
Proceedings of the ASME 2020 39th International
Conference on Ocean, Offshore & Arctic Engineering

OMAE2020
June 28-July 2, 2020, Fort Lauderdale, FL, USA

OMAE2020-18308

ESTIMATION OF ENVIRONMENTAL CONTOURS USING A BLOCK RESAMPLING
METHOD

Ed B.L. Mackay∗

College of Engineering, Mathematics and Physical Sciences

University of Exeter

Cornwall TR10 9FE

United Kingdom

Email: e.mackay@exeter.ac.uk

Philip Jonathan

Department of Mathematics and Statistics

Lancaster University

Lancaster LA1 4YW

United Kingdom

Email: p.jonathan@lancaster.ac.uk

ABSTRACT

A new method for estimating joint distributions of environ-

mental variables is presented. The key difference to previous

methods is that the joint distribution of only storm-peak param-

eters is modelled, rather than fitting a model to all observations.

This provides a stronger justification for the use of asymptotic

extreme value models, as the data considered are approximately

independent. The joint distribution of all data is recovered by re-

sampling and rescaling storm histories, conditional on the peak

values. This simplifies the analysis as much of the complex de-

pendence structure is resampled, rather than modelled explicitly.

The storm histories are defined by splitting the time series into

discrete blocks, with the dividing points defined as the minimum

value of a variable between adjacent maxima. Storms are char-

acterised in terms of the peak values of each parameter within

each discrete block, which need not coincide in time. The key

assumption is that rescaling a measured storm history results in

an equally realistic time series, provided that the change in peak

values is not large. Two examples of bivariate distribution are

considered: the joint distribution of significant wave height (Hs)

and zero up-crossing period (Tz) and the joint distribution of Hs

and wind speed. It is shown that the storm resampling method

gives estimates of environmental contours that agree well with

the observations and provides a rigorous method for estimating

extreme values.
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1 INTRODUCTION

Offshore and coastal structures are often designed using the

environmental contour method. The method involves estimating

combinations of environmental variables (contours) that corre-

spond to a given exceedance probability. The response of the

structure is then estimated for various points along the contour

and the maximum response along the contour is taken as the de-

sign value.

Generally, the process involves two stages: first, the joint

distribution of the environmental variables is estimated, and sec-

ondly, contours are constructed from the joint distribution. Nu-

merous method have been proposed for both steps. A recent

review of methods for estimating environmental contours was

presented in [1]. Methods for modelling the joint distribution

include hierarchical conditional models [2–5], copula models

[6–9], kernel density estimates [10, 11] and conditional extreme

value models [12–14]. Methods for estimating contours include

the inverse first- and second-order reliability methods (IFORM

[4] and ISORM [15]), Monte Carlo methods [16, 17], projec-

tion methods [18] and isodensity contours [2, 19, 20]. For fur-

ther discussion of the differences between the various methods

see [1, 20].

For the purpose of estimating contours it is critical to cap-

ture the extremal properties of the variables in order to derive

design conditions. Some of the methods mentioned above have

limitations in this respect. For example, estimates of the tail of a

distribution using a kernel density model are highly sensitive to
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the choice of kernel and kernel parameters. Hierarchical condi-

tional models require a trend for the model parameters to be fitted

and extrapolated outside the range of observations and there is no

guarantee that the observed trend will continue outside the range

of observations.

Moreover, many methods fit a model to all observations. The

asymptotic models used for estimating the occurrence frequency

of extreme events assume that the data are independent and iden-

tically distributed (IID). Metocean variables exhibit serial cor-

relation, violating the model assumption that the data are IID.

Neglecting serial correlation and fitting a model to all data can

lead to a positive bias in the estimated extreme conditions (see

e.g. [21]). For example, it was shown in [22] that estimates of

the 100-year return values of wave heights that neglected serial

correlation in the data can lead to positive biases of the order of

10-20%.

In univariate extreme value analysis, serial correlation is

usually dealt with by only modelling peak values that are suf-

ficiently separated in time that they can be considered indepen-

dent. The selection of peak values can be consider as a form of

declustering. For multivariate extreme value analysis this poses

two problems. Firstly, a peak value in one variable need not co-

incide in time with a peak value the other variables. Secondly,

the distribution of all observations must be recovered from the

model for the distribution of just the storm peak variables.

Derbanne and de Hauteclocque [18] proposed a multivariate

declustering method. For two random variables X and Y , the data

are projected onto radial lines from the origin of the X-Y plane

at various angles. For each angle, the projected univariate data

are declustered and a peaks-over-threshold analysis is conducted

to estimate exceedance probabilities in that particular direction.

The process is repeated at discrete angular steps and the return

values for each projection are used to construct contours. There

are some limitations with this method. Firstly, as the boundary

lines for each angular projection are straight, the resulting con-

tours are convex, which is not appropriate for all combinations of

environmental variables. Secondly, since all data are projected

to a single line, the method can only be used to estimate an ex-

ceedance contour and not the joint distribution. Knowledge of

the joint distribution is important for investigating the impact of

short-term variability in the response, since the largest response

in an N-year period may occur inside the N-year contour.

An alternative approach is to select a dominant environmen-

tal variable, X , (usually significant wave height, Hs, for metocean

analysis), identify the peak values of X and establish the joint

distribution of the peak values of X with concurrent values of the

other variables. The distribution of the non-peak data is recov-

ered by simulating peak values from the fitted model, resampling

measured data conditional on the peak and rescaling them so that

the values match at the time of the peak in X (see e.g. [14, 23].

As the peaks of the variables need not coincide in time, rescaling

the measured data based on the values at the times of the peaks

of X does not necessarily preserve the distribution of the peak

values of the other variables.

In this work we propose a modified resampling approach,

which preserves the distribution of the peak values of each vari-

able. The method is illustrated through application to datasets

selected for the environmental contour benchmarking exercise

[24]. In the examples considered, the datasets contain only two

variables. However, the resampling method can be extended

without modification to higher dimensions (see e.g. [14]).

The paper is organised as follows. The block resampling

method is outlined in Section 2 and the underlying assumptions

are discussed. The application of the method to estimating en-

vironmental contours for Hs and zero up-crossing period, Tz is

presented in Section 3 and the estimation of contours for Hs and

wind speed is presented in 4. In both sections we present some

novel methods for estimating the joint distribution of the peak

variables. Finally, a discussion and conclusions are presented in

Section 5.

2 OUTLINE AND ASSUMPTIONS OF METHOD

It is assumed that the time series of environmental variables

can be divided into blocks where the peak values in adjacent

blocks can be considered independent. The peak values of each

variable within the block are not required to coincide in time, but

the blocks are assumed to be sufficiently short so that the peak

values of each variable are related in some way. A model for the

joint distribution of the peak values is then estimated. The dis-

tribution of all data is recovered by simulating block-peak values

from the joint model and resampling and rescaling the measured

blocks so that the peak values from the resampled blocks match

the simulated peak values.

The data are partitioned into non-overlapping blocks as fol-

lows. First, a dominant variable is selected (in both cases con-

sidered here we use Hs as the dominant variable). Peak values in

the dominant variable are defined as maxima within a window of

±t days. The choice of t is dependent on the correlation scales of

the variables considered. For oceanographic data, t = 5 days is

sufficient for peak values to be considered independent. The end

points of the blocks are defined as the minima between adjacent

maxima.

The distribution of the data in the block relative to the peak

values of each variable is dependent on the peak values. For

example, the distribution of Hs/H
peak
s within a block is depen-

dent on the value of H
peak
s (see e.g. Fig. 13 in [22]). Similarly,

the joint distribution of variables within a block is dependent on

the peak values. The blocks that are resampled and rescaled to

match the simulated peak values must therefore have peak values

that are “sufficiently close” that rescaling the data only results in

a small change and results in a realistic storm history. In this

work, we define “sufficiently close” in terms of the distance be-
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tween the measured and simulated peak values when transformed

to Laplace margins

r2 =
(

F−1
L (FX (X

peak
s ))−F−1

L (FX (X
peak
m ))

)2

+
(

F−1
L (FY (Y

peak
s ))−F−1

L (FY (Y
peak

m ))
)2

, (1)

where the subscripts m and s denote measured and simulated val-

ues, FX and FY are the marginal distribution functions of X peak

and Y peak, and FL is the Laplace distribution function. The

resampled storm is then chosen at random from the n closest

blocks, where n acts as a smoothing parameter, with larger values

of n leading to more smoothing of the distribution. The X values

in the resampled block are rescaled by the ratio X
peak
s /X

peak
m and

the Y values are rescaled by Y
peak

s /Y
peak

m . The joint distribution

of the resampled data is then estimated empirically from the 2D

histogram.

A similar method was used in [22] to generate synthetic time

series of Hs and Tz with the correct extremal properties of Hs.

However, in [22] only the distribution of Hs was modelled and

the values of significant steepness were resampled from the mea-

sured values within a given range of Hs. The other main differ-

ences from previous methods [14,23] are that the peak values are

not required to coincide in time and the full block is resampled,

rather than just the values for which Hs is above some threshold.

3 JOINT DISTRIBUTION OF Hs AND Tz

The data used in this section is dataset A described in [24],

a 10-year time series of Hs and Tz covering the period 1/1/1996

- 31/12/2005. The data were measured by NDBC buoy 44007,

located in the Gulf of Maine. The joint occurrence of Hs and Tz

for this dataset is shown in Figure 1.

For these variables, the region of the environmental contour

of interest includes both high and low values of Tz for a given

Hs. In the storm resampling method, the data in each block are

rescaled relative to the randomly simulated peak values. If the

data are scaled for the maximum Tz then there is no guarantee

that the maximum steepness elsewhere in the block will be re-

alistic. Conversely, if we model peak Hs and steepness then the

maximum period may not be realistic.

To circumvent this problem we define a variable such that

the two frontiers of the Hs-Tz correspond to the highest values

of steepness and the new variable. The significant steepness is

defined as

s =
2πHs

gT 2
z

. (2)

FIGURE 1. JOINT OCCURRENCE OF Hs AND Tz. BLACK

DASHED LINES: CONSTANT STEEPNESS. RED DASHED LINES:

CONSTANT DISTANCE (EQN. 3).

We define a distance from the origin in the Hs-Tz plane as:

d =
√

H2
s +T 2

z /2. (3)

The definition of the distance is somewhat arbitrary, but this par-

ticular definition has the property that the lines of constant d are

orthogonal to the lines of constant s in the Hs-Tz plane, as illus-

trated in Figure 1. The joint occurrence of s and d is shown in

Figure 2. The distance parameter d does not have a physical in-

terpretation, but is a convenient variable to use when examining

the joint distribution of Hs and Tz. The use of other, physically

based parameters such as wave power (P ∝ H2
s Te in deep water,

where Te is the energy period) was examined, but these gave less

satisfactory results.

The time series blocks are defined using the peak values of

d with a minimum separation time of 5 days. The marginal dis-

tributions of s and d are defined as a 2-part model with a kernel

density estimate used for the body of the data and a generalised

Pareto (GP) model fitted to the tail of the distribution. The thresh-

old for the GP model was selected from inspection of plots of the

estimated GP shape parameter and return values against thresh-

old level. The uncertainty from the threshold selection can be

estimated by fitting an ensemble of models corresponding to dif-

ferent plausible threshold choices, however this method has not

been applied here.

A similar approach is used to estimate the joint distribu-

tion of peak s and d. A kernel density model is used for the

body of the data and the conditional extremes model of Heffer-

nan and Tawn [25] (referred to as the HT model hereafter) is

used to model the extreme values. For pairs of random variables

(X ,Y ) on standard Laplace (or Gumbel) margins, the HT model
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FIGURE 2. JOINT OCCURRENCE OF SIGNIFICANT STEEP-

NESS AND DISTANCE.

describes the asymptotic form of the distribution of one variable,

conditional on the other being extreme. The model form for Y

conditional on X under the HT model is

(Y |X = x) = αx+ xβ Z, (4)

where Z is a residual process, α and β are real-valued, and β < 1.

In the current work, the HT model is estimated by maximis-

ing the likelihood under the assumption that Z is normally dis-

tributed. After fitting the HT model, the density function of Z

is estimated from the residuals zi = (yi − α̂xi)/xβ̂ using a kernel

density model.

We are interested both in the behaviour of s when d is large

and the behaviour of d when s is large. An HT model is there-

fore fitted for s conditional on large d and d conditional on large

s. When both s and d are large there are two potential models

to choose from. In this region the two models are blended as

illustrated in Figure 3. Suppose the thresholds used for the HT

models for y|x and x|y are ux and uy respectively. Define an angle

θ = atan((y− uy)/(x− ux)). The blended density function at a

point (x ≥ ux,y ≥ uy) is given by

p(x,y) =

(

1−
2θ

π

)

p1(x,y)+
2θ

π
p2(x,y), (5)

p1(x,y) = p(x)p(y|x), (6)

p2(x,y) = p(y)p(x|y). (7)

The blending of the two density functions in this region does not

guarantee that the total probability integrated over the domain is

equal to 1. However, this is not problematic for simulation, since

the conditional probability of y|x can be normalised to integrate

to 1 for each value of x.

FIGURE 3. MODELS USED FOR RANGES OF VARIABLES.

In the present case, the HT thresholds for both variables

were set at a non-exceedance probability of 0.65. The thresh-

olds were selected by fitting the models for a range of threshold

levels and selecting the lowest values for which the estimates of

α and β tend to stable values. As with the GP threshold, the

uncertainty relating to the threshold choice can be estimated by

fitting an ensemble of models for ranges of plausible threshold

choices, but this method has not been applied here.

Figure 4 shows the 10-years of observed data together with

1, 5 and 50-year contours estimated from 1000 years simulated

data from the fitted model. The 1000-year simulation takes less

than 1 minute on a standard laptop computer. The contours are

calculated from the joint distribution using the IFORM method

[4]. The resampled blocks have been drawn from the 10 clos-

est measured blocks, as it was found that this gave a reasonable

level of smoothing, without introducing significant changes to

the shape of the joint distribution. Visually, the contours appear

to be a good fit to the boundaries of the observed data, with sev-

eral clusters of points outside the 1-year contour and a few points

falling outside the 5-year contour. The points falling outside the

contours would be expected to cluster, since conditions in in-

dividual storms exhibit strong serial correlation. Both the high

steepness and high period portions of the contour are in good

agreement with the data, implying that the transformation of the

data and fitting the model in s-d space has worked well in pre-

serving these features of the data.

The marginal exceedance probabilities for Hs and Tz from

the observed and simulated data are shown in Figures 5 and 6.

The observed marginal distributions are also well matched by

the simulated data. The block resampling method together with
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FIGURE 4. 10 YEARS OF OBSERVED Hs AND Tz WITH CON-

TOURS DERIVED FROM STORM RESAMPLING METHOD.

FIGURE 5. MARGINAL EXCEEDANCE PROBABILITY OF Hs

FOR OBSERVED AND SIMULATED DATA FROM JOINT Hs-Tz

MODEL.

the fitted marginal and joint models has performed well for this

dataset and preserved the observed extremal properties of each

variable.

4 JOINT DISTRIBUTION OF HS AND WIND SPEED

The data used in this section is dataset F described in [24], a

50-year time series of Hs and wind speed at 10m above sea level,

W , covering the period 1/1/1965 - 31/12/2014. The data is from

FIGURE 6. MARGINAL EXCEEDANCE PROBABILITY OF Tz

FOR OBSERVED AND SIMULATED DATA FROM JOINT Hs-Tz

MODEL.

FIGURE 7. JOINT OCCURRENCE OF Hs AND WIND SPEED.

a hindcast model [26] for a North Sea location off the Norwegian

coast. The joint occurrence of Hs and W is shown in Figure 7.

The design of offshore wind turbines requires an estimate of the

50-year joint contour of Hs and W [27]. Values of Hs along the

50-year contour around the rated wind speed of the turbine are

important for assessment of design loads. The strategy presented

above for modelling Hs and Tz transformed the data to a space

where the two frontiers of interest could be modelled using the

HT model. The HT model is only appropriate for modelling the

conditional distribution of a variable when the other is extreme,

so if no transformation is applied to Hs and W then we require

a different modelling strategy to estimate the extreme values of

Hs when W is not extreme. A similar transformation as used for
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Hs and Tz could be applied here, however a different approach

has been implemented that does not require a transformation of

variables.

One approach to model the tail of the distribution of H
peak
s

conditional on W peak would be to bin the data in small ranges

of W peak and fit a GP model in each bin. The bin size would

be a trade-off between the sample sizes in each bin and the ap-

proximation that the distribution is stationary in each bin. This

type of analysis can lead to significant bias and high variance

(see [28, 29]). To avoid these problems and provide a model

where the underpinning assumptions are better matched by the

data, we use a penalised piecewise-linear (PPL) covariate model.

The PPL model is described in detail in [30] and a brief overview

is given below.

In the PPL model the values of H
peak
s above some local

threshold are assumed to follow a GP distribution conditional

on W peak. The threshold and scale parameters of the GP model

are estimated at a number of equally spaced values of W peak, re-

ferred to as nodes, denoted wk, k = 1,2, ...,m. The threshold and

scale parameters at intermediate positions vary linearly between

the values at the nodes. Due to the difficulty in estimating the

GP scale parameter, ξ , it is assumed that ξ is constant (but un-

known) across the covariate domain. The model is similar to the

penalised piecewise-constant (PPC) model described in [31], but

with the key difference that the model parameters are assumed to

vary linearly across each bin in the PPL model (where a bin is

defined as the range of values between adjacent nodes), whereas

the parameters are assumed to be constant in each bin in the PPC

model.

The GP threshold at the nodes, u(wk), is intended to be

set so that the local non-exceedance probability is a constant,

ψ ∈ (0,1). In practice, this is approximated by estimating the

values of u(wk) using a simplex search optimisation method [32]

(implemented using the MATLAB function ‘fminsearch’) with a

target of achieving a constant proportion, ψ , of observations in

each bin below the threshold. The first guess for the optimisation

is defined as the empirical quantiles at a non-exceedance value ψ
in each bin, interpolated/extrapolated to the node positions.

Once the threshold has been set, the parameters ξ and

{σ(wk)} are estimated by maximising the predictive perfor-

mance of a roughness-penalised model using a cross-validation

procedure. For a sample of observations of storm peak Hs and

W , denoted {(hi,wi)}
n
i=1, the GP likelihood under the piecewise-

linear model is

L = ∏
i: hi>u(wi)

1

σ(wi)

[

1+
ξ

σ(wi)
[hi −u(wi)]

]−1/ξ−1

, (8)

where the values u(wi) and σ(wi) are linearly interpolated from

the values at the nodes. The negative log likelihood, penalised

for the roughness of {σ(wk)}, is then

ℓ∗ =− logL +λσ

m−2

∑
k=1

[σ(wk+2)−2σ(wk+1)+σ(wk)]
2 , (9)

where λσ is the roughness penalty. The roughness is defined here

as the change in the gradient of σ(w) between adjacent bins. If

λσ = ∞ then the model has two degrees of freedom (DOF) for

σ , since the gradient of σ is forced to be constant across the

domain. If λσ = 0 then the fitted model has m DOF for σ . For

intermediate values, the “effective” number of DOF for σ is at

some intermediate value.

For given ψ and λσ , estimates for ξ and {σk} are found by

minimising ℓ∗. The minimisation is conducted using a simplex

search method [32]. The search is initialised using first guess

of ξ̂ = 0 and the moment estimates of σ in each bin, interpo-

lated/extrapolated to the node positions. The optimisation is con-

strained to give ξ̂ ≥−0.5 and max{xi}≤ û(wi)− σ̂(wi)/ξ̂ when

ξ̂ < 0. A random 10-fold cross-validation is then used to select

the value λ̂σ and corresponding ξ̂ , {σ̂k} which maximise predic-

tive performance (i.e. the value that gives the minimum value of

ℓ∗). The cross-validation groups are defined so that the observa-

tions in each bin are split approximately equally between each

group. The use of cross-validation ensures the best predictive

rather than descriptive performance and avoids over-fitting.

The PPL model requires a sufficient number of observations

in each bin to accurately estimate the parameters. There must

be a sufficient number of observations around the first and last

nodes that the estimates of u(wi), σ(wi), i = 1,m are properly

constrained by the data. This means that the PPL model can only

be applied to the central range of W peak. For the lowest values of

W peak and when H
peak
s is below the PPL threshold we estimate

the joint distribution using a kernel density model, since these

ranges do not influence the extreme values (note that all values

of Hs and W in a block are, by definition, less than or equal to

the peak values). For the upper range of W peak, we estimate the

conditional distribution of H
peak
s using the HT model. This also

avoids issues with needing to extrapolate from the PPL model

into unobserved ranges of W peak.

The threshold for the HT model is defined to be strictly

less than the maximum node position of the PPL model. In

the overlapping region, the two models are blended linearly.

In practice, this is achieved by simulating conditional values

of H
peak
s from both models when wHT < W peak < wm (where

wHT is the threshold for the HT model) and selecting the value

simulated from the PPL-kernel density model with probability

(wm −w)/(wm −wHT ). The models applied for ranges of each

variable are illustrated in Figure 8.

For the current dataset, the PPL model has been fitted using

6 equally-spaced nodes between W peak = 10m/s and W peak =
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FIGURE 8. MODELLING STRATEGY USED FOR ESTIMATING

JOINT DISTRIBUTION OF STORM PEAK Hs AND W .

25m/s and a GP threshold non-exceedance probability ψ = 0.7.

The predictive likelihood for 10−4 < λσ < 102 is shown in Fig-

ure 9. There is some variability due to the random selection of

cross-validation groups, so the cross-validation procedure was

repeated 10 times. The results for each random partitioning into

groups is shown, together with the average over the 10 repeats.

For the present dataset, there is no clear minimum to the predic-

tive likelihood, with any value λσ < 5×10−2 leading to roughly

the same predictive likelihood. This indicates that there is suf-

ficient information in the sample to estimate the six values of

the scale parameter at the nodes without roughness-penalisation.

For a smaller sample size or larger number of nodes we would

expect to see a defined minimum in the predictive likelihood at

some value of λ .

The fit of the PPL model is illustrated in Figures 10 - 12. Fig-

ure 10 shows the sample together with the threshold and quan-

tiles from the fitted PPL model. It appears that the quantiles are

a good match to the data with a roughly-evenly spread num-

ber of exceedances of the 0.99 quantile. We can define a nor-

malised threshold exceedance as zi = (hi −u(wi))/σ(wi). Under

the assumption of a constant shape parameter, the normalised

exceedances, zi should have a stationary distribution with W peak.

Values of zi against wi are shown in Figure 11. Visually, it ap-

pears that distribution is approximately stationary, indicating that

the assumption of a constant shape parameter is reasonable. Fi-

nally, under the model assumptions, the normalised threshold ex-

ceedances follow a GP distribution with σ = 1 and shape param-

eter ξ̂ . Figure 12 shows the empirical exceedance probabilities

of the normalised threshold exceedances together with the GP

FIGURE 9. PREDICTIVE LIKELIHOOD AGAINST ROUGH-

NESS PENALTY. BLACK LINES: RESULTS FOR 10 RANDOM

PARTITIONINGS OF DATA. RED LINE: AVERAGE OVER 10 RE-

PEATS.

FIGURE 10. CIRCLES: OBSERVED VALUES OF STORM PEAK

Hs AND W (OBSERVATIONS USED FOR FITTING THE PPL

MODEL SHOWN IN GREY). LINES: ESTIMATED QUANTILES OF

PPL MODEL AT EXCEEDANCE PROBABILITIES 0.3 (THRESH-

OLD LEVEL), 10−1, 10−2, 10−3 AND 10−4.

model described above. The fitted model appears to be a good fit

for the data with a relatively small scatter of the largest observa-

tions about the fitted model.

The threshold for the HT model was set at W = 21m/s and

was selected in the same way as described in the previous section.
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FIGURE 11. NORMALISED THRESHOLD EXCEEDANCES

AGAINST STORM PEAK WIND SPEED.

FIGURE 12. OBSERVED AND FITTED NORMALISED

THRESHOLD EXCEEDANCES FROM PPL MODEL.

Figure 13 shows the 50 years of observed Hs and W together

with the 1-, 5- and 50-year contours derived from the block re-

sampling method. In this plot the 20 nearest blocks are used for

resampling and the total length of data is 10,000 years. The con-

tours appear to follow the observed trends in the data well, with a

reasonably even distribution of points exceeding the 1-year con-

tour. There may be slightly fewer observations than expected

where the value of Hs exceeds the 5-year contour at lower wind

speeds, indicating that the model may be slightly conservative

in this range. However, the marginal distribution of Hs and W

FIGURE 13. 50 YEARS OF OBSERVED Hs AND W WITH CON-

TOURS DERIVED FROM STORM RESAMPLING METHOD.

FIGURE 14. MARGINAL EXCEEDANCE PROBABILITY OF Hs

FOR OBSERVED AND SIMULATED DATA FROM JOINT Hs-W

MODEL.

are well matched between the observed and simulated data (see

Figures 14 and 15), indicating that the model is performing well

overall.

5 DISCUSSION AND CONCLUSIONS

A new method has been presented for estimating the joint

distribution of environmental variables, which accurately cap-

tures both the marginal and joint the extremal characteristics of
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FIGURE 15. MARGINAL EXCEEDANCE PROBABILITY OF W

FOR OBSERVED AND SIMULATED DATA FROM JOINT Hs-W

MODEL.

the observations. The key assumption is that rescaling a mea-

sured storm history results in an equally realistic time series, pro-

vided that the change in peak values is not large. It was shown

that the method, together with careful modelling of the joint dis-

tribution of peak values, can produce contours that closely fol-

low the observed range of the data and accurately reproduce the

marginal distributions of the data.

An aspect of the method that has not been explored in the

present work is how it performs when extrapolating far outside

the observed range of the data. The distribution of the data within

each block is dependent on the peak values of each variable, so

if measured blocks are rescaled to have significantly larger peak

values, then this may result in unrealistic storm profiles. This

could possibly be dealt with by characterising the joint distri-

butions of the data within each block and examining how this

varies with the peak values. Accounting for this effect may be

important for long-tailed distributions in which there are rare oc-

currences far from the observed range, or when deriving contours

for return periods orders of magnitude larger than the length of

observations.

Another key feature of the block resampling is that it pre-

serves the joint temporal variation in the variables within in each

block. This means that arbitrary lengths of realistic time his-

tories can be generated from the model. The values at the block

boundaries will not match, but these values are defined to be non-

extreme, so this is not important if the interest is in the extreme

response of a structure. Neglecting serial correlation effects in

the data is known to lead to positive bias in estimates of return

values of individual wave and crest heights (see e.g. [22,33,34]).

Using the resampling method to generate data from which ex-

treme structural responses can be calculated could possibly lead

to less conservative designs of offshore structures - something

that may be particularly important for offshore renewable energy

devices.

The use of block resampling can also give a more realistic

estimate of the uncertainty in contour estimates than resampling

all observations at random. Vanem et al [35] investigated the un-

certainty in estimates of environmental contours by resampling

the data under the assumption that each observation was inde-

pendent. This method neglects the serial correlation in the data

and the clustering of observations at the edges of the joint dis-

tribution. Neglecting this effect could potentially lead to non-

conservative estimates of the uncertainty in the contours. How-

ever, further work would be required to quantify the impact of

this effect.
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