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Introduction
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Motivation

◦ How useful are satellite observations of ocean waves and winds?

◦ Could they become the primary data source for decisions soon?

◦ What are the spatial characteristics of extremes from satellite
observations?

Related work

◦ Heffernan and Tawn [2004] (CE), Heffernan and Resnick [2007]

◦ Shooter et al. [2019] (SCE), Wadsworth and Tawn [2019] (SCE)

◦ Shooter et al. [2021b], Shooter et al. [2021a] (SCE applications)

Competitors (= MSPs, hierarchical MSPs and multivariate MSPs)

◦ Reich and Shaby [2012], Vettori [2017], Vettori et al. [2019]

◦ Genton et al. [2015], Huser and Wadsworth [2020]
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Introduction

Summary of talk : Outline

◦ A look at the data

◦ Brief overview of methodology, extended to multiple fields

◦ Results for joint spatial structure of extreme scatterometer wind
speed, hindcast wind speed and hindcast significant wave height
in the North Atlantic

◦ Implications for future practical applications
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Introduction

Summary of talk : Methodology in nut-shell

◦ Condition on large value x of first quantity X01 at
one location j = 0

◦ Estimate “conditional spatial profiles” for m > 1

quantities {X jk}
p,m
j=1,k=1 at p > 0 other locations

X jk ∼ Lpl

x > u

X|{X01 = x} = αx + xβZ

Z ∼ DL(µ,σ2,δ; Σ(λ,ρ,κ))

◦ MCMC to estimateα, β, µ,σ , δ and ρ, κ, λ

◦ α, β, µ,σ , δ spatially smooth for each quantity

◦ Residual correlation Σ for conditional Gaussian
field, powered-exponential decay with distance
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Data Basics

Satellite observation

[Ribal and Young 2019]

Features

◦ Altimetry: HS and U10

◦ Scatterometry: best for U10 and
direction

◦ > 30 years of observations

◦ Spatial coverage is by no means
complete: one observation daily
if all well

◦ Calibration necessary (to buoys
and reanalysis datasets, Ribal
and Young 2020)

◦ METOP(-A,-B,-C) since 2007

HS : significant wave height (m)

U10 : wind speed (ms−1) at 10m (calibrated to 10-minute average
wind speed)
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Data Basics

Hindcast data, objectives

Hindcast data

◦ Physical simulator calibrated to observations (e.g from buoys)

◦ NORA10 hindcast covers North Atlantic off UK (Breivik et al.
2013)

◦ Data available 1957-2018

Initial objective

◦ Joint spatial inferences about extremes using all of

◦ HS (JASON)
◦ directional U10 (METOP)
◦ directional HS and directional U10 (NORA10)

◦ Not feasible: poor joint spatial coverage of JASON and METOP

Revised objective

Joint spatial inferences about extremes of directional U10 (METOP),
hindcast directional HS and directional U10 (NORA10)
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Data Basics

JASON and METOP

[n2yo.com, accessed 06.09.21 at around 1100UK] [stltracker.github.io, accessed 27.08.2021 at around 1235UK]

◦ JASON and METOP similar polar orbits

◦ JASON all ascending, METOP all descending over North Atlantic

◦ Joint occurrence of JASON and METOP over North Atlantic rare
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Data Preprocessing

Swath wind speeds

Daily descending METOP swaths. Satellite swath location changes over time. Spatial structure evident
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Data Preprocessing

Registration locations

Registration locations : square is conditioning location
StlWnd (green), HndWnd (orange), HndWav(blue)

Procedure

◦ 14 longitude-latitude pairs

◦ Satellite observation nearest to
each pair used for each swath

◦ Corresponding hindcast data for
each pair at time of swath

◦ “Instantaneous” satellite wind
vector, hindcast wind vector,
hindcast HS and wave direction
for 1532 times

◦ Most southerly location for
conditioning in MSCE

◦ Note colour scheme
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Data Registered data

Scatter plots on physical scale

Scatter plots of registered data : StlWnd (green), HndWnd (orange), HndWav(blue)
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Data Registered data

Covariate dependence

Directional and seasonal dependence. “Direction” is that from which fluid flows measured clockwise from North
StlWnd (green), HndWnd (orange), HndWav(blue)
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Data Marginal transformation to Laplace scale

Marginal transformation to standard Laplace scale

Procedure

◦ Non-stationary piecewise constant directional-seasonal marginal
extreme value model (github.com/ECSADES/ecsades-matlab)

◦ Pre-specified 8 directional bins (“octants”) of equal width centred
on cardinal and semi-cardinal directions

◦ Pre-specified “summer” and “winter” seasonal bins

◦ Generalised Pareto model for peaks over threshold

◦ Model parameters vary smoothly between bins, optimal
roughness found using cross-validation

◦ Multiple extreme value thresholds with non-exceedance
probabilities between 0.7 and 0.9 considered

◦ Bootstrapping for uncertainties

◦ Uncertainty in marginal model not propagated

◦ Independent marginal models for pair of variable (StlWnd,
HndWnd, HndWav) and location (0,1,...,13)
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Data Marginal transformation to Laplace scale

Scatter plots on Laplace scale

Registered data on Laplace scale: StlWnd (green), HndWnd (orange), HndWav(blue)
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Method Conditional extremes, CE

Conditional extremes

Y|{X = x} = αx + xβZ

◦ Asymptotically-motivated, Heffernan and Tawn [2004]

◦ X ∼ Lpl, Y ∼ Lpl, and x > u

◦ α ∈ [−1, 1], β ∈ (−∞, 1]

◦ Z is a residual random variable characterised empirically, or
estimated assuming Z ∼ N(µ,σ2), so

E[Y|{X = x}] = αx +µxβ

var[Y|{X = x}] = σ2x2β

◦ Identifiability ofα and µ when β ≈ 1

◦ Model fitting means estimatingα, β, µ and σ
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Method Spatial conditional extremes, SCE

Spatial conditional extremes

X|{X0 = x} = αx + xβZ

◦ Shooter et al. [2019], Wadsworth and Tawn [2019]
◦ X = (X1, X2, ..., Xq), are now observed at q points in space
◦ All marginal Xk ∼ Lpl, and x > u
◦ α j ∈ [−1, 1], β j ∈ (−∞, 1], j = 1, ..., q

Z ∼ DL(µ,σ2,δ; Σ)

◦ Delta-Laplace (DL) parameters µ j, σ j > 0, δ j > 0, j = 1, ..., q
◦ Σ is a (conditional) correlation matrix with powered-exponential

decay with distance between the q points (with parameters ρ, κ)

◦ Model fitting means estimatingα, β, µ,σ , δ and ρ, κ
◦ α, β, µ,σ , δ vary smoothly with distance
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Method Multivariate spatial conditional extremes, MSCE

Multivariate spatial conditional extremes

X|{X01 = x} = αx + xβZ

◦ X = (X11, X21, ..., Xq1, X12, X22, ..., Xq2, ..., X1m, X2m, ..., Xqm), for m
quantities observed at q points in space

◦ All marginal Xkℓ ∼ Lpl, and x > u

◦ α jℓ ∈ [−1, 1], β jℓ ∈ (−∞, 1], j = 1, ..., q, ℓ = 1, 2, ..., m

Z ∼ DL(µ,σ2,δ; Σ)

◦ Delta-Laplace (DL) residual parameters µ jℓ, σ jℓ > 0, δ jℓ > 0

◦ Σ is a (conditional) correlation matrix with powered-exponential
decay with distance between the q points for m quantities, with
appropriate cross-decay (with parameters ρ, κ, λ)

◦ Model fitting means estimatingα, β, µ,σ , δ and ρ, κ, λ

◦ α, β, µ,σ , δ vary smoothly with distance for each quantity
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Method Inference

Inference

◦ Adaptive MCMC, Roberts and Rosenthal [2009]

◦ Piecewise linear forms for all parameters with distance using nNod

spatial nodes

◦ Total of m(5nNod + (3m + 1)/2) parameters

◦ Rapid convergence, 10k iterations sufficient
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Results for North Atlantic Parameter estimates

Parameter estimates for North Atlantic application

Estimates forα, β, µ, σ and δ with distance, and residual process estimates ρ, κ and λ. Model fitted with τ = 0.75
StlWnd (green), HndWnd (orange), HndWav(blue)
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Results for North Atlantic Parameter estimates

Laplace-scale conditional mean, standard deviation

Quantile with threshold probability τ = 0.95 used for illustration. Quantile level is 2.3 at zero distance on green curve
StlWnd (green), HndWnd (orange), HndWav(blue)

Jonathan MSCE September 2021 19 / 23



Results for North Atlantic Validation

Laplace-scale simulation under fitted model

Threshold probability τ = 0.75
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Results for North Atlantic Validation

Residual sample

Scatter matrix, threshold probability τ = 0.75

◦ Black = From actual
sample

◦ Red = Simulated from
fitted model
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Summary of findings

Summary of findings

Data

◦ JASON and METOP jointly too sparse to use together
◦ 1500-2000 good instantaneous daily observations for METOP
◦ Sampling bias; swath time roughly the same each day
◦ Data are “instantaneous” not storm peak

Methodology

◦ Inference straightforward for m = 3 and nNod = 10
◦ Assumed distance-dependence structure adopted, particularly for

residual, seems reasonable from diagnostics
◦ Marginal model (fitted independently, uncertainties not pushed

through to Laplace scale); should do this jointly

Results

◦ Results for threshold quantile τ = 0.75, other values examined
◦ Conditioning on other locations and quantities examined
◦ Spatial extent of extremal dependence for all quantities is about

600-800km
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