curves in Figure S1 represent the conditional densities of  for five specific values 𝑌|𝑋 = 𝑥

58 of . A set of densities for a comprehensive grid of values of x would provide a complete picture of 𝑥

59 the conditional distribution of  . Note that the conditional densities illustrated are assumed 𝑌|𝑋 = 𝑥

60 Normal only for the purpose of illustration.

61

62 Figure S1 also shows fitted linear quantile regression models for quantile non-exceedance 

63 probabilities 0.9, 0.5, and 0.10 (equivalently, the 90th, 50th, and 10th percentiles of the conditional 

64 distribution  as a function of ). We might select the 0.1 and 0.9 quantile lines (or even more 𝑌|𝑋 = 𝑥 𝑥

65 extreme quantiles as appropriate) as limit lines.

66 Koenker (2005) and Hao and Naiman (2007) provide excellent introductions to the theory and 

67 applications of quantile regression. Quantile regression software is available e.g. in PYTHON, 

68 MATLAB and R.

69 We note that statistical models admitting heteroscedasticity would also provide appropriate 

70 descriptions of data such as those in Figure S1, and hence yield principled estimates of a limit line.

71 Supplement 3: Non-stationary extreme value analysis
72
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73 The objective of extreme value analysis is to estimate the tail of the distribution of a random 

74 variable. Theory (e.g. Beirlant et al. 2004) shows that independent occurrences of peaks over 

75 threshold for some random variable  with a stationary distribution (satisfying a max-stability 𝑌

76 condition) are asymptotically generalised Pareto distributed with cumulative distribution 

77 function:

78 𝐹𝑌|𝑌 > 𝑢(𝑦) = 1 ― (1 +
𝜉
𝜎(𝑦 ― 𝑢)) ―1/𝜉

79 for shape  , scale  and threshold . When  the distribution takes the 𝜉 ∈ ( ― ∞,∞)\0 𝜎 > 0 𝑢 𝜉 = 0

80 form . If the distribution of  is stationary only when conditioned on 1 ― exp ( ― (𝑦 ― 𝑢)/𝜎) 𝑌

81 covariate , we might choose to adopt a high quantile of the non-stationary conditional 𝑋

82 distribution  for high threshold , as a function of , as a limit line. In this 𝑌|𝑌 > 𝑢(𝑥),𝑋 = 𝑥 𝑢(𝑥) 𝑥

83 case the conditional density for  becomes𝑌|𝑌 > 𝑢(𝑥),𝑋 = 𝑥

84 𝐹𝑌|𝑌 > 𝑢(𝑥),𝑋(𝑦|𝑥) = 1 ― (1 +
𝜉(𝑥)
𝜎(𝑥)(𝑦 ― 𝑢(𝑥))) ―1/𝜉(𝑥)

85

86 for , and when , where ,   and  are now all 𝜉(𝑥) ≠ 0 1 ― exp ( ― (𝑦 ― 𝑢(𝑥))/𝜎(𝑥)) 𝜉(𝑥) = 0 𝜉 𝜎 𝑢

87 functions of . 𝑥

88 When the value of  is negative, the distribution of  has a finite upper limit. Thus, if there is 𝜉 𝑌

89 specific prior knowledge that a finite upper limit exists, it might be appropriate to restrict 

90 estimates for the value of  to be negative. 𝜉

91 In simple cases, it might be appropriate to adopt linear forms for these parameters, such as 

92 , with similar descriptions for   and ; in general, more sophisticated 𝜉(𝑥) =  𝑎𝜉 +  𝑏𝜉 𝑥 𝜎 𝑢

93 parameterisations are needed, e.g. as described in Zanini et al. (2020).

94 Estimating a limit line using extreme value theory therefore requires the following procedure: 

95 (a) estimate an extreme value threshold e.g. using an empirical quantile, or quantile 𝑢(𝑥) 

96 regression, corresponding to some high quantile non-exceedance probability  at covariate 𝜏

97 value ; (b) assume a generalised Pareto model for exceedances of , and estimate 𝑥 𝑢(𝑥)

98 generalised Pareto parameters  and ; and (c) estimate a limit line as an extreme 𝜉(𝑥) 𝜎(𝑥)

99 quantile  of the fitted generalised Pareto corresponding to a large non-exceedance 𝑄(𝑥)

100 probability  near unity. The value of  is obtained by solving the equation above for  at 𝜏 ∗ 𝑄(𝑥) 𝑦

101 each , setting the left-hand side to . When interest lies in the lower tail , 𝑥 𝜏 ∗ 𝑌|𝑌 < 𝑢(𝑥),𝑋 = 𝑥

102 changing the sign of  transforms the problem into the upper tail case just discussed.𝑌
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103 Software (Jonathan and Ewans, 2021) provides a simple algorithm to estimate non-stationary 

104 extreme value threshold using quantile regression, and generalised Pareto models for 𝑢(𝑥) 

105 threshold exceedances. Linear forms for  ,  and  are assumed, and the estimation  𝜉(𝑥) 𝜎(𝑥) 𝑢(𝑥)

106 is performed by Bayesian Markov chain Monte Carlo (MCMC) inference using adaptive MCMC 

107 (Roberts and Rosenthal 2009). Using the fitted models, limit lines can be estimated as 

108 described in step (c) of the previous paragraph. The key steps in an extreme value analysis 

109 of peaks over threshold using MCMC are (a) specification of reasonable prior distributions for 

110 the parameters of  and , and (b) diagnosis that the estimate of  is relatively 𝜉(𝑥) 𝜎(𝑥) 𝜉(𝑥)

111 insensitive to choice of threshold  (and hence ; see Coles 2001). 𝑢(𝑥) 𝜏

112 Extreme value analysis is used widely in environmental science and engineering. It is also 

113 used e.g. in lichenometry. Cooley at el. (2006) illustrates the use of a Bayesian hierarchical 

114 generalised extreme value model for lichenometry. Jomelli et al. (2020) provide a useful 

115 motivation for extreme value analysis in lichenometry.

116

117
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