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ABSTRACT

Specification of realistic environmental design conditions for marine structures is of funda-
mental importance to their reliability over time. Design conditions for extreme waves and storm
severities are typically estimated by extreme value analysis of time series of measured or hind-
cast significant wave height, Hg. This analysis is complicated by two effects. Firstly, Hg exhibits
temporal dependence. Secondly, the characteristics of ng are non-stationary with respect to
multiple covariates, particularly wave direction and season.

We develop directional-seasonal design values for storm peak significant wave height (H. gp )
by estimation of, and simulation under a non-stationary extreme value model for ng . Design
values for significant wave height (Hs) are estimated by simulating storm trajectories of Hg
consistent with the simulated storm peak events. Design distributions for individual maximum
wave height (H,,,,) are estimated by marginalisation using the known conditional distribution
for H,,4, given Hs. Particular attention is paid to the assessment of model bias and quantification
of model parameter and design value uncertainty using bootstrap resampling. We also outline
existing work on extension to estimation of maximum crest elevation and total extreme water
level.

1 Introduction

Specification of realistic environmental design conditions for marine structures is of fundamental
importance to their reliability over time. Design conditions for extreme waves and storm severities are
typically estimated by extreme value analysis of time series of measured or hindcast significant wave
height, Hs. This analysis is complicated by two effects.

Firstly, Hg exhibits temporal dependence, invalidating naive application of extreme value analysis.
Instead, time series must be de-clustered into observations of (independent) storm peak significant wave
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height H;”, and (intra-storm) directional dissipation of Hg conditional on H;p . Extreme value analysis
is then performed on H;p providing a mechanism to simulate storm peak events for arbitrary return
periods. Design values for Hg (for an arbitrary storm sea-state) are next estimated by incorporation
of dissipation effects within the simulation. Design distributions for individual maximum wave height
H,,.qx can then be estimated by marginalisation using the known conditional distribution for H,,,, given
Hg. Design values for other intra-storm variables such as maximum crest elevation and total extreme
water level can be estimated similarly.

Secondly, the characteristics of H ;p are non-stationary with respect to multiple covariates, particu-
larly wave direction and season. Failure to accommodate non-stationarity can lead to incorrect estima-
tion of design values. As shown in OMAE2013-10187, covariate effects in peaks over threshold of ng
can be modelled in terms of non-stationary models for extreme value threshold (using quantile regres-
sion model), the rate of occurrence of threshold exceedances (using a Poisson model), and the sizes of
exceedances (using a generalised Pareto model). Model parameters are described as smooth functions
of covariates using appropriate multidimensional penalised B-splines. Optimal parameter smoothness
is estimated using cross-validation.

In this work, we develop directional-seasonal design values for H;p , Hg and H,,,, for a location in
the North Sea. Particular attention is paid to the assessment of model bias and quantification of model
parameter and design value uncertainty using bootstrap resampling. We also outline existing work on
extension to estimation of maximum crest elevation and total extreme water level.

The use of design criteria varying with direction is well-established, particularly for in-place re-
assessments and reliability studies of fixed jacket structures. However, there are certain situations where
design criteria varying with both season and direction may be more appropriate. One example is site-
specific assessments of jack-up or mobile offshore drilling units which will only operate through the
summer. The estimation of extreme value models which accommodate directional and seasonal vari-
ability is therefore of considerable interest.

There is a large literature on applied extreme value analysis relevant to ocean engineering. Thresh-
old methods in extreme value analysis are reviewed by [Scarrott and MacDonald| [2012]. [Tancredi et al.
[2006] considers accounting for threshold uncertainty in extreme value anlaysis. Wadsworth and Tawn
[2012] presents likelihood-based procedures for threshold diagnostics and uncertainty. [Thompson et al.
[2009] proposes automatic threshold selection for extreme value analysis. [Thompson et al.|[2010] re-
ports Bayesian non-parametric regression using splines. Muraleedharan et al.|[2012] and |Cai1 and Reeve
[2013]] model significant wave height distributions with quantile functions for estimation of extreme
wave heights. Scotto and Guedes-Soares| [2000] and Scotto and Guedes-Soares| [2007] discuss the long-
term prediction of significant wave height. Methods for analysis of time-series extremes are reviewed
by (Chavez-Demoulin and Davison| [2012]. Ferro and Segers| [2003] and Fawcett and Walshaw| [2007]
discuss modelling of clustered extremes. Mendez et al.| [2006] considers long-term variability of ex-
treme significant wave height using a time—dependent POT model. Ruggiero et al.| [2010] reports in-
creasing wave heights and extreme value projections for the US Pacific Northwest. (Calderon-Vega
et al. [2013]] models seasonal variation of extremes in the Gulf of Mexico using a time-dependent GEV
model. Mendez et al.| [2008] considers the seasonality and duration in extreme value distributions of
significant wave height. Mackay et al.| [2010] discusses discrete seasonal and directional models for the
estimation of extreme wave conditions. |[Eastoe and Tawn! [2012]] models non-stationary extremes with
application to surface level ozone. |Chavez-Demoulin and Davison| [2005] provides a nice introduction
to modelling non-stationary extremes using splines, and Davison et al. [2012] is a good introduction
to spatial extremes. Jonathan and Ewans| [2013] overviews extreme value analysis from a met—ocean
perspective.

Extreme value models for storm severity are generally estimated using storm peak significant wave
height H;p (see, for example, Jonathan and Ewans|2013), so that each independent storm event is repre-



sented just once in the sample for statistical modelling. Simulation under this model allows estimation
of the distribution of maximum storm peak significant wave height in any return period of interest. To
account for within-storm (henceforth intra-storm) evolution of significant wave height Hs (as opposed
to H"), simulation of Hy for all storm sea-states is necessary.

Capturing covariate effects of extreme sea states is important when developing design criteria. In
previous work (see, for example, Jonathan and Ewans [2007]], Ewans and Jonathan| [2008])) it has been
shown that omni-directional design criteria derived from a non-stationary model which adequately in-
corporates covariate effects can be materially different from a stationary model which ignores those
effects (see, for example, Jonathan et al. [2008]]). Similar effects have been demonstrated for seasonal
covariates (see, for example, |Anderson et al.| [2001]], Jonathan et al.| [2008]]). Randell et al.| [2013]] (and
Jonathan et al.|2014) report a spatio-directional model for storm peak significant wave height, H;” in the
Gulf of Mexico, in which the characteristics of extreme values vary with storm direction and location.

A non-stationarity extreme value model is generally superior to the alternative “partitioning” method
sometimes used within the ocean engineering community. In the partitioning method, the sample of
storm peak significant wave heights H;p is partitioned into subsets corresponding to approximately
constant values of covariates; independent extreme value analysis is then performed on each subset.
For example, in the current application we might choose to partition the sample into directional octants
and seasonal quarters, and then estimate (stationary) extreme value models for each of the 32 (=8 x 4)
subsets. There are two main reasons for favouring a non-stationarity model over the partitioning method.
Firstly, the partitioning approach incurs a loss in statistical efficiency of estimation, since parameter
estimates for subsets with similar covariate values are estimated independently of one another, even
though physical insight would require parameter estimates to be similar. In the non-stationary model, we
require that parameter estimates corresponding to similar values of covariates be similar, and optimise
the degree of similarity using cross-validation. For this reason, parameter uncertainty from the non-
stationary model is generally smaller than from the partitioning approach. Secondly, the partitioning
approach assumes that, within each subset, the sub-sample for extreme value modelling is homogeneous
with respect to covariates. In general it is difficult to estimate what effect this assumption might have
on parameter and return value estimates (especially when large intervals of values of covariates are
combined into a subset). In the non-stationary model, we avoid the need to make this assumption
completely.

Whilst the extreme significant wave height is an important parameter in the process of deriving
extreme loads on an offshore structure, the largest load experienced by a structure will usually be due
to the effect of a single wave rather than to the whole sea state. In fact, for offshore platforms the
most significant characteristics are: (a) the return period maximum wave height and its associated wave
period, from which extreme kinematics can be derived (in conjunction with a wave theory such as Stokes
Fifth Order or NewWave, Tromans et al.||[1991 and Jonathan et al.||[1994), and (b) the return period total
extreme water level, namely the sum of tide, surge and wave crest, used to determine whether there
is wave-in-deck loading, typically at the 10,000-year level. Estimation of return values for maximum
individual wave H,,;, and maximum crest Cy,, per sea-state requires the consideration of their intra-
storm probability distributions for wave height H and crest elevation C (Forristall|[1978 and [Forristall
2000 respectively) given sea-state characteristics including Hg.

The cumulative distribution function for the maximum wave height H,,,, in a sea-state of ng; waves
with significant wave height Hg = h; is taken (see, for example, Prevosto et al.|2000) to be given by:

P(Hmax = hmax|HS =hg,M = ns) = (1 _CXP<_



with oo = 2.13 and 3 = 8.42. The number of waves 7, in a particular sea state is estimated by dividing
the length of the sea-state (in seconds) by its zero-crossing period, 77.

The objective of the the current work is to estimate 100-year design values for significant wave
height Hg and maximum wave height H,,,, based on a sample of oceanographic time-series for a North
Sea location (introduced in Section [2)). There are two key components of the modelling procedure, the
first being the estimation of a directional-seasonal extreme value model for storm peak significant wave
height H’ ;f’ (discussed in Section . The second component is the simulation of realisations of H;p (for
the storm peak sea-state) under the model, and thereby simulation of Hs and H,,, for all storm sea-states
(all outlined in Section [d)). Simulation of Hy for all sea-states is achieved using so-called intra-storm
trajectories isolated from the original time-series (see Section [2]and the appendix). Simulation of H,4y
requires the incorporation of the intra-storm probability distributions for H,,,, given Hs. Diagnostic
plots for validation of the estimated model are presented in Section[5] Current and future developments
are outlined in the discussion (Section [6)).

2 Data

The application data consist of hindcast time-series (from Reistad et al.|2011) for significant wave
height Hg, (dominant) wave direction 6, season ¢ (defined as day of the year, for a standardised year
consisting of 360 days), mean zero up-crossing period 77 (required for sampling from the distribution
of maximum wave height H,,,, for a given sea-state, as outlined above) and period 7| (required for the
Forristall crest height distribution, see below) for three hour sea-states for the period September 1957
to December 2012 at a northern North Sea location. [Aarnes et al.|[[2012] and Breivik et al. [2013]] have
studied extreme value characteristics of storm severities from the hindcast.

Storm peak characteristics and intra-storm trajectories are isolated from these time-series using the
procedure described in [Ewans and Jonathan| [2008]. Briefly, contiguous intervals of Hg above a low
peak-picking threshold are identified, each interval corresponding to a storm event. The peak-picking
threshold corresponds to a directional quantile of Hg with specified non-exceedance probability, esti-
mated using quantile regression. The maximum of significant wave height during the interval is taken
as the storm peak significant wave height for the storm. The value of other variables at the time of the
storm peak significant wave height are referred to as storm peak values of those variables. Consecutive
storms within 24 hours of one another are combined. The resulting storm peak sample consists of 2761
values of H;p . With direction from which a storm travels expressed in degrees clockwise with respect
to north, Figure consists of scatter plots of H. ;p versus storm peak direction 6°” and storm peak season
0°P. Figure 2| shows empirical quantiles of H;p by 6°7 and 6°7.

Figure [2| shows that storm intervals and storm peak values are identified for most directions and
seasons using the peak-picking procedure. The effect of fetch variability with direction on storm peak
values is clear from the upper panel of Figure I} For storms emanating from the north-east (i.e. from
approximately 45°), there is only one occurrence of an event appreciably above 4m regardless of season.
Further inspection of Figure [2 shows that, even during winter months, storm severities from [0,90) are
low compared with events from other directions. These storms are very unlikely to influence estimates
for omni-directional or omni-seasonal return values, but they will influence estimation of directional
and seasonal return values for the directions and seasons concerned.

Corresponding to each storm and storm peak quadruplet H;p , 87, ¢°7 and T,”, the within-storm
time-series of Hg, 0, ¢ and 77 are together referred to as the intra-storm trajectory for the storm. Intra-
storm trajectories are essential for estimation of design values for intra-storm characteristics Hg and
Hypgy in Section [d]  Figure [3] shows intra-storm trajectories of significant wave height, Hg, on wave
direction 0 for 30 randomly-chosen storm events (in different colours). The variability in storm length,
and storm directions covered is clear.
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Fig. 1. Storm peak significant wave height H;p on storm direction 057 (upper panel) and storm season (I)Sp (lower panel).

3 Extreme value model
We seek to estimate a non-stationary extreme value model for storm peak significant wave height
H;p , the parameters of which vary smoothly with respect to storm peak direction 8y, and season Q),.

3.1 Model components

Following Randell et al.| [2013], for a sample {z;}""_, of 7 storm peak significant wave heights ob-
served with storm peak directions {9,-}?:1 and storm peak seasons {¢; ?:1 (henceforth together referred
to as covariates), we proceed using the peaks over threshold approach as follows.

Threshold: We first estimate a threshold function y above which observations 7 are assumed to be

extreme. The threshold varies smoothly as a function of covariates (W £ y(0,0)) and is estimated
using quantile regression. We retain the set of n threshold exceedances {z;}" , observed with storm
peak directions {6;}} , and storm peak seasons {¢;}?_, for further modelling.

Rate of occurrence of threshold exceedance: We next estimate the rate of occurrence p of threshold
exceedance using a Poisson process model with Poisson rate p( 2 p(6,0)).
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Fig. 2. Empirical quantiles of storm peak significant wave height, HSp by storm direction, 0% and storm season, ¢Sp. Panel titles indicate

quantile non-exceedance probability. Empty bins are coloured white.

Size of occurrence of threshold exceedance: We estimate the size of occurrence of threshold exceedance
using a generalised Pareto (henceforth GP for brevity) model. The GP shape and scale parameters & and
o are also assumed to vary smoothly as functions of covariates.

This approach to extreme value modelling follows that of Chavez-Demoulin and Davison| [2005] and is
equivalent to direct estimation of a non-homogeneous Poisson point process model (see, for example,
Dixon et al.[1998, Jonathan and Ewans| [2013])).
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Fig. 3. Storm trajectories of significant wave height, Hs, on wave direction 0 for 30 randomly-chosen storm events (in different colours). A

circle marks the start of each intra-storm trajectory.

3.2 Parameter estimation

For quantile regression, we seek a smooth function y of covariates corresponding to non-exceedance
probability T of storm peak Hg for any combination of 6,¢. We estimate y by minimising the quantile
regression lack of fit criterion

b=t Y i+ (-0 Y Inl)

i,r;i>0 i,r;i<0

for residuals r; = z; — y(6;, 0;;T). We regulate the smoothness of the quantile function by penalising lack
of fit for parameter roughness Ry, (with respect to all covariates), by minimising the penalised criterion



where the value of roughness coefficient Ay, is selected using cross-validation to provide good predictive
performance.

For Poisson modelling, we use penalised likelihood estimation. The rate p of threshold exceedance
is estimated by minimising the roughness-penalised (negative log) likelihood

where R, is parameter roughness with respect to all covariates, A, is again evaluated using cross-
validation, and Poisson (negative log) likelihood is given by

by =— Zlogp(ei,d)i) + /p(e,(b)dedxdy
i=1

The generalised Pareto model of size of threshold exceedance is estimated in a similar manner by
minimising the roughness penalised (negative log) GP likelihood

52,0 = Eﬁ,o + k&Rg + AoRs

where Rg and R are parameter roughnesses with respect to all covariates, Ag and A are evaluated using
cross-validation, and GP (negative log) likelihood is given by

n
1 .
le g = Zlogci—l— (= +1)log(1 -1—%
i=1 !

3 (zi — i)

where y; = y(0;,0;), & = &(0;,9;) and 6; = 6(0;,0;), and a similar expression is used when &; = 0 (see
Jonathan and Ewans|2013). In practice, we set 7»(: = K¢ for prespecified constant K, so that only one
cross-validation loop is necessary. The value of k is estimated by inspection of the relative smoothness
of § and 6 with respect to covariates.

3.3 Parameter smoothness

Physical considerations suggest that we should expect the model parameters y,p,& and 6 to vary
smoothly with respect to covariates 0, ¢. For estimation, this can be achieved by expressing each param-
eter in terms of an appropriate basis for the domain D of covariates, where D = Dg X Dy. Dg = Dy =
[0,360) are the (marginal) domains of storm peak direction and season respectively under consideration.
We calculate a periodic marginal B-spline basis matrix Bg for an index set of 32 directional knots, and
a periodic marginal B-spline basis matrix By for an index set of 24 seasonal bins. yielding a total of
m(= 32 x 24) combinations of covariate values. Then we define a basis matrix for the two dimensional
domain D using Kronecker products of the marginal basis matrices. Thus

B:B¢®Be

provides a (m x p) basis matrix (where m = 32 x 24 and p = pgp) for modelling each of y,p,& and o,
any of which can be expressed in the form B} for some (p x 1) vector of basis coefficients. Model



estimation therefore reduces to estimating appropriate sets of basis coefficients for each of y, p,& and G.

The roughness R of any function can be easily evaluated on the index set (at which 1 = Bp). Fol-
lowing the approach of Eilers and Marx (see, for example, Eilers and Marx 2010), we define roughness
using

R=p'PB

where P can be easily evaluated for the marginal and three dimensional domains. The form of P is mo-
tivated by taking differences of neighbouring values of 3, thereby penalising lack of local smoothness.
The values of pg and py are functions of the number of spline knots for each marginal domain, and also
depend on whether spline bases are specified as periodic (which is the case for both marginal bases in
this application).

3.4 Uncertainty quantification

Bootstrap resampling is used for uncertainty quantification. 95% bootstrap uncertainty bands are
estimated by repeating the full extreme value analysis for 1000 resamples of the original storm peak
sample. In particular, estimation of optimal roughness penalties is performed independently for each
bootstrap resample, so that uncertainty bands also reflect variability in these choices. It was also con-
firmed that 1000 resamples was sufficient to ensure stability of bootstrap confidence intervals.

3.5 Estimated parameters

Figure [ shows plots for extreme value threshold , corresponding to non-exceedance probability
0.5 of H;p . The upper panel shows the bootstrap median threshold on storm peak direction 6°7, and
storm peak season ¢°”. The lower panels show 12 monthly directional thresholds in terms of bootstrap
median (solid) and 95% bootstrap uncertainty band (dashed). From inspection of the upper image, it
is clear that summer periods are relatively calm, as are storm events from directions in [0,90). Figure
shows plots for rate of threshold exceedance p of H;p . The upper panel shows the bootstrap median
rate on 0°7 and ¢*”. The lower panels show 12 monthly directional rates in terms of bootstrap median
(solid) and 95% bootstrap uncertainty band (dashed). The rate of occurrence of threshold exceedances
is largest for winter storms from either around 180 or 360°.

Figure |§] shows plots for generalised Pareto shape §. The upper panel shows the bootstrap median
shape on 0°” and ¢°7. The lower panels show 12 monthly directional shapes in terms of bootstrap
median (solid) and 95% bootstrap uncertainty band (dashed). The corresponding plots for generalised
Pareto scale ¢ are given in Figure [7, & shows greatest directional variability in the months of October
- December, but the uncertainty in the estimates of & are relatively large (so that a constant model for
would suffice for this application). The estimates of ¢ show greater variation; largest values are observed
for winter storms emanating from directions in [270,360).

4 Estimation of return values

Return values corresponding to some return period P of interest are estimated by simulation un-
der the model developed in Section [3] The procedure is as follows, for each of a large number N of
realisations of storms:

1. Select a bootstrap resample and the corresponding estimated directional-seasonal extreme value
model for storm peak significant wave height.

2. For each directional-seasonal covariate bin, estimate the number of storm peak realisations to be
drawn at random using the estimated directional-seasonal rate of threshold exceedance, p, for that
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bin, scaled to return period, P. If T is the period of the original sample, the scaled rate is p x P/T).
Then, for each storm peak realisation:

(a) Draw a pair of values for storm peak direction 6°”* and storm peak season ¢*”* at random from
the volume corresponding to the covariate bin.

(b) Draw a value of storm peak significant wave height H;p * corresponding to ©°7* and ¢*P*, at
random from corresponding the generalised Pareto model.

(¢) Draw an intra-storm trajectory corresponding to the triplet (Hg"", 0°7*, Hg"", ¢*P*), using the
procedure described in the appendix.

(d) For each sea-state in the intra-storm trajectory, use closed-form distributions for maximum wave
height H,,,, to sample values H; ..

3. Accumulate maximum values for storm peak (ng *) and intra-storm H _variables per directional-

max
seasonal covariate bin.

Empirical cumulative distribution functions for storm peak and intra-storm maxima are then trivially
estimated by sorting the values for each variable for arbitrary combinations of covariate bins. In this
way, for example, cumulative distribution functions for directional return values each month of the year,
or seasonal return values for directional octants can be estimated. By retaining only maxima over all
covariate bins, omni-directional omni-seasonal are obtained. Importantly, since realisations based on
models from different bootstrap resamples of the original sample are used, the resulting cumulative
distribution functions incorporate both the (aleatory) inherent randomness of return values and the extra
(epistemic) uncertainty introduced by model parameter estimation from a sample of data. Figure
shows cumulative distribution functions (cdfs) for 100-year storm peak significant wave height Hgjoo
from simulation under the directional-seasonal model, incorporating uncertainty in parameter estimation
using bootstrap resampling as explained above. Upper panel shows cdfs for directional octants and lower
panel for months of year. The common omni-directional omni-seasonal cdf is shown in both panels (in
black). It is clear that the severest storms come from the north - west in winter months. The median
omni - directional omni - seasonal 100 - year storm peak value is approximately 12.2m. Figure [9]shows
return value plots for 100-year significant wave height Hgjog. The upper panel shows omni-seasonal
return values on wave direction 0, in terms of directional octant median (solid black), most-probable
(dot-dashed black), 2.5%ile and 97.5%ile (both dashed black) and the corresponding omni-directional
omni-seasonal estimates (in red, common to Figure [10). The lower panels show 12 monthly directional
octant return values (in black) in terms of median (solid), most-probable (dot-dashed), 2.5%ile and
97.5%ile (both dashed). Also shown are the corresponding omni-directional estimates (in red). Figure
[I0]also shows return value plots for Hgjoo. But now the upper panel shows omni-directional return values
on wave season ¢, in terms of monthly median (solid black), most-probable (dot-dashed black), 2.5%ile
and 97.5%ile (both dashed black) and the corresponding omni-directional omni-seasonal estimates (in
red, common to Figure 0). The lower panels show seasonal return values for directional octants in
terms of median (solid), most-probable (dot-dashed), 2.5%ile and 97.5%ile (both dashed). Also shown
are the corresponding omni-seasonal estimates (in red). There are obvious, and statistically significant
differences between return values for different directions and seasons. It is important to note that all
omni = directional and omni - seasonal estimates here are calculated from the directional - seasonal
model; estimating these from models which ignore directional and seasonal variation in extremes would
be inappropriate.

Figure[IT|shows directional-seasonal return value plots for 100-year maximum wave height Huqx100-
The upper panel shows omni-seasonal return values on wave direction 0, in terms of directional oc-
tant median (solid black), most-probable (dot-dashed black), 2.5%ile and 97.5%ile (both dashed black)
and the corresponding omni-directional omni-seasonal estimates (in red, common to Figure [12). The
lower panels show 12 monthly directional octant return values (in black) in terms of median (solid),
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and lower panel for months of year. The common omni-directional omni-seasonal cdf is shown in both panels (in black).

most-probable (dot-dashed), 2.5%ile and 97.5%ile (both dashed). Also shown are the corresponding
omni-directional estimates (in red). Figure [I2]shows the corresponding plots for omni-directional and
directional octant extremes as a function of season. Again, there is statistically significant variation in
the estimates values for H,,,y100. It is unsurprising that the directional and seasonal profiles of H,;4x100
closely mimic those of Hgjqp, since the intra-storm conditional distribution for H,,,, given Hy is station-

ary with respect to both direction and season.
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S Validation

Model diagnostics are essential to demonstrate adequate model fit. Of primary concern is that (a) the
estimated storm peak extreme value model generates directional - seasonal distributions of H;p consis-
tent with observed storm peak data, and that (b) the simulation procedure for estimation of return values
(in Section 4)) generates directional - seasonal distributions of Hg (for all storm sea-states) consistent
with observed data. To quantify this, we use the simulation procedure to generate 1000 realisations of
storms, each realisation for the same period (of 55.3 years) as the original data. We then construct 95%
uncertainty bands for cumulative distribution functions (cdfs) of H;p and Hg, partitioned by direction
and season as appropriate. Then we confirm that empirical cdfs for the actual data, for the same direc-
tional - seasonal partitions, are consistent with the simulated cdfs. Figure illustrates this for ng . The
upper panel shows the omni-directional omni-seasonal cdf for the original sample (red), the correspond-
ing median from simulation (solid black), together with 2.5%ile and 97.5%ile from simulation (both
dashed). The lower panels compare 12 monthly cdfs in the same way. There is reasonable agreement.

Figure |14|illustrates the validation of directional-seasonal model for significant wave height, Hg, by
comparison of cumulative distribution functions (cdfs) for original sample with those from 1000 sample
realisations under the model (incorporating intra-storm evolution of Hy) corresponding to the same time
period as the original sample. The upper panel shows the omni-directional omni-seasonal cdf for the
original sample (red), the corresponding median from simulation (solid black), together with 2.5%ile
and 97.5%ile from simulation (both dashed). The lower panels compare 12 monthly cdfs in the same
way. Again, agreement is good.

Plots similar to Figures [13|and [14] showing cdfs per directional octant suggest model fit of similar
quality. Since we do not have access to data for maximum wave height, we cannot apply the diagnostic
procedure directly.

6 Discussion

In this work, we develop a procedure based on non-stationary extreme value analysis to estimate the
distributions of storm peak significant wave height H‘Sw and maximum wave height H,,,, correspond-
ing to arbitrary long return periods. The approach exploits recent advances in extreme value analysis
with multidimensional covariates to characterise return value characteristics for ng with direction and
season (for the storm peak sea state only), and simulation under the extreme value model (a) incorpo-
rating intra-storm trajectories to estimate return value characteristics for Hg for all storm sea-states, and
(b) known conditional distributions for H,,,, given Hg to estimate return value characteristics for H,;.
Diagnostic tests demonstrate that the approach performs will in application to North Sea hindcast data.

According to ISO19901-1| [2005]], a convolution approach should be used to correctly account for
the possibility of a large wave resulting from a sea-state with relatively low severity. The simulation ap-
proach used here is similar to the numerical approach described in Tromans and Vanderschuren| [[1995]]
but has a number of advantages. The current approach readily accommodates different storm character-
istics from different directions, as well as seasonal variability. Furthermore, there is no need to define a
single, representative storm shape; instead, actual storm histories are used reflecting natural variability
within real storms.

Figures 8-12 report design values resolved into (directional) octants and (seasonal) monthly octants
from simulation under the model. Design values for arbitrary directional-seasonal partitions can be es-
timated in the same way by simulation, in an entirely consistent fashion. For example, omni-directional
design values corresponding to the May-September period might be estimated and exploited by the
designer for short-term offshore activities. In stark contrast, the lack of consistency in engineering
specification of directional design criteria in particular has been the subject of some debate (see, e.g.,
Forristall| 2004). Guidelines such as AP [2005] and ISO19901-1| [2005]] provide recommendations on
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treating directional criteria, but even when these are followed, either inconsistency remains (in the case
of API), or insufficient detail is given on how to make the criteria consistent (in the case of ISO).

The method as described here has focussed on the estimation of estimation of extreme storm peak
significant wave height and maximum wave height. Extension to estimation of maximum crest elevation
and total extreme water level is the subject of current work and a companion publication in preparation.
Since the method of incorporation of non-stationary within the extreme value modelling framework is
quite general, extensions to spatial and temporal covariates (for example) are straightforward.
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Appendix: Selecting intra-storm trajectories for simulated storm events

The directional-seasonal extreme value model is estimated for storm peak significant wave height
ng , since storm peak events provide independent events for statistical modelling. However, we require
return values for significant wave height Hg from any sea-state (not just the storm peak). We also
require return values for maximum wave height H,,,, and maximum crest elevation, which may or may
not correspond to the storm peak sea-state. Therefore, in the simulation procedure for return value
estimation described in Section {f] we need to generate realisations of whole intra-storm trajectories as
defined in Section |3|not just storm peak events. We achieve this by selecting an appropriate intra-storm
trajectory from the original sample, with storm peak characteristics in good agreement with those of the
current storm peak realisation.

Let {n;k 3:1 represent the values of ng *, 0°P* and ¢*P* respectively for the current realisation, and
let {m; /}?jl, j—1 represent the corresponding values n values for the original storm peak sample. We
define the dissimilarity d; between the ith (original) storm and the current storm peak realisation as:

3
dl‘: Zdijv
j=1
di; = %, for c;(nij —mj) > 15,

J
= 0 otherwise.

where ¢ (e) is Euclidean distance and c,(e), c3(e) are circular distance functions defined on [0,360).
The cut-off values {t j}?: | indicate when the difference c;(n;; — 1) is sufficiently small that it can be
ignored in the specification of dissimilarity. After some experimentation, values of T = 0.5 (metres, for
Hép ), T2 = 20 (degrees, for 6°7) and 13 = 45 (degrees, for ¢°7) were chosen.

The subset of original intra-storm trajectories yielding the smallest values of dissimilarity are deemed
good matches to the simulated storm peak event. One of these good matching intra-storm trajectories is
selected at random. The intra-storm trajectory is then adjusted (a) so that its storm peak value is equal to
H ;p * (by multiplying the Hg component of the intra-storm trajectory by an appropriate scale factor), and
(b) so that its storm peak direction corresponds to 6°7* (by cyclic rotation of the directional component
of the intra-storm trajectory), and c) by scaling the wave period 77 such that the sea-state steepness
from the original sample is retained. The adjusted intra-storm trajectory is then allocated to the current
simulated storm peak.



Using this procedure, intra-storm trajectories are allocated to simulated storm peaks, ensuring that
only (adjusted) intra-storm trajectories from the original sample with similar storm peak characteristics
are used, but also incorporating the inherent variability in intra-storm trajectories with respect to given
storm peak characteristics.

References

O J Aarnes, O Breivik, and M Reistad. Wave extremes in the northeast atlantic. J. Climate, 25:1529—
1543, 2012.

C.W. Anderson, D.J.T. Carter, and P.D. Cotton. Wave climate variability and impact on offshore design
extremes. Report commissioned from the University of Sheffield and Satellite Observing Systems
for Shell International, 2001.

APIL. API Recommended Practice 2A-WSD (RP 2A-WSD), Recommended Practice for Planning, De-
signing and Constructing Fixed Offshore Platforms - Working Stress Design. API, 2005.

0 Breivik, O J Aarnes, J-R Bidlot, A Carrasco, and Oyvind Saetra. Wave extremes in the north east
atlantic from ensemble forecasts. J. Climate, 26:7525-7540, 2013.

Y. Cai and D. E. Reeve. Extreme value prediction via a quantile function model. Coastal Eng., 77:
91-98, 2013.

F. Calderon-Vega, A. O. Vazquez-Hernandez, and A. D. Garcia-Soto. Analysis of extreme waves with
seasonal variation in the Gulf of Mexico using a time-dependent GEV model. Ocean Eng., 73:68-82,
2013.

V. Chavez-Demoulin and A.C. Davison. Generalized additive modelling of sample extremes. J. Roy.
Statist. Soc. Series C: Applied Statistics, 54:207, 2005.

V. Chavez-Demoulin and A.C. Davison. Modelling time series extremes. REVSTAT - Statistical Journal,
10:109-133, 2012.

A. C. Davison, S. A. Padoan, and M. Ribatet. Statistical modelling of spatial extremes. Statistical
Science, 27:161-186, 2012.

J. M. Dixon, J. A. Tawn, and J. M. Vassie. Spatial modelling of extreme sea-levels. Environmetrics, 9:
283-301, 1998.

E.F. Eastoe and J.A. Tawn. Modelling non-stationary extremes with application to surface level ozone.
Biometrika, doi: 10.1093/biomet/asr078, 2012.

P H C Eilers and B D Marx. Splines, knots and penalties. Wiley Interscience Reviews: Computational
Statistics, 2:637-653, 2010.

K. C. Ewans and P. Jonathan. The effect of directionality on northern North Sea extreme wave design
criteria. J. Offshore Mechanics Arctic Engineering, 130:10, 2008.

L. Fawcett and D. Walshaw. Improved estimation for temporally clustered extremes. Environmetrics,
18:173-188, 2007.

C. A.T. Ferro and J. Segers. Inference for clusters of extreme values. J. Roy. Statist. Soc. B, 65:545-556,
2003.

G. Z. Forristall. On the statistical distribution of wave heights in a storm. J. Geophysical Research, 83:
2353-2358, 1978.

G. Z. Forristall. Wave crest distributions: Observations and second-order theory. Journal of Physical
Oceanography, 30:1931-1943, 2000.

G. Z. Forristall. On the use of directional wave criteria. J. Wtrwy., Port, Coast., Oc. Eng., 130:272-275,
2004.

ISO19901-1. Petroleum and natural gas industries. Specific requirements for offshore structures. Part
1: Metocean design and operating considerations. International Standards Organisation, 2005.

P. Jonathan and K. C. Ewans. The effect of directionality on extreme wave design criteria. Ocean Eng.,



34:1977-1994, 2007.

P. Jonathan and K. C. Ewans. Statistical modelling of extreme ocean environments with implications
for marine design : a review. Ocean Engineering, 62:91-109, 2013.

P. Jonathan, P. H. Taylor, and P. S. Tromans. Storm waves in the northern North Sea. Proc. 7th Intl.
Conf. on the Behaviour of Offshore Structures, Massachusetts, USA, 2:481, 1994.

P. Jonathan, K. C. Ewans, and G. Z. Forristall. Statistical estimation of extreme ocean environments:
The requirement for modelling directionality and other covariate effects. Ocean Eng., 35:1211-1225,
2008.

P. Jonathan, D. Randell, Y. Wu, and K. Ewans. Return level estimation from non-stationary spatial data
exhibiting multidimensional covariate effects. (Accepted by Ocean Engineering July 2014, draft at
www.lancs.ac.uk/~jonathan), 2014.

E. B. L. Mackay, P. G. Challenor, and A. S. Bahaj. On the use of discrete seasonal and directional
models for the estimation of extreme wave conditions. Ocean Eng., 37:425-442, 2010.

F J Mendez, M Menendez, A Luceno, R Medina, and N E Graham. Seasonality and duration in extreme
value distributions of significant wave height. Ocean Eng., 35:131-138, 2008.

FJ. Mendez, M. Menendez, A. Luceno, and 1.J. Losada. Estimation of the long-term variability of
extreme significant wave height using a time—dependent pot model. Journal of Geophysical Research,
11:C07024, 2006.

G. Muraleedharan, Claudia Lucas, C. Guedes Soares, N. Unnikrishnan Nair, and P.G. Kurup. Modelling
significant wave height distributions with quantile functions for estimation of extreme wave heights.
Ocean Eng., 54:119-131, 2012.

M. Prevosto, H. E. Krogstad, and A. Robin. Probability distributions for maximum wave and crest
heights. Coastal Engineering, 40:329-360, 2000.

D. Randell, Y. Wu, P. Jonathan, and K. C. Ewans. Omae2013-10187: Modelling covariate effects in
extremes of storm severity on the Australian North West Shelf. Proc. 32nd Conf. Offshore Mech.
Arct. Eng., 2013.

M Reistad, O Breivik, H Haakenstad, O J Aarnes, B R Furevik, and J-R Bidlot. A high-resolution
hindcast of wind and waves for the north sea, the norwegian sea, and the barents sea. J. Geophys.
Res., 116:1-18, 2011.

P Ruggiero, P D Komar, and J C Allan. Increasing wave heights and extreme value projections: The
wave climate of the US pacific northwest. Coastal Eng., 57:539-522, 2010.

C. Scarrott and A. MacDonald. A review of extreme value threshold estimation and uncertainty quan-
tification. REVSTAT - Statistical Journal, 10:33-60, 2012.

M.G. Scotto and C. Guedes-Soares. Modelling the long-term time series of significant wave height with
non-linear threshold models. Coastal Eng., 40:313, 2000.

M.G. Scotto and C. Guedes-Soares. Bayesian inference for long-term prediction of significant wave
height. Coastal Eng., 54:393, 2007.

A. Tancredi, C.W. Anderson, and A. O’Hagan. Accounting for threshold uncertainty in extreme value
estimation. Extremes, 9:87-106, 2006.

P Thompson, Y Cai, D Reeve, and J Stander. Automated threshold selection methods for extreme wave
analysis. Coastal Eng., 56:1013-1021, 2009.

P. Thompson, Y. Cai, R. Moyeed, D. Reeve, and J. Stander. Bayesian nonparametric quantile regression
using splines. Computational Statistics and Data Analysis, 54:1138-1150, 2010.

P. S. Tromans and L. Vanderschuren. Risk based design conditions in the North Sea: Application of a
new method. Offshore Technology Confernence, Houston (OTC-7683), 1995.

P. S. Tromans, A. Anaturk, and P. Hagemeijer. A new model for the kinematics of large ocean waves -
application as a design wave. Proc. Ist Int. Offshore and Polar Engng. Conf. ISOPE., 1991.

J. L. Wadsworth and J. A. Tawn. Likelihood-based procedures for threshold diagnostics and uncertainty



in extreme value modelling. J. Roy. Statist. Soc. B, 2012.



	Introduction
	Data
	Extreme value model
	Model components
	Parameter estimation
	Parameter smoothness
	Uncertainty quantification
	Estimated parameters

	Estimation of return values
	Validation
	Discussion



