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Abstract

This article compares the accuracy of return value estimates from stationary and non-stationary extreme value models

when the data exhibits covariate dependence. The non-stationary covariate representation used is a penalised piecewise-

constant (PPC) model, in which the data are partitioned into bins defined by covariates and the extreme value distribution

is assumed to be homogeneous within each bin. A generalised Pareto model is assumed, where the scale parameter can

vary between bins but is penalised for the variance across bins, and the shape parameter is assumed constant over all

covariate bins. The number and sizes of covariate bins must be defined by the user based on physical considerations.

Numerical simulations are conducted to compare the performance of stationary and non-stationary models for various

case studies, in terms of quality of estimation of the T -year return value over the full covariate domain. It is shown that a

non-stationary model can give improved estimates of return values, provided that model assumptions are consistent with

the data. When the data exhibits non-stationarity in the generalised Pareto tail shape, the use of non-stationary model

assuming a constant shape parameter can produce biases in return values. In such cases, a stationary model can give a

more accurate estimate of return value over the full covariate domain as only the most extreme observations (regardless of

covariate) are used to estimate tail shape. In other cases, the assumption of a stationary model will ignore key features of

the data and be less reliable than a non-stationary model. For example, if a relatively benign covariate interval exhibits

a long (or heavy) tail, extreme values from this interval may influence the T -year return value for very large T . However

the sample of peaks over threshold, with high threshold, used to estimate a stationary model in this case may not include

sufficient observations from this interval to estimate the return value adequately.
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1. Introduction

Accurate estimation of extreme events is important in offshore and coastal engineering. Under-estimation of the

magnitude of extreme events can lead to structural failures, whilst over-estimation can lead to overly-conservative and

expensive designs and inefficient allocation of limited resources. Return periods of extreme events are usually estimated by

fitting a statistical model to observed or modelled data and extrapolating into the tail of the distribution. The accuracy

of estimated return values is dependent on numerous factors, including (a) quality of historic data (henceforth “dataset”),

(b) length of dataset, (c) characteristics of the actual data-generating distribution, (d) misspecification of the statistical

model, and (e) method used to estimate the statistical model.
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Bias in metocean data obviously leads to bias in estimates of extremes. Random errors in metocean data lead to

positive bias (i.e. a tendency to estimate return values that are higher than the true return values), since the distribution

of random errors is convolved with the distribution of the variable ([1, 2]). Shorter datasets lead to higher variance in

estimates of extremes, but can also increase bias, since bias in parameter estimators for various distributions can vary

with the number of observations. Similarly, the shape of the tail of the distribution affects both the bias and variance of

estimates of extreme values, with estimates of longer-tailed distributions having a higher variance for a given sample size.

Biases in parameter estimates also vary with the shape of the tail (see e.g. [3, 4]).

Model misspecification refers to differences between the “true” characteristics of the data (and the data-generating

model responsible for it) and the assumptions made in the statistical model. At present, the most commonly applied

method for estimating extremes of metocean variables is the peaks-over-threshold (POT) method (see e.g. [5, 6]). The

POT method makes the following key assumptions about the data: (1) observations are independent and identically

distributed (IID) given covariates, and (2) exceedances of a sufficiently high threshold follow a generalised Pareto (GP)

distribution. The GP distribution describes the asymptotic behaviour of independent threshold exceedances from a max-

stable data-generating distribution. As threshold level increases, theory suggests that the closeness of the conditional

distribution of peaks over threshold to the GP form improves. The appropriateness of the GP distribution is therefore

based on the threshold being sufficiently high that the asymptotic approximation is valid, with too low a threshold leading

to increased bias in the estimated extreme values due to the GP distribution not being an appropriate model. The choice

of threshold is a trade-off between increased bias from setting the threshold low and increased variance from setting the

threshold high, so that there are fewer observations. The rate of convergence of threshold exceedances from the data-

generating distribution to the GP distribution may however be slow. That is, a very large threshold might be required

for the GP form to be considered a reasonable approximation, making practical inference difficult for finite samples.

For this reason, a number of “pre-asymptotic” parametric distributional forms, or “penultimate approximations”, have

been proposed [7, 8]; the idea being that the data-generating distribution is in some sense “closer” to the penultimate

approximation than to the asymptotic distribution for finite threshold. However, since the GP model is the most widely

used at present it has been applied in the present work and the use of penultimate approximations is not pursued further

here. In addition, a large literature on non-parametric alternatives for estimation of distributional tails exists (see e.g. [9],

[10]).

Regarding the assumption that observations are IID given covariates, metocean variables typically exhibit serial cor-

relation, so the assumption of independence is not true if a model is fitted to all observations. This is dealt with by

declustering the data, where only the largest observation in each storm are considered so that storm maxima can be

considered approximately independent. The criterion for what determines independent storms is usually defined in terms

of a minimum separation in time. A rigorous treatment of the correlation between successive extreme events can be made

by plotting the extremogram [11], an analogue of the autocorrelation function for sequences of extreme events, although

care must be taken to first remove the seasonal signal from the data which introduces a longer-range correlation. An

example of the use of the extremogram to define a declustering time-scale was presented by Mackay and Johanning [12],

which showed that a time-scale of around 5 days was sufficient for the datasets considered in that study. Alternatively,

declustering times can be defined based on more heuristic arguments about the average time scales for weather systems

to pass over a site, typically taken to be in the range of 2-5 days. Ewans and Jonathan [13] discuss a physically-motivated
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approach to declustering time series of significant wave height, Hs, based on the assumption that the peak severities

of different storm events, given covariates, are statistically independent. Storm events are identified from time-series of

sea-state Hs. A storm event corresponds to the time interval between the Hs up-crossing of some threshold level and the

subsequent down-crossing of the threshold. In addition, storm intervals separated by less than 24 hours are merged. The

threshold can be defined e.g. in terms of a covariate-dependent quantile of sea-state Hs. The peak value of sea-state Hs

during the storm interval then defines the storm peak Hs. Values of storm peak Hs for different storms are taken to be

statistically independent.

The distributions of many metocean variables, such as (significant or individual) wave heights, wind speeds and storm

surge, exhibit dependence on other variables, referred to as covariates. For example, many studies have considered the

dependence of wind speeds or wave heights on the direction of origin of the storm and the time of year (season) [13–17].

Wave heights and wind speeds are also dependent on large-scale climatic indices such as the North Atlantic Oscillation

(NAO) [18] or the El Niño Southern Oscillation (ENSO) [19]. Moreover, most studies tacitly assume that the distribution

of metocean variables are stationary in time, neglecting the effects of the changing climate which have been observed in

some studies [20, 21].

In this study we focus on the effects of periodic covariates such as season and direction and defer consideration of

longer-term variations in climate to future work. Specifically, we quantify differences in the performance of models which

account for the covariate effects and those that do not (referred to here as constant or stationary models). Obviously,

stationary models cannot produce estimates of seasonal or directional extremes, so our interest here is in which model gives

the more accurate estimates of return values for the full covariate domain, typically referred to as annual (omniseasonal)

or omnidirectional return values; we use the term “omnicovariate” where necessary below for clarity. The quality of

historical data is not considered here, but all the other factors listed above influence the comparison between stationary

and non-stationary models and therefore need to be considered.

There has been some debate in the literature about the circumstances in which non-stationary models should be applied

and whether stationary or non-stationary models produce more accurate estimates of omnicovariate return values. The

motivation for using non-stationary models is that their underpinning assumptions better reflect the characteristics of the

data and our physical understanding. Non-stationary models assume that the distributions of independent peaks over

(covariate-dependent) threshold, conditional on covariates, tend towards a GP distribution. Under this assumption, now

consider the highest threshold value (on the covariate domain) for which the GP distribution is a reasonable approximation.

For this threshold value, the omnicovariate distribution is a convolution of the GP distributions over the covariate domain

and therefore not a GP distribution itself. If we now increase the threshold yet further, we expect to eliminate the

influence of all values of covariate except those contributing to the extreme tail of the omnicovariate distribution and that

the resulting distribution of threshold exceedances would be “closer” to a GP distribution once more. It may therefore

be expected that a high threshold would be required for stationary models to give a similar level of performance as non-

stationary models. However, it is also reasonable to expect that the most information about the shape of the tail of the

omnicovariate distribution is contained in the largest observations. In applied extreme value analysis there is a maxim

that ensuring a good fit to the bulk of the data does not guarantee a good fit to the tail. It is therefore reasonable to ask

whether modelling less extreme observations (in a non-stationary model) reduces the bias and variance of return values.

Model complexity is another consideration. Stationary models are simpler to implement and have fewer parameters
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to estimate. Whilst the complexity of non-stationary models is not an argument against their use on its own, practical

considerations aside, it may be expected that the larger number of parameters that need to be estimated for non-stationary

models would increase the variance of those estimates. The need to estimate more parameters is traded off against two

effects. Firstly, due to the larger number of parameters, non-stationary models offer a more flexible (hence potentially more

accurate) fit to the data. Secondly, non-stationary models are typically fitted to a larger proportion of the observations,

increasing the sample size. From this discussion it is apparent that theoretical arguments alone cannot justify the use of a

stationary or non-stationary model exclusively. From the practitioner’s perspective, the challenge is knowing which type

of model gives the most accurate estimates of extreme values in a given situation.

Many of the earlier studies on the use of non-stationary models (e.g. [22–24]) compared their performance to stationary

models in situations where the true return values were not known. In these studies it is not possible to conclude which

type of model is more accurate, only that results differ. Jonathan et al [25] presented a comparison of stationary and

non-stationary models using simulated data where the observations are drawn from two distinct distributions, representing

storms from two directions. They demonstrate that in the cases they consider the non-stationary models give lower bias

in estimates of return values. Mackay et al [26] argued that these results were not representative of real situations, where

the distribution of a variable will vary smoothly with direction, season or other covariate, rather than changing sharply

at the boundary of two sectors. Mackay et al [26] presented the results of simulations where the distribution of storm

peak HS conditioned on season varied continuously through the year. Piecewise-constant models were fitted, where the

data were divided into a number of discrete bins and independent fits were made in each bin. It was shown that the

piecewise-constant models performed worse in estimating omniseasonal return values than the stationary models, with

higher bias and variance in all cases considered, and with both bias and variance increasing with the number of bins

used. It was explained that the reason the non-stationary models performed worse in these case studies was due to the

independent estimates of the GP shape parameter in each bin. As the number of bins increases, the sample size in each bin

decreases and the variance of the parameter estimates increases. A high estimate of the GP shape parameter in one bin

is not compensated for by a low estimate in another bin and therefore leads to a positive bias in the annual return values.

Jonathan and Ewans [27] argued that the results in [26] were due to a fortuitous choice of extreme value threshold for the

stationary model and that there was no way of knowing in practice where the correct threshold should be set. Jones et al

[17] extended the study of Jonathan et al [25] using more sophisticated covariate representations (splines, Fourier series

and Gaussian processes), and suggested that the performance of stationary models in estimating omnicovariate models is

in general more variable than the performance of a non-stationary model.

The purpose of the present study is to extend the results of Jonathan et al [25] and Mackay et al [26] in an attempt

to provide further guidance on the relative performance of stationary and non-stationary models in realistic situations.

We extend the results from [26] in two main ways. Firstly, case studies are constructed where the threshold for both the

stationary and non-stationary models can be varied, so that the effect of threshold choice can be examined. Secondly,

we consider a penalised piecewise-constant (PPC) non-stationary model [28, 29]. In this model the data are partitioned

into bins defined by covariates, and the GP scale parameter is allowed to vary between bins but the shape parameter is

constant over all bins. The likelihood function used to estimate the parameters is penalised for the variance in the scale

parameter over all the bins, with the roughness penalty selected using cross-validation to maximise predictive likelihood.

More advanced non-stationary models than the PPC model have been proposed, which have the objective of providing
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optimally flexible descriptions of the systematic variability of extreme values with covariate (e.g. [30]). Typically, a

regression approach underpins these models (e.g. [31]). A suitable set of basis functions for the covariate domain is

defined, and the value of each of the extreme value model parameters (on the covariate domain) is then defined as

a linear combination of basis functions; the basis coefficient vector is estimated statistically. Suitable bases for one-

dimensional covariate domains include splines and Fourier series. Basis functions with compact support, such as B-

splines, are advantageous computationally; PPC exploits a piecewise-constant basis in one-dimension. There are numerous

variants of spline parameterisations. These include P-splines (penalised B-splines, [32]), for which squared differences of

neighbouring basis coefficients are penalised to increase the smoothness of the representation, and adaptive regression

splines (e.g. [33]), for which locations of spline basis knots are also estimated to optimise model fit. Useful bases for

higher-dimensional covariates include thin-plate splines (e.g. [34]), suitable kernels (e.g. radial basis functions), and

Voronoi tessellations (e.g. [35]); bases for higher-dimensional covariates can also be formed from tensor products of lower-

dimensional bases (e.g. [36]). Higher-dimensional bases formed from tensor products of penalised B-splines admit efficient

computation using generalised linear additive models ([37]).

The motivation for using the PPC model over more advanced forms of non-stationary model is that is represents a

good compromise between simplicity, robustness and flexibility. The PPC model represents a step up in complexity from

binning the data and fitting independent models in each bin (the non-stationary model considered by Mackay et al [26]),

where the additional complexity of the roughness penalisation makes the model more robust to increasing uncertainties

from dividing the data into bins. The complexity of the PPC model is determined by the number of bins used, rather

than the number of covariates. It can therefore be used for multidimensional covariate problems without modification,

making it very flexible.

As with previous studies, the scope of the current study is necessarily limited to a relatively small number of case

studies. Hence the conclusions drawn here may not be applicable universally. The results presented apply to the PPC

model and similar types of non-stationary model. However, we have also attempted to draw more general conclusions that

extend to other types of non-stationary model. In particular, the conclusions about the effects of binning the data and

assuming a piecewise-constant distribution apply to other types of model that take this approach, and the conclusions

about the effects of assuming a stationary shape parameter are likely to be applicable to any non-stationary model that

makes this assumption. Moreover, as discussed further in Section 3, since the PPC model only considers the total level of

variability between bins, the particular choice of patterns of covariate dependence are not restrictive.

The paper is organised as follows. A brief overview of the theory and model assumptions is presented in Section 2.

The design of the simulation case studies is described in Section 3. In Section 4 we examine the effect of non-stationarity

in the data on the shape of the tail of the omnicovariate distribution, and the effect this has on quality of estimation from

return values from a stationary fitted model. The effect of partitioning the data into bins and fitting a piecewise-constant

non-stationary model is considered in Section 5. Section 6 summarises the results of the simulation studies. Finally,

conclusions are given in Section 7.
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2. Theory and assumptions

2.1. Return values from a non-stationary distribution

In the present study we consider estimation of the distribution of an arbitrary variable, X, whereX could be interpreted

as storm-peak Hs or another environmental variable, showing dependence on covariates. It is assumed that storm peaks

are sufficiently separated in time that adjacent observations are independent. Further, it is assumed that X follows

some arbitrary distribution, with parameters dependent on one or more covariates. In the current study we consider the

influence of a single covariate, denoted t, which could be interpreted as the time of year (season) or mean wave direction

at the storm peak.

Denote the cumulative distribution function (CDF) of X conditional on a particular choice of t as PS(X ≤ x|t). For

simplicity, it is assumed that t ∈ T = [0, 360). It is further assumed that the occurrence rate of storm peaks, ρt(t), is

dependent on t, where the rate is defined as the number of storms per year per unit covariate. The probability that a

storm, selected at random, has associated covariate t is

pt(t) =
ρ(t)

M
, (1)

where

M =

∫ 360

0

ρ(t)dt (2)

is the expected number of storms per year.

The unconditional CDF of X for a storm selected at random, denoted PRS , is obtained by integrating the conditional

CDF over the covariate domain, weighted by occurrence

PRS(X ≤ x) =

360
∫

0

PS(X ≤ x|t) pt(t) dt. (3)

The T -year return value, xT , is then the solution of

PRS(X > xT ) =
1

TM
. (4)

.

2.2. Penalised Piecewise-Constant (PPC) model

Consider a sample D = {xi}
n
i=1 of n values of peaks over threshold for a random variable X. Further, let {ti}

n
i=1

be the corresponding values of a covariate t on some domain T . We assume a single covariate, but extension to more

complex covariate domains is straightforward as explained in [28]. We make inferences about extreme values of X given

t, for t ∈ T .

The piecewise-constant model uses a particularly simple description of non-stationarity with respect to covariates. For

each observation in the sample, the value of covariate ti is used to allocate the observation to one and only one of Nbin

covariate intervals (or bins) {Ck}
Nbin

k=1 by means of an allocation vector A such that k = A(i) and T =
⋃

Ck. For each

k, all observations in the set {xi}A(i)=k with the same covariate interval Ck are assumed to have common extreme value

characteristics.
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A non-stationary GP model is then estimated using cross-validated roughness-penalised maximum likelihood estima-

tion. For covariate interval Ck, the extreme value threshold uk > 0 is assumed to be a quantile of the empirical distribution

of X in that interval, with specified non-exceedance probability ψ ∈ (0, 1), with ψ constant across intervals, and estimated

by counting. Threshold exceedances are assumed to follow the GP distribution with shape ξ ∈ [−0.5,∞) and scale σk > 0,

with CDF

FGP (x|ξ, σk, uk) = 1− zk, (5)

where

zk =











(1 + ξ(x− uk)/σk)
−1/ξ

, ξ 6= 0,

exp (−(x− uk)/σk) , ξ = 0

(6)

per covariate interval Ck. FGP is defined on x ∈ (uk, x
+
k ) with x

+
k = uk−σk/ξ when ξ < 0 and∞ otherwise. The parameters

uk, σk and ξ are the threshold, scale and shape parameters, respectively. Since estimation of the shape parameter is

particularly problematic, ξ is assumed constant (but unknown) across covariate intervals, and the reasonableness of the

assumption assessed by inspection of diagnostic plots. Parameters ξ, {σk} are estimated by maximising the predictive

performance of a roughness-penalised model, optimally regulating the extent to which {σk} varies across intervals, using

a cross-validation procedure.

The sample GP likelihood L under the piecewise stationary model is

L =

Nbin
∏

k=1

∏

i:A(i)=k;
xi>uk

1

σk

[

1 +
ξ

σk
[xi − uk]

]

−1/ξ−1

, (7)

where L, {uk}, {σk} and ξ are functions of marginal extreme value threshold non-exceedance probability ψ, and ξ is

constant across the Nbin intervals {Ck}. The negative log likelihood, penalised for the roughness of {σk} across intervals,

is then

ℓ∗ = − logL+ λσ

(

1

Nbin

Nbin
∑

k=1

[σk − σ̄]
2

)

, (8)

where ℓ∗ is a function of both ψ and roughness coefficient λσ and σ̄ is the mean value of σk over the bins:

σ̄ =
1

Nbin

Nbin
∑

j=1

σj . (9)

For given ψ and λσ, estimates for ξ and {σk} are found by minimising ℓ∗. The minimisation is conducted using a

simplex search method [38]. The search is initialised using first guess of ξ̂ = 0 (where the caret ˆ denotes an estimate

of a parameter) and the moment estimates of σ in each interval. The optimisation is constrained to give ξ̂ ≥ −0.5 and

max {xi|A(i) = k} ≤ ûk − σ̂k/ξ̂ when ξ̂ < 0. A random 10-fold cross-validation is then used to select the value λ̂σ of λσ

and corresponding ξ̂, {σ̂k} which, for each ψ, maximises predictive performance. In the PPC model, if λσ = ∞ then the

model has only one degree of freedom for σ, whereas if λσ = 0 then the fitted model has NBin degrees of freedom for σ.

For intermediate values, the “effective” degrees of freedom for σ is at some intermediate value.

In a typical application, the complete PPC modelling procedure is repeated for a number of bootstrap resamples of

the original sample to capture sampling uncertainty. Moreover, for each sample, the extreme value model is evaluated for

multiple thresholds with non-exceedance probability ψ drawn at random from the interval Iψ ⊆ (0, 1) on which model

performance is deemed reasonable from inspection of diagnostics. However, in the current study, where the model is
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applied in a large number of Monte Carlo simulated data sets, only the original sample is used. Moreover, as we wish

to study the effect of threshold level on the estimates, the PPC model is fitted for several values of ψ and the results

compared directly.

The method used to fit the PPC model is relatively simple. It is conceivable that other methods such as Markov Chain

Monte Carlo (MCMC) could potentially improve results. However, this would represent a significant step up in terms

of complexity. As mentioned above, the motivation for using the PPC model is for its balance between simplicity and

flexibility. Examples of non-stationary models using MCMC can be found in e.g. [30, 39].

Once the PPC model has been estimated the omnicovariate distribution is obtained using the discretised form of (3):

P̂RS(X ≤ x) =
1

nT

Nbin
∑

k=1

nkFGP (x|ξ̂, σ̂k, ûk), (10)

where nk is the number of observations in interval Ck and

nT =

Nbin
∑

k=1

nk. (11)

Return values can then be estimated using (4). For consistency, the stationary model used in this work is a special case

of the PPC model with a single covariate bin and no roughness penalisation.

2.3. Assessment criteria

The performance of the stationary and non-stationary models are assessed in terms of the bias, standard deviation

(STD) and root-mean-square error (RMSE) of estimated model parameters and return values over N realisations of Monte

Carlo simulated data sets. Let θ̂ denote an estimator of either a model parameter or return value, θ. The expected value,

bias, STD and RMSE of the estimator are defined as

E(θ̂) =
1

N

N
∑

j=1

θ̂j , (12)

bias(θ̂) = E(θ̂)− θ, (13)

STD2(θ̂) =
1

N

N
∑

j=1

(

θ̂j − E(θ̂)
)2

, (14)

RMSE2(θ̂) =
1

N

N
∑

j=1

(θ̂j − θ)2 = bias2(θ̂) + STD2(θ̂), (15)

where θ̂j is the estimate corresponding to the jth Monte Carlo simulated data set (henceforth referred to as a “trial” for

brevity).

3. Design of case studies

Previous simulation studies comparing stationary and non-stationary models have generated data from a GP distribu-

tion, where the parameters depend on covariate values. The limitation of this type of study is that the minimum threshold

for which the stationary model can be applied is the maximum threshold value over all covariates, since below this level the

distribution is not defined for all covariate values. To overcome this limitation, a model is required for the distribution of
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all storm-peak data, not just the tails. This could be achieved by using a two-part model with a parametric distribution for

the body of the distribution and a GP model for the tail. The problem with this approach is that the choice of distribution

for the body is arbitrary and it is difficult to ensure continuity of the density function on the boundary between body and

tail.

In our simulations we have opted to simulate from the generalised extreme value distribution (GEV) rather than the

GP distribution, avoiding the need for a two-part model. Previous investigations (details available from the authors on

request) with measured data also show that the GEV distribution is a reasonable model for storm-peak HS . The GEV

is the asymptotic distribution of “block maxima” of fixed block size (e.g hourly, daily or weekly maxima). Storm peak

data can be considered block maxima in a sense, where the block size is related to the method used for identifying storm

peaks, although the block size is not strictly constant. However, we are not using the GEV to generate data to conduct

a block-maxima analysis. Instead, we are using the GEV to generate data for a non-stationary POT analysis (using the

PPC model). A POT analysis can be applied to data generated from any distribution. The motivation for using the GEV

as the data-generating distribution in the current study, is that it has the convenient property that the tail converges to

the GP distribution with the same shape parameter, in the sense illustrated below. The CDF of the GEV can be written

as

FGEV (x) = exp(−z), (16)

where z is defined in the same way as the for the GP distribution in (6). In the tail of the distribution z is small. As

z → 0 we have exp(−z) → 1 − z and FGEV (x|µ, σ, ξ) → FGP (x|µ, σ, ξ). That is, the GEV and GP CDFs converge, with

common scale and shape parameters, and GEV location parameter µ equal to the GP threshold u, as illustrated in Figure

1 for the case µ = 0, σ = 1, ξ = 0.

[Figure 1 about here.]

It is well known that there is a relation between block-maxima modelled using the GEV distribution and threshold

exceedances modelled using the GP distribution (see e.g. [5]). However, the argument above merely relates to the similarity

of the functional forms of the GEV and GP tails, and is not the same as the argument associating the GP distribution

for peaks over threshold when the GEV is used for block maxima.

Fitting a GP model to a data set with GEV as the data-generating model will introduce some bias at lower threshold

values, due to the mismatch between the fitted model and data-generating model (see Figure 1). The resulting bias and

STD of parameter and quantile estimates when fitting the GP distribution to GEV data is examined in the Appendix.

The bias in parameter and quantile estimates are slightly higher when a GP model is fitted to GEV data than when a GP

model is fitted to GP data. However the STD is slightly lower, resulting in an RMSE that is comparable. The use of the

GEV distribution as the data-generating model rather than the GP distribution will therefore not significantly influence

the results.

For the PPC model, the likelihood is penalised on the variance of the scale parameter. The difference between the

estimates of the scale parameters in adjacent bins is not considered explicitly, only the total variance over all bins. The

complexity of the PPC model is therefore determined by the total number of covariate bins only and not the number of

covariates used. Therefore, the case studies considered here focus on a single covariate and the results can be expected to

apply to cases with multiple covariates.
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We now consider two sets of case studies. In the first, the GEV parameters are assumed to vary linearly with covariate

t, and in the second the parameters are assumed to vary sinusoidally with t. The parameters in the first set of case studies

are defined as

µ = at/360, a ∈ [−3, 3], (17)

σ = 1 + bt/360, b ∈ [0, 2], (18)

ξ = −0.1. (19)

The first set of case studies is designed to illustrate the effect of fitting a stationary extreme value model to data from a

non-stationarity data-generating distribution, and is similar to the PPC fit in a specific covariate bin (see Section 4). The

parameters in the second set of case studies are defined as

µ = α cos

(

2πt

360

)

, (20)

σ = 1 + β cos

(

2πt

360

)

, (21)

ξ = −0.1 + γ cos

(

2πt

360

)

, (22)

where different choices of α, β and γ are also considered. As the PPC model does not directly account for the difference

in parameter estimates between adjacent bins on the covariate domain, it is mainly the level of variation between bins

that influences model fit and not the pattern of variation. The assumption of sinusoidal variation in model parameters

is therefore not particularly restrictive. However, it will be shown in Section 6.2 that the level of non-stationarity of the

data within a bin does influence model fit.

The second set of case studies is designed to be more representative of a real situation and are used to compare the

performance of the stationary and non-stationary models. The GEV parameters for each case are listed in Table 1. The

first case with α = β = γ = 0 is included to illustrate the effect of increasing the number of bins on the estimated

omnicovariate return values in absence of covariate effects and is discussed in Section 5. The subsequent cases illustrate

the effect of different patterns in the variation of the data-generating distribution parameters and are discussed in Section

6.

[Table 1 about here.]

For each case, simulations are conducted as follows. The sample size is fixed at 1440 observations (this corresponds

to a mean time between storm peaks of 5 days and a dataset length of 20 years, if a year is assumed to last 360 days, as

defined in Section 2). The occurrence rate is assumed to be constant with covariate, so the values of the covariate t are

simulated as uniformly distributed numbers in [0, 360). After the values of t have been simulated, GEV parameters are

defined for each storm peak, conditional on t and a random value of X is generated. The PPC model is fitted to the data

using between 1 and 8 (or sometimes 12) bins, with bin edges spaced evenly over the covariate domain, with the first bin

centred at t = 0. The threshold for the GP model in each bin is defined as the empirical quantile corresponding to a fixed

non-exceedance probability, ψ, where the levels are set at ψ = 0.6, 0.7, 0.8, 0.9. For the cases where the observations are

partitioned into 8 bins this gives approximately n = 72, 54, 36, 18 threshold exceedances per bin respectively.
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For each case 10,000 trials were performed. The estimation of the optimal penalty via cross-validation is the most time

consuming step in estimating the PPC model. To reduce computation, the optimal penalty is estimated for only the first

100 trials; subsequent trials use the median penalty from the first 100 trials. The estimated optimal penalty showed very

little variation over the first 100 trials, justifying the use of the median value in the remaining trials.

Examples of simulated data sets for four of the cases (see equations 20-22 and Table 1) are shown in Figure 2, together

with the theoretical quantiles at non-exceedance levels of ψ = 0.6, 0.9, 0.99, 0.999 and 0.9999. Since we have defined

the location parameter to be sinusoidally varying about zero, there are some observations that are negative, which is not

representative of some environmental variables such as storm peak wave heights or wind speeds. This could be rectified

by adding an offset to µ, which would have the effect of offsetting all the observations. However, the choice of offset would

be arbitrary, so has been left as zero. The return values calculated from (3) and (4) are shown in Figure 3 for four of the

cases.

In Case 1, the location parameter varies with t whilst other parameters remain constant. The result is an offset in the

return value curves, which grows with α. The offset in the return values does not change much with return period. In Case

2, the scale parameter varies with t while other parameters are held constant. The resulting distribution, shown in Figure 2

is ‘pinched’ in the middle. This pattern of variation is less representative of real situations, but is included for illustration.

The resulting effect on return values grows with return period. In Case 3, both the scale and location parameters vary

with t, which is more representative of real situations. Finally, in Case 4 all the parameters are non-stationary. When

γ = −0.2 there is a change in the gradient of the return value curve that occurs at a return period of approximately 40

years. For other values of γ the return value varies smoothly with return period. In Case 4 both the stationary and PPC

models are misspecified, since the PPC model assumes a constant shape parameter. The assumption of a stationary shape

parameter is commonly used in oceanographic applications (e.g. [24, 40]). It is therefore interesting to assess how well

the PPC model performs in this situation. The cases with γ = ±0.2 may be less realistic for metocean variables, due to

the positive shape parameter in some sectors. However, they are instructive to include as they illustrate some potentially

important effects.

The performance of the stationary and non-stationary models is assessed in terms of bias, STD and RMSE in the

100-year and 1000-year return values. As the size of the return values differs between cases, we need to compare the

relative size of the uncertainties in estimates. To achieve this, we have normalised the bias, STD and RMSE by the size

of the true return values. This means that the normalised results are influenced by the arbitrary choice of the mean value

of the location parameter µ. For a larger mean value of µ the true return values would increase and the normalised bias,

STD and RMSE would be reduced. However, since any normalisation is somewhat arbitrary, we have opted to use this

convention. The choice of normalisation used here does not influence the conclusions of the study in terms of which model

performs better, the choice of normalisation only influences the relative magnitude of the effects.

[Figure 2 about here.]

[Figure 3 about here.]
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4. Fitting a stationary model to data from a non-stationary data-generating distribution

Here we examine the effect of non-stationarity in the data-generating model on the tail of the estimated omnicovariate

distribution using a stationary fitted model, so that the effect of non-stationarity can be assessed in isolation, before

considering the effect of partitioning the data by covariate. The true data-generating model, with a linear variation in

parameters, is described in (17)-(19).

To illustrate the influence of non-stationarity on the shape of tail of the distribution, we apply a normalisation, so

that the tail shape can be considered without the influence of varying location and scale parameters. Suppose we wish to

examine the shape of the tail above threshold level u, corresponding to non-exceedance probability ψ. Define threshold

exceedances as Y = X − u for X > u. The conditional distribution of threshold exceedances is

FY (y) = P (Y ≤ y|X > u) = 1−
1− PRS(X ≤ y + u)

1− ψ
. (23)

The mean, m, and STD, s, of the conditional distribution are given by

m =

∫

∞

0

yfY (y)dy, (24)

s2 =

∫

∞

0

(y −m)2fY (y)dy, (25)

where fY (y) = dFY (y)/dy is the probability density function of threshold exceedances. Figure 4, shows the tail distribution

1 − FY (y) against the normalised quantity (x − u)/s, where u is defined to correspond to a non-exceedance probability

of ψ = 0.7, for various values of a and b. From the upper left plot, it is evident that for these values of ξ and ψ there is

almost no change in the shape of the tail of the distribution for a linear variation in location. However, for the upper left

plot where b = 2, when the scale is also non-stationary, increase in a makes the distribution appear marginally shorter-

tailed. The lower plots show that a non-stationary scale parameter has a more significant effect, making the distribution

longer-tailed with increasing b. However, the effect is reduced slightly when there is also an increase in location parameter

a. Similar trends (not shown) were observed for other choices of ξ and ψ.

Now we consider how non-stationarity affects bias in estimates when fitting a stationary model. For each value of a and

b a simulation study was conducted as follows. The sample size was fixed at n = 500 observations. For each simulation,

covariate values were generated as uniform random variables t ∈ [0, 360). The parameters of the GEV conditional on

t were defined according to (17) and (18) and a stationary model (the PPC model with one covariate bin) was fitted

at threshold levels corresponding to ψ = 0.7 and 0.9. For each value of a and b, 10,000 random trials were conducted.

Figure 5 shows the mean of the estimated shape parameter, ξ̂, as a function of a and b for thresholds at ψ = 0.7 and

0.9. Note that only the mean ξ̂ can be shown, rather than bias, since there is no ‘true’ shape parameter when a, b 6= 0

since the data-generating distribution is in fact a non-stationary GEV integrated over t and is not GEV itself. In the case

a = b = 0, the true shape parameter is ξ = −0.1. We observe a negative bias in ξ̂ due to two effects: the known bias

in maximum-likelihood estimators ([41]) and the fact that we are fitting a GP distribution to GEV data (see discussion

in the Appendix). The trends in the mean ξ̂ with a and b are similar to the results indicated in Figure 4. When b = 0,

non-stationarity in the location has little influence on the estimated shape parameter, but when there is non-stationarity

in the scale then the estimated shape becomes more negative with increasing a. It is also clear that non-stationarity in

the scale has more influence on the shape that non-stationarity in the location.
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Figure 6 shows the bias in the estimated omnicovariate return value, XP , where the return value is defined to be the

quantile at a non-exceedance probability of 0.9999, corresponding to a return period around 20 times the length of the

observations. For the threshold at ψ = 0.9 the non-stationarity has relatively little effect on the bias in the return value,

since much of the non-stationarity is removed by the high threshold and the GP model is a good fit for the tail of the

distribution. In fact, for a less than approximately 1.5, the bias actually reduces with increasing b, since the positive bias

introduced by the non-stationary scale is compensated by the negative bias which results from the parameter estimation

method. For the lower threshold, the bias initially increases with b (becomes more negative) then decreases again. The

effect of non-stationarity in the location parameter has a smaller effect. Overall, the change in the bias with a and b is

relatively small compared to the bias in the case of a stationary distribution at a = b = 0.

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]

5. Fitting a non-stationary model to data from a stationary data-generating distribution

If we are confident there is no non-stationarity in the data, then there is obviously no need to apply a non-stationary

model. It is, however, instructive to consider the application of a non-stationary model in this situation. PPC and similar

models are designed so that, in application to stationary data, a large roughness parameter λσ would be estimated, and

the variability of estimated σ with covariate t would consequently be small, corresponding to an approximately stationary

GP fit. However, it is interesting to study the practical performance of PPC in this setting, in particular the effect of

choice of number of covariate bins and other characteristics of covariate binning. Since we know the data-generating

distribution is stationary, any effects observed cannot be due to non-stationary in the data set. We consider the simplest

case of a fit to data from a constant distribution (Case 1 of Table 1 with α = 0).

We consider three model types with increasing complexity. In the first model, independent fits to the data in each

covariate bin are performed. In the second model, the shape parameter is assumed to be constant over all bins but the

scale parameter fit is unconstrained (i.e. PPC fit with λσ = 0). The third model is full PPC, where the shape parameter

is constant over all bins and the scale parameter per bin is chosen to maximise predictive performance. Note that in the

case of a single covariate bin, all models are equivalent.

The bias, STD and RMSE in the 100-year omnicovariate return value, X100 are shown in Figure 7 for fits using between

1 and 12 bins. The results for the 1000-year return value are similar and are not shown here. For the one-bin (stationary)

fitted model there is a negative bias in the estimate of X100, which is a result of previously-mentioned bias in the maximum

likelihood estimators and fitting a GP model to GEV data. In the case of independent fits to each bin, the bias increases

with the number of bins used. This effect was reported by Mackay et al [26] and is caused by the increased uncertainty

in the shape parameter, with a high estimate of ξ in one bin not being compensated for by a low estimate in another.

The STD of estimates also increases with both the threshold non-exceedance probability, ψ, and the number of bins used,

since sample size per bin reduces with both ψ and the number of bins. The RMSE for the fits with ψ = 0.6 decreases

slightly from its value in the 1 bin case to a minimum in the 3 bin case. We attribute this to a balancing between the
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negative bias from parameter estimation and positive bias from increased binning, resulting in a slightly lower RMSE. For

all other threshold levels, the RMSE increases monotonically with the number of bins used.

For the PPC (λσ = 0) case, the performance of the fitted model is much more stable as a function of the number

of bins used, up to 8 bins. For more than 8 bins there is a large increase in both the bias and STD of the estimates.

For PPC (optimal λσ) model, the performance is very similar to the PPC (λσ = 0) model up to 8 bins. However, when

using more than 8 bins, the performance of the full PPC model is much more stable due to the influence of the roughness

penalty on σ. For more than 10 bins there is some increase in the bias from the PPC model. It is thought that this bias

results from lack of convergence of the simple simplex-type optimisation algorithm used for maximum likelihood inference.

Nevertheless, the bias is still very small compared with the other approaches even for 12 covariate bins.

The bias and STD in parameter estimates from the independent fits-per-bin model are shown in Figure 8, with the

corresponding plots for full PPC model (with optimal λσ) in Figure 9. For the independent fits the bias and STD increases

with the number of bins used, due to the reduced sample size in each bin. For the full PPC model, the results are again

considerably more stable as a function of number of covariate bins. There is a small reduction in the bias with increasing

number of bins used. This is likely due to the increased influence of the σ-roughness penalty, which acts to optimise the

performance of the model. The STD in the estimates remains fairly constant with the number of bins used in the full PPC

model. For fits with 11 and 12 bins, the STD increases when using a threshold at ψ = 0.6, but reduces for the threshold

at ψ = 0.9. Again, we attribute this effect at least in part to lack of convergence, for large numbers of covariate bins, of

the simplex optimisation algorithm used in PPC.

We conclude from this study that the full PPC model provides a good representation of stationary data-generating

distributions (with parameters considered), at least when the number of covariate bins does not exceed 10. Therefore, for

the studies reported in Section 3, we focus on the fits using up to 8 bins. We note that more sophisticated optimisation

schemes (exploiting likelihood slope and curvature characteristics, [36, 42]) are available for more challenging applications.

[Figure 7 about here.]

[Figure 8 about here.]

[Figure 9 about here.]

6. Fitting a non-stationary model to data from a non-stationary data-generating distribution

In this section we consider the performance of stationary and non-stationary fitted PPC models for the four cases with

sinusoidal parameter variation described in Section 3 (equations 20-22 and Table 1), samples of which are illustrated in

Figure 2. For these case studies the true omnicovariate data-generating distribution is an integral of GEV distributions

over the covariate domain and therefore not itsef a GEV distribution. Hence it is not possible to assess performance in

terms of the parameter estimates from the fitted GP models. Instead we focus on the estimating omnicovariate return

values for which the true values can be calculated from (4), as illustrated in Figure 3. We consider the four cases from

Table 1 in turn.
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6.1. Case 1: Data from distribution with non-stationary location parameter

Figure 10 shows the bias, STD and RMSE of the estimated 100-year omnicovariate return value as a function of the

number of covariate bins and threshold levels used in the (full) PPC model. Results for the 1000-year omnicovariate return

value display similar trends and are not shown here. The number of observations used for modelling is dependent only on

the threshold non-exceedance probability and not on the number of bins used. However, the observations used for fitting

change depending on how the data are binned.

The fitted (one-bin) stationary model shows a negative bias, which reduces with increasing threshold level, consistent

with the results shown in Figure 6. For the lower threshold levels, the bias becomes slightly more negative as α increases

and the amplitude of variation in location parameter grows. In contrast, at ψ = 0.9, the bias and STD does not vary much

with α. The reduction in bias with increasing threshold is due to two effects. First, as threshold increases, there is less

covariate variation in sample of threshold exceedances form modelling. Secondly, the GP distribution provides a better fit

to the GEV distribution in the tail, as discussed in the Appendix. For non-stationary fits, bias and STD reduce initially

as a function of increasing number of covariate bins, up to 3 bins. Performance thereafter stabilises, with STD and RMSE

remaining approximately constant up to 8 bins. The stability in performance of the PPC model with the number of bins

used is due to the use of the σ-roughness penalty; as the number of bins used increases, the optimal penalty also increases,

so that the model does not over-fit. The trend in bias with increasing number of bins for α = 2 and 3 is somewhat more

complex than might be anticipated. This is due to the effect of the location of bin edges, which is discussed further in

Section 6.2. In general, the PPC model fitted using 5-8 bins using a threshold at ψ = 0.6 or 0.7 gives the best performance

in this case.

[Figure 10 about here.]

6.2. Case 2: Data from distribution with non-stationary scale parameter

In a similar fashion to Section 6.1, bias, STD and RMSE in the 100-year omnicovariate return values for Case 2

(Table 1) are shown in Figure 11. For the fitted (one-bin) stationary model, bias is negative for β = 0.25, but slightly

positive for β = 0.5. Bias becomes more negative as the number of bins increases in general, but there is an excursion

in the bias for the 3-bin model, most pronounced for β = 0.5 and ψ = 0.6, 0.7. Despite the increasingly negative bias

with the number of bins used in the model, the STD and RMSE remains approximately constant for more than 2 bins,

due to σ-roughness penalisation. For β = 0.25, the performance of the stationary (one-bin) and non-stationary models

are similar in terms of RMSE. For the case with β = 0.5, the PPC model with Nbin ≥ 4 gives a small improvement in

performance over the stationary model.

The excursion for three-bin fits is due to the placement of the bin edges. Figure 12 shows true tail distributions in

each covariate bin for a threshold level at ψ = 0.6, when the data is partitioned into 2, 3, 4 or 5 bins, together with the

omnicovariate distribution as reference. The distributions in each bin have been normalised using the procedure described

in Section 4. In each case, the first bin is centred at t = 0 and all bins are of equal width. For the two bin case, the

distribution in bin 1 is shorter-tailed than the distribution in bin 2. As the PPC assumes a constant GP shape parameter

across bins, the value of ξ̂ will be an average over the shape for each bin. For the three bin case, the distribution in bins

2 and 3 has a longer tail than that in bin 1, since there is a larger change in the scale parameter in bins 2 and 3 than in
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bin 1 (see Figure 2). As discussed in Section 4, the non-stationarity in the shape parameter in bins 2 and 3 results in the

distribution being longer-tailed in these bins. The estimated shape parameter over the three bins will be more influenced

by the two longer-tailed distributions in the lower sectors than the shorter-tailed distribution in the higher sector in bin

1. For the cases with four and five bins, there is less difference between the shapes of the distributions in each bin, since

the bins are smaller and the distribution in each bin is more homogeneous. Examination of the distribution of ξ̂ showed

that the estimates are indeed more positive for three-bin than for other cases. For higher threshold levels, the size of the

excursion is reduced since the sample of threshold exceedances is smaller an more homogeneous. In practice, where smooth

variation of the data with covariate is expected, it is not possible to define bins within which there is a homogeneous

population. This means that some bin placement effects are unavoidable. However, increasing the number of bins means

that a piecewise-constant covariate model is a better approximation to the true data-generating distribution, which should

improve the performance of the PPC model. Optimisation of bins widths and locations for directional analysis of extreme

conditions is discussed in [13].

To investigate the effect of bin placement further, additional simulations were conducted with random placement of the

first bin edge on [0, 360), whilst keeping bin widths constant. This procedure effectively eliminated the excursion discussed

above, but otherwise the characteristics of the results (not shown) are similar to those shown in Figure 11. Cases 3 and

4 discussed below utilise random bin placement for this reason. It is possible to optimise the number of bins used and

the placement of bin edges (see e.g. [30]). However, this represents a significant step up from the PPC model in terms of

complexity and has not been pursued further here.

[Figure 11 about here.]

[Figure 12 about here.]

6.3. Case 3: Data from distribution with non-stationary location and scale parameters

The corresponding STD and RMSE in omnicovariate return value estimates for Case 3 (Table 1) using random bin

placement (as described in Section 6.2) are similar to those for Case 2 with random bin placement, and are therefore

not shown here. The bias for β = 0.5 was found to be somewhat more negative than that for Case 2, but of a similar

magnitude between 0 and -10%. The similarity in performance of PPC models for Cases 2 and 3 agrees with results

from Section 4; the effect of non-stationary scale is similar regardless of whether the location parameter is stationary or

non-stationary.

6.4. Case 4: Data from distribution with non-stationary location, scale and shape parameters

Figure 13 shows the bias, STD and RMSE in the 100-year omnicovariate return value estimates for the cases with

γ = −0.1 and -0.2. The data-generating distribution in the “benign” covariate interval has a longer tail in than elsewhere

(see Figure 3). Results for γ = −0.1 show a small negative bias (of 2-4%) for the one-bin case and a small positive bias

(2-4%) for the PPC model with 3 or more bins. Bias for the two bin case is close to zero. STD is also relatively stable

as a function of the number of bins used. Since STD is larger than bias, RMSE is also relatively stable. There is little

difference between stationary and non-stationary models in this case. Results for γ = −0.2 show a small negative bias for

the stationary model. For non-stationary models, bias increases with both the number of bins and threshold level. This
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behaviour is related to the model misspecification: the PPC model estimates a constant shape parameter by maximising

predictive likelihood over all bins. The shape parameter estimate will therefore be influenced by the long tail for the

benign sector, resulting in a positive bias overall. STD is relatively stable with increasing number of bins used. Due to

the large bias effect, RMSE is lowest for the stationary model and increases with the number of bins used.

Corresponding results for the 1000-year omnicovariate return value are shown in Figure 14. Now the effect of the long

tail in the benign sector is more pronounced (see Figure 3). Results for γ = −0.1 are similar to those in Figure 13, but

with slightly larger biases and STDs. For γ = −0.2 the stationary model displays a large negative bias, since it does not

account for the effect of the longer tail in the benign sector, which has a stronger influence on the 1000-year return value

than the 100-year return value. Bias reduces with increasing number of bins used, up to approximately four bins. Since

PPC assumes a constant ξ, this reduction in bias can only be explained by compensating optimal choices for bin scale

parameters. STD is slightly lower for the stationary model than the non-stationary models, but due to the large negative

bias in the stationary model, RMSE is lowest for the non-stationary models using four or more bins. RMSE for ψ = 0.9 is

higher than the fits using the lower thresholds. It is likely that this is because of lack of evidence in the sample of threshold

exceedances to justify a large variation in the scale parameter to account for the longer tails in the benign sector.

Figure 15 shows the bias, STD and RMSE in the estimated omnicovariate 100-year return values for the cases with

γ = 0.1 and 0.2. In these cases the distribution in the benign covariate sector has a shorter tail. Trends in results are

similar for both cases. Results from the fitted (one-bin) stationary model indicate a negative bias, between -2 and -12%

depending on threshold level, with the highest threshold giving the least biased results, as expected. Bias becomes more

negative with increasing number of bins used. This effect is the opposite to that observed for the cases with negative γ.

The estimated shape parameter is lower for the non-stationary models, due to the influence of the shorter tails in the more

benign sectors that do not contribute to the overall return values. In contrast, the stationary model is not influenced by

the distribution in these benign sectors. RMSE is similar between the stationary and non-stationary models and relatively

constant as a function of the number of bins. Overall, the performance of both models is poor, due in part to model

misspecification and in part to difficulty of estimating data-generating distributions with positive shape parameters. The

results for the 1000-year return value (not shown) are similar, but with larger bias and RMSE.

In practice, non-stationarity in the tail shape can be assessed by examining diagnostic plots in each bin, comparing

the model to the data. This can be assessed in terms of the fit of the model to the tail of the distribution, or by plotting

empirical and modelled return values. A systematic variation in the fit of the model between bins, with the model over-

predicting in some bins and under-predicting in other bins, can indicate that there is non-stationarity in the tail shape.

In this case the use of more advanced non-stationary models discussed in the introduction may be appropriate.

[Figure 13 about here.]

[Figure 14 about here.]

[Figure 15 about here.]

7. Conclusions

This study compared the performance of stationary and non-stationary extreme value models in estimating omnico-

variate return values in the presence of covariate effects, for samples of peaks over threshold. The non-stationary model
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considered was a penalised piecewise-constant (PPC) GP model, assuming a constant shape parameter, but covariate

dependence of scale and extreme value threshold.

The effects of linear trends in the location and scale parameters of the data-generating GEV model on the shape of

the omnicovariate tail distribution were examined. For the cases considered, linear variation of the location parameter

has only a small effect on the tail. Linear variation in the scale parameter of the data-generating model results in the

omnicovariate distribution having a longer tail. Further, we examined the performance of a stationary GP fit to non-

stationary data-generating distribution. For the cases considered, the change in bias due to a linear variation in location

or scale was small relative to the bias for the case of a stationary data-generating distribution.

The effect of fitting a non-stationary piecewise-constant model to data from a stationary data-generating distribution

was also investigated. It was found that when independent GP models are fitted per covariate bin, bias and variance of

estimated return values increase with the number of bins used. When the shape parameter is constrained to be constant

across all bins, and the values of scale per bin estimated freely, it was shown that both bias and variance of estimates

stabilise as a function of number of covariate bins. For fits using more than 8 covariate bins, bias and variance increased

significantly with the number of bins used. This effect was greatly reduced in the PPC model, where the likelihood

maximised to estimate the model parameters is penalised for the variance of estimated scale parameters over covariate

bins, with the roughness penalty estimated for optimal out-of-sample predictive performance.

Further case studies involved datasets from data-generating distributions with sinusoidal parameter variation, estimated

using a full PPC model for threshold exceedances. For the cases considered, results suggest that the PPC model performs

better than a stationary model in estimating return values given non-stationary location parameter in the data-generating

model and gives some improvement in performance given non-stationary scale parameter in the data-generating model.

Care must be taken over the choice of the width and placement of covariate bins to ensure that the data is as homogeneous

as possible within-bin. The choice of the number of bins and location of bin edges can influence model performance when

the within-bin data-generating distribution is particularly inhomogeneous, in violation of PPC model assumptions. Case

studies with non-stationary shape parameter in the data-generating model showed mixed results. Here both stationary

and non-stationary PPC fitting models were misspecified, and hence there was less expectation that the non-stationary

model would perform better. Clearly additional case studies need to be considered, for which the non-stationary model

incorporates a non-stationary representation for shape parameter should be made, for more useful comparison with fits

using a stationary GP.

In summary, a non-stationary extreme value model can give improved estimates of omnicovariate return values com-

pared with stationary models, provided that the characteristics of the data-generating model, and the model to be

estimated are consistent. However, the relative performance of stationary and non-stationary extreme value models in

estimating an omnicovariate return value is problem specific; either approach works reasonably well when the analysis is

performed carefully. When all that is needed from the analysis is an estimate of an omnicovariate return value, a stationary

fitted model may be sufficient. However, when a set of return values corresponding to multiple different partitions of the

covariate domain is required, in addition to the omnicovariate return value, the non-stationary model exploiting suitable

covariate representations is likely to provide a more consistent and statistically efficient framework for inference.
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Appendix. Errors when fitting the GP distribution to GEV data

This study addresses the relative performance of stationary and non-stationary extreme value models, in the presence

of covariate effects. Maximum likelihood estimation, potentially penalised to ensure optimal parameter smoothness, is

used as discussed in the main text, in conjunction with a GP distribution for exceedances of a high threshold. It is

instructive, in addition, to consider the performance of the maximum likelihood estimators for the GP parameters and

extreme quantiles in a stationary case. Moreover, in the current work, the data-generating distribution is the GEV. It is

important also therefore to assess the bias and variance in parameter and quantile estimates for a GP fit to data generated

from a GP distribution, with a GP fit to data generated from a GEV distribution.

There is a wide range of methods for estimating the parameters of the GP distribution, differing in bias and variance

characteristics, with the performance depending on sample size and the value of the GP shape parameter (see e.g. [4, 43]).

The maximum likelihood (ML) estimators are asymptotically unbiased and efficient (as the sample size tends to infinity

the ML estimators achieve the Cramer–Rao lower bound for the variance of an unbiased estimator). However, the ML

estimates do not achieve this asymptotic property for small sample sizes and other methods can produce lower bias and

variance.
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A key step in the estimation of the PPC model is the penalisation of the likelihood function for the “roughness” of the

GP scale parameter estimates, which makes ML the most suitable computational framework for inference. We therefore

focus on the properties of ML estimators. Various methods have been proposed for calculating the ML estimators for the

GP distribution (e.g. [44, 45]) and the performance depends somewhat on the numerical algorithm used. Convergence

of the algorithm is sometimes problematic and some methods can give results inconsistent with data, in the sense that

ξ̂ < 0 and max(x) > û− σ̂/ξ̂. In the PPC model, parameter estimates are forced to be consistent with the data and the

shape parameter is constrained to be ξ̂ > −0.5, as described in Section 2.2. The asymptotic covariance matrix for the ML

estimators of GP parameters is [46]

var





σ̂

ξ̂



 ≈
1

n





2σ2(1 + ξ) σ(1 + ξ)

σ(1 + ξ) (1 + ξ)2



 , ξ > −
1

2
, (26)

where n is the sample size. This provides a lower bound for the variance of unbiased parameter estimates for the stationary

model. The second-order bias in the ML estimators was derived by Giles et al. [47]

n bias (σ̂) = σ
3 + 5ξ + 4ξ2

(1 + 3ξ)
+O

(

n−1
)

, ξ > −
1

3
(27)

n bias
(

ξ̂
)

= −
3 + 4ξ + ξ2

(1 + 3ξ)
+O

(

n−1
)

, ξ > −
1

3
(28)

A simulation study was conducted to compare the bias and variance of GP fits to GP and GEV data and to the

theoretical values given above. The aim was to investigate the influence of the threshold level at which the GP distribution

is fitted to the GEV. To make a meaningful comparison, the sample size must be consistent between the different threshold

levels, which requires generating more extreme GEV values for fits using higher threshold values. The approach taken

is summarised as (a) set shape parameter ξ, (b) set GEV threshold non-exceedance probability ψ, (c) set number of GP

samples nGP , (d) define number of GEV observations to generate as nGEV = ⌊nGP

1−ψ + 1
2⌋, where ⌊·⌋ is the floor function, (e)

generate nGP samples from GP distribution with u = 0 and σ = 1 and fit GP distribution to all samples, and (f) generate

nGEV samples from GEV distribution with µ = 0 and σ = 1 and fit GP distribution to largest (1 − ψ)nGEV ≈ nGP

samples. For each value of ξ and ψ, 100,000 trials were conducted. As the GP distribution is fit to the GEV data at

different threshold levels the estimated scale parameter must be adjusted to allow consistent comparison. A feature of

the GP distribution is that if exceedances of threshold u0 follow a GP distribution with parameters σu0 and ξ, then for

threshold u > u0, the exceedances are GP distributed with same ξ and scale parameter σu = σu0 + ξ(u − u0) (see e.g.

[5]). The parameter σ∗ = σu − ξu is therefore threshold-independent. We therefore compare estimates of σ∗ rather than

σ. Note that since u = 0 in this example the true value is σ∗ = 1.

Figure 16 shows the results of the simulation study for a sample size of n = 50. Results for n = 200 yields similar

results, and are not reproduced here. In this example the return value XP is defined as the quantile at a non-exceedance

probability of P = 0.999 for the GP data. The bias of parameter estimates for fits to GP data agree reasonably well

with the theoretical values from (27) and (28), when ξ > −0.1, but the theoretical values depart significantly from the

simulations when ξ < −0.1 due to the influence of singularity in the theoretical expressions when ξ = −1/3. For the fits

to the GEV data, the bias is larger than that for the fit to the GP data. The bias reduces as the threshold increases and

the tail of the GEV converges to a GP distribution. STD of estimates (lower panel) for the fit to GP data is slightly above

that predicted by the asymptotic result. For lower values of ξ, STD is closer to the asymptotic values. This is because
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the estimated shape parameter is constrained to be greater than −0.5, restricting the range of values that the estimates

can take. STD of ξ̂ for the fits to the GEV data is slightly lower than that for the fit to the GP data. STD for σ̂∗ is

lower for the fit to the GEV data for ξ less than approximately −0.1 and higher than that for the fit to the GP data for

larger values of ξ. For the estimated return values, there is an increase in absolute bias for fits to GEV data. There is a

slight reduction in STD for the fits to the GEV data, except for higher threshold case with ψ = 0.9 and negative shape

parameter.

In summary, fitting a GP distribution to threshold exceedances from a GEV data-generating distribution results in a

slight increase in the bias of parameter and quantile estimates relative to fitting to GP data, with the bias decreasing as

the threshold increases. STD of estimates in fits to GEV data is generally slightly lower, meaning that RMSE in return

value estimates is comparable to that for fits to GP data. It therefore seems reasonable to use a GEV model in the case

studies in this work, especially considering that the appropriate model for environmental data is not known beforehand.

[Figure 16 about here.]

24



List of Figures

1 Comparison of GEV and GP probability density functions (PDFs) and cumulative distribution functions
(CDFs, shown as the tail) for the case u = µ = 0, σ = 1, ξ = 0. . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Illustration of some of the case studies considered. Black dots: Simulated 20 year datasets. Coloured lines:
Quantiles at non-exceedance probabilities of ψ = 0.6, 0.9, 0.99, 0.999 and 0.9999. See equations 20-22 and
Table 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 True return values for the four cases described in Table 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4 Normalised shape of upper tail of distributions with linear variation in parameters. Upper tail defined as

exceedances of threshold with non-exceedance probability ψ = 0.7. . . . . . . . . . . . . . . . . . . . . . . . 29
5 Estimated shape parameter for stationary model as a function of a and b for thresholds at ψ = 0.7 and 0.9. 30
6 Bias in estimated omnicovariate return value, X̂P from stationary model as a function of a and b for

thresholds at ψ = 0.7 and 0.9. Return value defined as quantile of distribution with non-exceedance
probability 0.9999. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7 Bias, STD and RMSE in 100-year omnicovariate return value as a function of number of bins used for fits
to data from a stationary distribution (Table 1, Case 1, α = 0) at various threshold non-exceedance levels,
ψ. Top row: independent fits in each bin. Middle row: Constant shape parameter across all bins, with
independent scale parameter (i.e. PPC with λσ = 0). Bottom row: Constant shape parameter across all
bins, scale parameter penalised for variance (full PPC model with optimal λσ). . . . . . . . . . . . . . . . . 32

8 Bias and STD in parameter estimates against number of bins for fits to data from a stationary distribution
(Table 1, Case 1, α = 0) using independent fits per bin at various threshold levels. . . . . . . . . . . . . . . 33

9 Bias and STD in parameter estimates against number of bins for fits to data from a stationary distribution
(Table 1, Case 1, α = 0) using the full PPC model with optimal λσ at various threshold levels. . . . . . . . 34

10 Bias, STD and RMSE in 100-year omnicovariate return value for Case 1 (Table 1), as a function of the
number of covariate bins and extreme value thresholds used. ψ is the non-exceedance probability for the
extreme value threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

11 Bias, STD and RMSE in 100-year omnicovariate return value for Case 2 (Table 1), as a function of number
of covariate bins and extreme value thresholds used. ψ is the non-exceedance probability for the extreme
value threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

12 Normalised distributions of threshold exceedances at non-exceedance probability ψ = 0.6 for Case 2 (Ta-
ble 1), β = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

13 Bias, STD and RMSE in 100-year omnicovariate return value for Case 4 (Table 1) with negative γ, as a
function of number of covariate bins and extreme value thresholds used. ψ is the non-exceedance probability
for the extreme value threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

14 As Figure 13, but for 1000-year return value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
15 Bias, STD and RMSE in 100-year omnicovariate return value for Case 4 (Table 1) with positive γ, as a

function of number of covariate bins and extreme value thresholds used. ψ is the non-exceedance probability
for the extreme value threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

16 Bias and STD of estimators of GP shape and scale parameters and return values for a sample size of n = 50.
The return value XP is the quantile corresponding to non-exceedance probability 0.999. Coloured lines are
for GP fit to GEV data at different threshold levels with non-exceedance probability ψ. Black lines are for
GP fit to GP data. Dashed black lines are theoretical bias and STD given by (26) and (27). . . . . . . . . . 41

25



Figure 1: Comparison of GEV and GP probability density functions (PDFs) and cumulative distribution functions (CDFs, shown as the tail)
for the case u = µ = 0, σ = 1, ξ = 0.
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Figure 2: Illustration of some of the case studies considered. Black dots: Simulated 20 year datasets. Coloured lines: Quantiles at non-
exceedance probabilities of ψ = 0.6, 0.9, 0.99, 0.999 and 0.9999. See equations 20-22 and Table 1.
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Figure 3: True return values for the four cases described in Table 1.
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Figure 4: Normalised shape of upper tail of distributions with linear variation in parameters. Upper tail defined as exceedances of threshold
with non-exceedance probability ψ = 0.7.

29



-0
.1

8

-0.16

-0
.1

6

-0.14

-0
.1

4

-0.12

-0
.1

2

-0.1

-0.08

-0.16

-0.16

-0.14 -0
.1

4

-0.12

-0
.1

2

-0.1

-0
.0

8

Figure 5: Estimated shape parameter for stationary model as a function of a and b for thresholds at ψ = 0.7 and 0.9.
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Figure 6: Bias in estimated omnicovariate return value, X̂P from stationary model as a function of a and b for thresholds at ψ = 0.7 and 0.9.
Return value defined as quantile of distribution with non-exceedance probability 0.9999.
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Figure 7: Bias, STD and RMSE in 100-year omnicovariate return value as a function of number of bins used for fits to data from a stationary
distribution (Table 1, Case 1, α = 0) at various threshold non-exceedance levels, ψ. Top row: independent fits in each bin. Middle row:
Constant shape parameter across all bins, with independent scale parameter (i.e. PPC with λσ = 0). Bottom row: Constant shape parameter
across all bins, scale parameter penalised for variance (full PPC model with optimal λσ).
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Figure 8: Bias and STD in parameter estimates against number of bins for fits to data from a stationary distribution (Table 1, Case 1, α = 0)
using independent fits per bin at various threshold levels.
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Figure 9: Bias and STD in parameter estimates against number of bins for fits to data from a stationary distribution (Table 1, Case 1, α = 0)
using the full PPC model with optimal λσ at various threshold levels.
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Figure 10: Bias, STD and RMSE in 100-year omnicovariate return value for Case 1 (Table 1), as a function of the number of covariate bins
and extreme value thresholds used. ψ is the non-exceedance probability for the extreme value threshold.
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Figure 11: Bias, STD and RMSE in 100-year omnicovariate return value for Case 2 (Table 1), as a function of number of covariate bins and
extreme value thresholds used. ψ is the non-exceedance probability for the extreme value threshold.
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Figure 12: Normalised distributions of threshold exceedances at non-exceedance probability ψ = 0.6 for Case 2 (Table 1), β = 0.5.
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Figure 13: Bias, STD and RMSE in 100-year omnicovariate return value for Case 4 (Table 1) with negative γ, as a function of number of
covariate bins and extreme value thresholds used. ψ is the non-exceedance probability for the extreme value threshold.
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Figure 14: As Figure 13, but for 1000-year return value.
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Figure 15: Bias, STD and RMSE in 100-year omnicovariate return value for Case 4 (Table 1) with positive γ, as a function of number of
covariate bins and extreme value thresholds used. ψ is the non-exceedance probability for the extreme value threshold.
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Figure 16: Bias and STD of estimators of GP shape and scale parameters and return values for a sample size of n = 50. The return value XP

is the quantile corresponding to non-exceedance probability 0.999. Coloured lines are for GP fit to GEV data at different threshold levels with
non-exceedance probability ψ. Black lines are for GP fit to GP data. Dashed black lines are theoretical bias and STD given by (26) and (27).
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α β γ

Case 1 0, 1, 2, 3 0 0
Case 2 0 0.25, 0.5 0
Case 3 1 0.25, 0.5 0
Case 4 1 0.5 ±0.1, ±0.2

Table 1: Model parameters used in the second set of case studies. See equations 20-22 for functional forms of data-generating GEV distribution
model parameterisations.
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