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Abstract

We review aspects of extreme value modelling relevant to characterisation of ocean environments and

the design of marine structures, summarising basic concepts, modelling with covariates and multivariate

modelling (including conditional and spatial extremes). We outline Bayesian inference for extremes and

reference software resources for extreme value modelling. Extreme value analysis is inherently different

to other empirical modelling, in that estimating the tail (rather than the body) of a distribution from

a sample of data, and extrapolation beyond the sample (rather than interpolation within) is demanded.

Intuition accumulated from other areas of empirical modelling can be misleading. Careful consideration

of the effects of sample size, measurement scale, threshold selection and serial dependence, associated un-

certainties and implications of choices made is essential. Incorporation of covariate effects when necessary

improves inference. Suitable tools (e.g. based on additive models, splines, random fields, spatial processes)

have been developed, but their use is restricted in general to academia. Effective modelling of multivariate

extremes will improve the specification of design conditions for systems whose response cannot be easily

characterised in terms of one variable. Approaches such as the conditional extremes model are easily imple-

mented, and provide generalisations of existing marine design approaches (e.g. for primary and associated

variables). Software is available, but again generally only for academic use. Modelling spatial depend-

ence rigourously will provide single extreme value models applicable to spatial neighbourhoods including

complete ocean basins, avoiding the need for procedures such as site pooling. Indeed, once the model is

established, the metocean engineer may not ever need to perform further extreme value analysis for that

basin in principle. Spatial extremes is an area of active research in the statistics community. A limited

number of appropriate models have been deployed (e.g. for precipitation, temperature and metocean ap-

plications). Software is available, but again for specialist use. Bayesian inference provides a consistent
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framework for inference and is rapidly becoming the standard approach in academia. It appears inevitable

that, in time, Bayesian inference will also be regarded as the standard in ocean engineering applications.

Implementation of Bayesian methods requires some expertise. Software is available, but again generally

only used by statistical specialists.
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1. Introduction

Maritime structures from breakwaters to oil and gas producing facilities in thousands of metres of water

must be designed for extreme environmental conditions. Design codes stipulate that offshore structures

should be designed to exceed specific levels of reliability, expressed in terms of an annual probability

of failure or return-period. To define the environmental loading, metocean criteria therefore need to be

specified to an appropriate return period, typically 100 years, but sometimes to 10000 years for the required

failure probabilities. Extreme value (henceforth EV) analysis of data from measurements and/or hindcasts

are undertaken to derive these criteria, but the resulting uncertainties associated with long return period

criteria are usually large, as the number of data available for analysis is usually small by comparison. In

addition, there is no standard approach to analysis within the metocean community, and it remains a

subject of continuous debate and active research.

For most ocean basins in the world, adequate historical meteorological records exist to allow numerical

simulation of hindcast data, some for periods as long as 100 years. For example, the proprietary GOMOS

hindcast data set covers the period 1900 - 2008. The latest version, GOMOS08, includes a 29-year con-

tinuous wind and wave hindcast for the period 1980-2008, 379 tropical events (hurricanes) for the period

1900-2008, and 68 extra-tropical events (winter storms) for the period 1950-2008 (see Oceanweather 2005).

Such hindcasts include the relevant parameters of the wind and sea state and provide a good basis upon

which analysis can be undertaken, including joint extremal analysis. Many physical systems respond to

environmental conditions in a manner that cannot be represented by a single variable or parameter. For

example, the pitch of a vessel is as much a function of the wave period or wave length as it is of the

wave height. Accordingly, the extreme conditions must be specified jointly, necessitating a multivariate

analysis involving a number of variables. A hindcast study often also incorporates modelling of currents at

the surface and through the water column providing the means to develop joint design criteria. Another

important feature of a typical hindcast for an ocean basin is that it provides a spatial, directional and tem-
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poral description of extreme events, and in particular, it allows for incorporation of location as a covariate

and modelling of spatial dependence, avoiding the need for (e.g.) site pooling. Clustering of large values

in time series similarly demands careful modelling.

The requirement to consider the effect of covariates in developing extreme criteria has been well demon-

strated. For example, extremes of storm peak significant wave height are dependent on time of year or the

directionality of the sea state concerned. Although these effects have long been known (e.g. Graham 1981),

and rigourous techniques for dealing with covariates in estimates have also been available for some time,

it is only recently that such methods have been adopted for establishing metocean design criteria. A good

case in point is directionality. Graham (1981) notes inconsistencies associated with estimating directional

wave extremes with the omni-directional extreme, and much debate has ensued. Forristall (2004) notes the

importance of ensuring that directional criteria are consistent with omnidirectional criteria in the sense

that they yield consistent failure probabilities in design. In particular, he points out that directional criteria

that are simply scaled to omnidirectional criteria estimated independently give inconsistent probabilities.

Moreover, the distribution of extreme significant wave heights associated with (e.g.) monsoonal surges

would not be expected to be the same shape as for extreme significant wave heights from (e.g.) typhoons,

even though return values corresponding to some return periods might be similar, since they emerge from

different physical phenomena. Covariate models can be useful in this case also.

There have been considerable recent advances in EV theory and method within the statistics community,

and a developing literature on EV modelling applied to many scientific, engineering and financial disciplines.

A considerable proportion of the literature on applications of extreme value analysis to weather and climate

change is relevant to the metocean engineer, such as methods used to predict extreme precipitation (e.g.

Cooley et al. 2007). Chandler (2005) proposes addition of generalised linear models, able to model spatio-

temporal systems, to the climatologist’s toolkit. The relative merits of single location versus regional

estimates for extremes values is also a concern (e.g. Kysely et al. 2011), as are methods (such as regional

frequency models) to provide best single site estimates. Detection of climate change effects and their

incorporation within return level estimation, is another area of common ground (e.g. Bernier et al. 2007,

Kyselý et al. 2010). Statistical downscaling (e.g. Vrac and Naveau 2007, Michelangeli et al. 2009) provides

a framework within which the (extreme) characteristics of local short-term (e.g. hindcast-based) data can

be combined reliably with large-scale long-term (e.g. climate simulation based) data to provide estimates

of return levels far into the future. Some of these developments are sufficiently mature to be useful for

marine design. Yet the number of instances of applications of modern EV methods to metocean design is

rather small. It is hoped that this article will encourage more ocean engineers to consider using modern
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methods.

There are cornerstone texts in extreme value analysis for environmental applications that the interested

reader should consider reading, including Coles (2001), Kotz and Nadarajah (2000), Davison (2003) and

Beirlant et al. (2004).

The outline of this article is as follows. Section 2 gives an introduction to modelling peaks over threshold.

Section 3 suggests practical considerations relevant to modelling peaks over threshold. Motivated by Section

3, we then review models incorporating covariate effects for peaks over threshold in Section 4. Methodo-

logies of multivariate extreme value analysis of peaks over threshold and block maxima are considered in

Section 5. Section 6 motivates Bayesian inference for extremes. The review is illustrated using examples

from previously-published work by the authors. In the Discussion (Section 7), we draw conclusions and

make recommendations for future applications and developments of EV analysis within ocean engineering.

Two appendices provide an informal introduction to relevant aspects of the mathematics of univariate and

multivariate extremes (Appendices A and B respectively).

2. Modelling peaks over threshold

We choose to motivate extreme value modelling from the perspective of peaks over threshold. Pickands

(1975) showed that the conditional distribution function Fu(x) of a random variable X, with continuous

cumulative distribution function F , given exceedences X > u of a threshold u can be approximated by a

generalised Pareto (GP) distribution (see Appendix A.5) for sufficiently high threshold. For a peak X over

threshold u, the form of the generalised Pareto distribution with shape parameter ξ and scale parameter

σ is

Fu(x) =
F (x)− F (u)

1− F (u)
= Pr(X ≤ x|X > u) = 1− (1 +

ξ

σ
(x− u))−1/ξ (1)

for u ∈ (−∞,∞), σ ∈ (0,∞) and ξ ∈ (−∞,∞) with x > u, 1 + ξ(x − u)/σ > 0. The form of the

unconditional distribution of peaks over threshold is then

F (x) = Pr(X ≤ x) = (1− pu) + puFu(x)

where pu is the probability of threshold exceedence.

Fitting samples of peaks over threshold using the GP distribution is defensible if the threshold used is large

enough. Using diagnostic tests, such as the mean residual life plot (e.g. Embrechts et al. 2003), comparing

the variability of parameter estimates with expected behaviour as threshold is varied and confirming the
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stability of extreme quantile estimates with threshold, the plausibility of the GP model form can be

ascertained (e.g. Coles 2001). However, there is no direct evidence that the chosen threshold is sufficiently

high that the GP distribution is an adequate model. In general, it would be advantageous to have sufficient

understanding of the underlying physics to suggest an appropriate model selection, so that as much of the

sample as possible (not just the largest values) could contribute to parameter estimation.

There is a close correspondence between modelling of peaks over threshold (or threshold exceedences) and

so called block maxima such as daily or monthly extremes. The emphasis in this review is on modelling of

threshold exceedences, which we favour for reasons of statistical efficiency, since more data are in principle

available with which to make inferences. Appendix A provides a motivation for the block maximum

approach leading to the generalised extreme value (GEV) distribution. Appendix A also demonstrates the

duality between peaks over threshold and block maxima approaches.

There are other general characteristics of modelling of peaks over threshold which are worthy of note.

The value of the shape parameter

The shape parameter ξ determines tail behaviour. When ξ is negative, the support of extreme values is

bounded on the right hand side. Otherwise, the distribution is unbounded on the right. For modelling of

storm peaks of significant wave height HS , numerous authors (e.g. Elsinghorst et al. 1998,Jonathan and

Ewans 2007a, Jonathan and Ewans 2008) have reported estimates for EV shape ξ that were found to be

generally more often negative than positive (for arbitrary selections of covariate values). ξ < 0 implies

a finite upper bound for storm peak HS , considered reasonable because of physical constraints on storm

size (such as water depth and fetch limitations, or physical limitations on pressure fields, winds and storm

intensity). It should be noted that a finite upper bound on storm peak HS does not imply a finite upper

bound for individual waves within a storm, although it seems reasonable to expect an upper bound on

individual waves will also exist.

Alternative distributional assumptions

Many practitioners in engineering disciplines adopt specific model forms for describing exceedances x of

threshold u, e.g. fitting the conditional distribution Fu(x) (see Equation 1) with F (x) given by the classical

Weibull distribution with cumulative distribution function

F (x) = 1− exp(−(
x− µ
β

)α)
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for µ ∈ (−∞,∞), α, β > 0 with x > µ, or the Gumbel distribution with cumulative distribution function

F (x) = exp(− exp(−(
x− µ
β

)))

for µ ∈ (−∞,∞) and β > 0, although the GP form for Fu(x) is recommended by some on the basis of

goodness of fit alone (e.g. Li et al. 2012) regardless of theoretical considerations. There is often little

evidence in the data to distinguish between quality of fit for different forms. Yet fitting using the classical

Weibull distribution, for example, implicitly constrains the solution to be unbounded on the right hand

side. Modelling using GP avoids this constraint. For this reason, fitting using classical Weibull and GP are

expected to give similar estimates for return values corresponding to return periods of the order of that of

the sample, but different estimates for return values corresponding to long return periods.

Tail estimation from a sample

EV analysis involves the most unusual events in the sample, rather than the typical. Uncertainties of

extreme values (from measurement or hindcast) are likely to be different to those of the bulk of the

data. The few largest values in the sample are typically highly influential for estimates (Davison and

Smith 1990); the model is most sensitive to the most informative observations. Compounded with limited

sample size, selection of the optimal model form that characterises the observed extreme values is therefore

difficult. Minor differences in model form or parameter estimates, which would be of little consequence for

interpolation within the domain of the data, can produce material discrepancies in return values, especially

at long return periods. The quality of interference from EV analysis of data from hindcast models depends

critically on the extent to which extremes from hindcasts are physically realistic (Coles and Simiu 2003).

Return values

One aim of EV analysis is the estimation of an extreme quantile corresponding to a particular return period,

P , or the maximum value observed in P years. Typically, a single value is reported, such as the value of HS

which is exceeded with probability 1/P per annum. Yet the P -year maximum is itself a random variable.

For most random variables of environmental interest, such as (significant) wave height, given perfect model

specification and parameter estimation, the P -year maximum event will follow a skewed distribution with

long right-hand tail. Model and parameter uncertainty broaden this distribution. Typically, the value

reported is near the mode of this distribution, which because of skewness, is less than both the expected

and median values. Further, the ratio of the 95th percentile of the distribution of the P -year maximum to

its mode also varies systematically with the shape parameter of the GP used. This ratio is greater in Gulf
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of Mexico conditions (ξ near -0.1) than in the Northern North Sea conditions (ξ=-0.3). That is, for the

same value of most probable 100-year HS , we expect more exceptionally large values in the Gulf than in

the Northern North Sea (Jonathan and Ewans 2007b). Expressions for return values from GP and GEV

models are given in Appendices A.5 and A.3 respectively.

Period of data and return period

The period of data available for EV estimation is usually shorter than the return period of interest.

Therefore the analysis entails extrapolation beyond the domain of measurements. Even after assuming

homogeneity and regularity, uncertainties associated with estimates will be high compared with the usual

and preferred case in statistical modelling corresponding to interpolation between data within the domain

of the sample (Anderson 1990). Extreme events with low rates of occurrence have an important impact on

long return values. If 1000 years of data were available with which to estimate the distribution of 100-year

maximum at a given location over the past (approximately stationary) millennium, progress would be

relatively straight forward, even in the presence of directional, seasonal and possible long term variation

with time. This regrettably is not usually the case in offshore design.

3. Practicalities

The statistical aspect of developing marine design conditions for a given metocean environment requires

being mindful of multiple (often competing) considerations. Some of these are summarised here, as a means

of introduction to practical analysis, and a motivation for methods presented in subsequent sections.

Are observations independent in time?

Observations (e.g of time series of extreme HS) often show serial dependence in time. Since EV models

generally assume independent observations, the sample must be de-clustered prior to analysis. De-clustering

can be performed based on physical considerations (e.g. selecting storm peak events to represent an interval

of time series corresponding to each storm) or statistical considerations (e.g. Smith and Weissman 1994,

Ferro and Segers 2003, Ledford and Tawn 2003; see Appendix A.7 for an introduction to the extremal

index). Both approaches select a subset of the original observations as effectively independent data for

modelling.

Asymptotic theory (Leadbetter 1991) states that the distribution of the (original) exceedances and storm

peak or cluster maxima are the same, but recent work (Fawcett and Walshaw 2007) suggests a bias in
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estimating the distribution of all threshold exceedances using cluster maxima only. Assuming independent

extremes, when in fact they are clustered, has implications for inference. In particular, standard errors

of parameter estimates are under-estimated. It can be seen that the implications of summarising storms

using storm peak events need to be considered carefully, especially when covariate effects are present. For

example, a storm event typically spans a range of storm directions, yet the storm peak event is associated

with just one direction. In retaining only the storm peak event for modelling, it is essential also to retain

the directional influence of that storm for estimation of directional design conditions (using ideas such as

directional dissipation, see Jonathan and Ewans 2007a).

Are observations from multiple locations?

When attempting to estimate an EV model for a single location using observations of the same set of storm

events at a neighbourhood (or pool) of locations (typically centred on the location of interest), observations

per storm across locations will be dependent since they derive from the same physical phenomena. The

effects of using dependent observations in a model which assumes independence are difficult to predict in

general. In the limiting case of perfectly dependent observations, no bias is present in the estimated model,

but parameter uncertainty is considerably larger than would be naively expected (Jonathan and Ewans

2007b). One way to avoid modelling dependence and yet to take account of it in eventual inferences is to

preserve it by using an appropriate bootstrap (see e.g. Davison and Hinkley 1997, and the discussion of

estimating model parameters and their uncertainties below). A pragmatic approach to modelling dependent

data would then be: (1) assume that observations are independent for model fitting (potentially introducing

bias and increased model uncertainty), and (2) adjust for bias and uncertainty using the so called block

bootstrap scheme (see e.g. Chandler and Bate 2007, Chavez-Demoulin and Davison 2005).

If attempting to characterise joint extremes over two or more locations, we might estimate a model for

the joint extremal structure over those locations. In the metocean context, this might be achieved using

the conditional extremes model of Heffernan and Tawn (2004) (which has been used to characterise joint

extremes of HS for whole ocean basins, or joint extremes of current with depth, Jonathan et al. 2012b).

This is discussed further in Section 5. Pooling observations (e.g. Heideman and Mitchell 2009) over a

neighbourhood assumes that their marginal characteristics are identical. If this is the case, pooling increases

sample size and therefore reduces uncertainty in a naive model; the degree of improvement increases as

the dependence between observations from different locations reduces. If however marginal characteristics

are not identical, pooling can cause bias (unless we model marginal characteristics appropriately using

covariates). Again, the overall effect of pooling on the bias and uncertainty of EV models is application
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specific and difficult to predict in general. When interested in joint extremes across locations, application of

a spatial extremes model to componentwise maxima is possible but requires specialist statistical knowledge

(see Section 5). Methods of composite likelihood provide a practical approach to estimate spatial models.

These models are generally limited to situations where extremes from different locations can be assumed

to be asymptotically dependent (see Appendix B.1). The conditional model of Heffernan and Tawn (2004)

admits both asymptotic dependence and asymptotic independence.

Are covariate effects likely?

If the characteristics of observed extreme values vary systematically with one or more covariates (e.g. HS

might vary with storm direction and location), it is essential to accommodate these effects in the model.

Otherwise, estimated models will be unreliable (see Jonathan et al. 2008). The most straight forward

approach treats model parameters as smooth functions of covariates using appropriate bases (e.g. additive

models, splines, Fourier series, random fields). These forms can be extended to multidimensional (e.g.

spatio-temporal, spatio-directional) covariates using (e.g.) tensor products of marginal bases. Modelling

of covariates is discussed further in Section 4.

Some practitioners reduce the effects of covariates by processing observations (sometimes referred to as

“whitening” of “coloured” observations, e.g. Eastoe and Tawn 2009, Jonathan and Ewans 2011b) prior

to modelling, arguing certain theoretical and pragmatic advantages. However, the covariate “whitening”

procedure is generally performed independently of subsequent analysis, producing a disjointed inference

scheme, within which it is difficult to understand the effects of one step on others.

Are there multiple variables?

When observations consist of more that one variable (e.g HS and spectral peak period, TP ), interest may

lay in estimating EV models for each variable independently (i.e. marginal modelling), or in joint (or

conditional) modelling. For example, we might be interested in extremes values of HS and associated

values for TP at the extreme value of HS . Sometimes physical arguments provide a motivation for joint EV

model forms (e.g. a classical Weibull distribution for HS and a log-normal for the conditional distribution

of TP given the value of HS , see Haver 1985). When no such physical arguments apply, the conditional

model of Heffernan and Tawn (2004) can be used (as discussed in Section 5).
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Threshold selection

EV models are motivated by asymptotic arguments. They are useful when observations correspond to

values from the tail of a distribution. It is almost always necessary to select a threshold for modelling

(which effectively defines where the “tail” of the distribution starts). In practice it is rarely clear where the

threshold should be set. The objective of threshold selection is to select a threshold such that the model

fits the data well above the threshold. The threshold is also generally set as low as possible (so that sample

size for modelling is maximised) subject to the estimated model behaving in the anticipated manner for

all thresholds higher than the threshold chosen. Graphical approaches are generally used to assess this.

Threshold selection is a critical step in many other branches of statistical modelling, and is generally

difficult to do well. It is essential to re-estimate models (and resulting design conditions) using a number

of different plausible threshold values to check their consistency. Inconsistency indicates unsatisfactory

modelling. Threshold selection is more difficult when covariate effects are present, since the threshold may

itself be a function of covariates. The threshold is usually set as a local (covariate-dependent) quantile

(and the problem of threshold selection transformed into one of specifying the relevant covariates and the

appropriate threshold quantile level). When modelling multivariate extremes, threshold selection is further

complicated by potential interactions between variables and (typically) insufficient data to characterise the

joint tail.

There have been many attempts to overcome the need to select a threshold: (1) by extending the EV

model into the body of the distribution (so that more observations are available for modelling, and the

location of the threshold can be estimated or integrated away, sometimes within a Bayesian framework

(e.g. Wadsworth et al. 2010, MacDonald et al. 2011, Tancredi et al. 2006), or (2) by averaging the model

over many possible threshold choices. None of these approaches has been adopted as a standard approach

in the statistics literature, suggesting that none provides material improvements over the ad-hoc graphical

approach. When covariate effects are present, non-linear threshold methods (e.g. Scotto and Guedes-Soares

2000) using perhaps quantile regression methods (e.g. Koenker 2005, Thompson et al. 2009) are useful to

model covariate-dependent thresholds, potentially with respect to multiple or multivariate covariates.

Is measurement scale appropriate?

Typical results of an EV analysis on a sample of observations are generally not invariant to measurement

scale. In an ocean engineering context, we might model HS to estimate a return value corresponding to

some return period. We might also choose to model the squared values H2
S , motivated by the fact that

wave forcing on a drag-dominated structure is proportional to the square of wave height (see Tromans
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and Vanderschuren 1995), then estimate the return value and square-root it. Estimates for return values

from inferences on the linear and square scales will be different in general. The modeller should estimate

EV models and hence return values for observations on a range of plausible scales to check that estimates

of return values are consistent. Inconsistency indicates unsatisfactory estimation. The reason for the

apparent inconsistency in estimation of return values on different measurement scales is poor convergence

of the distribution of threshold exceedences or block maxima to the corresponding asymptotic distributional

forms used to model the sample, on one or both of the measurement scales. The rate of convergence of

maxima or threshold exceedances from the distribution from which the data are drawn to the asymptotic

form can be improved by judicious choice of measurement scale, thereby reducing bias in estimation of

return values. Reeve et al. (2012) assess the implications for HS in the North Sea, based on the model of

Wadsworth et al. (2010), motivated by the work of Cook (1982), Cook et al. (2003) and Cook and Harris

(2004).

Estimating model parameters and their uncertainties

EV models are typically estimated using maximum likelihood estimation (e.g. Kalbfleisch 1985, Pawitan

2001), providing a consistent framework for statistical inference. Maximum likelihood estimation of a

generalised Pareto model for univariate extremes in the absence of covariates is straight forward, on paper

at least. Parameter uncertainty can be assessed using asymptotic results, for example using the so called

delta method (e.g. Davison (2003)), or bootstrapping. When covariates are present, maximum penalised

likelihood estimation is often appropriate, requiring the estimation of additional tuning parameters.

There is a large literature on estimation of extreme value characteristics based on considerations of order

statistics or quantiles. Beirlant et al. (2004) provides an introduction.

Are there less than 50 independent observations from the tail?

Inferences are critically dependent on sample size. When sample size is small, parameter and return values

estimates will typically be highly uncertain, casting considerably doubt on model utility. In this situation,

it might be possible to supplement the sample with other complimentary data expected to have similar

extremal characteristics, or constrain parameters using expert prior knowledge, perhaps within a Bayesian

framework. Consideration of peaks over threshold typically allows more observations to be retained for

model estimation than in the case of block maxima, and should be preferred.

It is possible to constrain one or more model parameters in a number of ways: (1) by fixing parameters to

known values based on previous analysis, (2) by performing a Bayesian analysis in which model parameters
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are given prior distribution which can constrain the values they take, (3) by assuming a restrictive para-

metric form for the model. Robust methods (e.g. Vandewalle 2004) are also available, but are generally

computationally more challenging to estimate and less intuitive to interpret. L-moments (Hosking 1990,

e.g. Pandey et al. 2001), being linear combinations of the order statistics of a sample, are more robust

to outliers than their conventional counterparts. Non–parametric approaches (e.g. maximum entropy

estimation with moment constraints) have also been proposed (e.g. Petrov et al. 2012).

4. Incorporating directionality and other covariate effects

Conventionally, design wave criteria are based on omnidirectional estimates - that is, sea state criteria

that are relevant for any direction of approach. However, to take advantage of directional effects in

optimising cost of offshore facilities, and with increasing availability of good wave direction data, it is

common to provide directional estimates of extreme significant wave heights, in addition to the omni-

directional estimate. The practice has been to associate an appropriate wave direction, such as the mean

wave direction or the direction of spectral peak, with the significant wave height of a given sea state. The

significant wave height values selected for analysis are then binned into directional sectors, with sector

limits chosen arbitrarily either on a fixed number (typically eight) centred on the cardinal directions, or

on the basis of a perceived directionality in the data. Both sectoring approaches make the assumption

of homogeneity within each sector. Extremal analyses are then performed on the significant wave height

values in each sector, and also on the complete set of values ignoring direction. Design values with a

given return period are then specified for each directional sector and for all directions, the latter being

the omnidirectional estimate. Unfortunately, this approach has often led to inconsistencies in design

criteria, such as that the probability of exceedence of a given significant wave height when calculated

from the directional criteria is different from that obtained from omni-directional criteria. A discussion

of this problem is given by Forristall (2004). Guidelines such as API (2005) and ISO (2005) provide

recommendations on treating directional criteria, but even when these are followed, either inconsistency

remains (in the case of API), or insufficient detail is given on how to make the criteria consistent (in the

case of ISO). Recently, Mendez et al. (2006), Jonathan and Ewans (2007a), Mendez et al. (2008), Ewans

and Jonathan (2008) and Jonathan and Ewans (2011a) have borrowed from the statistics literature to

model directional and seasonal effects smoothly in a way that better reflects nature and observed data

in application to numerous ocean basins, including the Gulf of Mexico, the North Sea and the North

East Pacific. Consistency between directional and omni-directional criteria follow directly in a rigourous

way in these analyses (e.g Ewans and Jonathan 2008), but the analyses also demonstrate a perhaps more
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significant aspect to establishing omni-directional criteria perhaps not widely recognised by practitioners.

Specifically, (i) a directional model generally explains the observed variation of extremes significantly better

than a model which ignores directionality, (ii) omni-directional criteria developed from a directional model

are different from those generated when directionality is not accounted for, and thus (iii) omni-directional

criteria derived from a directional model are more realistic and should be preferred in general. These facts

challenge traditional practice and warrant special attention. Accordingly, Jonathan et al. (2008) undertake

specific simulation studies to demonstrate unambiguously that omni-directional criteria should be derived

using a directional model in cases where good directional data exist. Covariate effects are not restricted to

direction, but are equally relevant for (e.g.) time and space.

The requirement for modelling of covariate effects must be considered in light of all other pertinent issues.

When physical considerations such as fetch variability with direction, seasonal cycles of storm severity,

variation of water depth or climate change is suspected to be present, inclusion of the corresponding

covariates is likely to be important for good model fit. Conversely, it is important also not to overfit

by including covariate effects which are not supported by data, especially when sample size is small.

Statistical tests can be used to select formally between models with or without covariate terms based on

their goodness of fit to the sample. Techniques such as cross-validation offer one approach to ensuring

parsimony in terms of predictive performance. Appropriate model complexity can also be regulated by

formal statistical testing, or by adopting a cost–complexity criterion. The behaviour of parameter and

quantile estimates with threshold should be examined and compared with expectation from theory and

previous application. The stability of quantile estimates for directional sectors with respect to threshold

and small changes to sector boundary specifications should also be examined. Neglecting covariates can

lead to biased estimates of extreme quantiles. The extent of any bias cannot be anticipated a priori in

general. Moreover, the relative size and direction of biases due to neglect of covariate(s) compared to other

sources (e.g. mis-specification of threshold, of model form, outliers, sample size) is also difficult to estimate

before the analysis is performed. Nevertheless, failure to model covariate effects adequately when there is

evidence for their presence will likely compound errors.

Numerous authors have reported the essential features of EV analysis with covariates (e.g. Davison and

Smith 1990) and the importance of considering different aspects of covariate effects. Coles and Walshaw

(1994) describe directional modelling of extreme wind speeds. Robinson and Tawn (1997) describe dir-

ectional modelling of extreme sea currents. Anderson et al. (2001) report that estimates for 100-year

maximum HS from a model ignoring seasonality are considerably smaller than those obtained using a

number of different seasonal models. Chavez-Demoulin and Davison (2005) and Coles (2001) provide

13



straight-forward descriptions of a non-homogeneous Poisson model in which occurrence rates and extremal

properties are modelled as functions of covariates.

Point process model

The inhomogeneous Poisson process model (outlined in Appendix A.6 and discussed e.g. by Coles 2001,

Embrechts et al. 2003, Davison 2003, Beirlant et al. 2004) is a three parameter model describing the rate

of occurrence and intensity of extreme events. If realisations from this model are observed over some

interval, the number of exceedances of threshold u is Poisson-distributed. Conditional on a given number

of exceedances, values of the exceedances are then a random sample from a GP distribution (see Davison

and Smith 1990). This model is estimated using maximum likelihood estimation. The log-likelihood can

be written

l(λ, ξ, σ) = lN (λ) + lW (ξ, σ)

where lN is the log–density (or log–likelihood) of the total number of exceedances (with rate argument

λ > 0), and lW is the log-conditional-density of exceedances (with the usual GP form, given in Equation

1) given a known total number N = n for n = 1, 2, 3, .... Since the log-likelihood can be partitioned in this

way, inferences on λ can be made separately from those on GP shape ξ ∈ (−∞,∞) and scale σ > 0. Each

of the parameters is modelled as a smooth function of one or more covariates, using penalised maximum

likelihood estimation, adopting a suitable smooth basis. For directional modelling, a Fourier series (e.g.

Ewans and Jonathan 2008, Jonathan and Ewans 2011a) or spline (Green and Silverman 1994) basis may

be appropriate. For spatial covariates, Legendre polynomials (e.g. Northrop and Jonathan 2011), random

fields (e.g. Rue and Held 2005) or spatial splines (e.g. Marx and Eilers 1998, Ramsay 2002, Ruppert et al.

2003, Jonathan and Ewans 2011b) are suitable. Some approaches (e.g. Marx and Eilers 1998) are relatively

easily extended to include multiple or multivariate covariates (e.g. 2D space, direction and time). Vector

generalised additive models (VGAM) for extremes (Yee and Wild 1996, Yee and Stephenson 2007 and the

VGAM software) provide useful tools, as do Bayesian Hierarchical Models (BHM, e.g. Gilleland et al.

2006, Cooley et al. 2007, Sang and Gelfand 2009). However, spatial applications usually require sometimes

unrealistic (conditional) dependence assumptions (see e.g. Turkman et al. 2010 and the discussion of spatial

extremes in Section 5 and Appendix B).

The Poisson log-likelihood, for arrivals at times {ti}ni=1 in interval (0, T ] is

lN (λ) =

n∑
i=1

log λ(ti)−
∫ T

0
λ(t)dt
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Chavez-Demoulin and Davison (2005) describe an approximate log-likelihood achieved by partitioning the

interval (0, T ] into a large number m of sub-intervals of length δ, choosing δ small enough that λ is effectively

constant over each sub-interval. The GP model from above (with shape parameter ξ, scale parameter σ

and threshold u) is used to model the sizes of exceedances, where each of ξ, σ and u are smooth functions

of covariates.

Penalised likelihood

When covariates Θ are present, since we seek parameters which are smoothly varying with respect to

covariates, one approach is to maximise a penalised (negative log) likelihood `∗(Θ)

`∗(Θ) = l(Θ) + κR(Θ)

where l(Θ) is the original sample (negative log) likelihood (e.g. for the Poisson or GP models above), and

R(Θ) is the roughness of parameter estimates with respect to covariates. κ > 0 is a roughness coefficient

required to balance the relative importance of maximising likelihood and minimising parameter roughness.

The roughness coefficient κ needs itself to be estimated, possibly using cross-validation or a measure of

model cost – complexity such as the Akaike Information Criterion (AIC) or Bayes Information Criterion

(BIC). In cross-validation, the original sample is typically partitioned appropriately into 5-10 groups. Each

group is withheld in turn, the remaining groups used for estimation (for each of a set of plausible values of

κ), and the withheld group used to assess predictive performance (e.g. Stone 1974). Cross-validation can

also be used (possibly nested) to provide an unbiased assessment of performance. Parameter uncertainty

can be estimated by appropriate bootstrap resampling. The original sample is resampled with replacement

a number of times, and the complete estimation procedure executed for each resample. The variability of

estimated model parameters and return values across resamples provides estimates for the uncertainties

of parameters and return values for the original sample (see e.g. Davison and Hinkley 1997, Wang and

Wahba 1995).

In covariate models, the roughness coefficient κ can sometimes be treated as a model parameter, in which

case it too can be estimated (possibly using Laplace Approximations if appropriate, e.g. Rue et al. 2009).

Within a Bayesian framework, model and return value uncertainty are estimated naturally as part of

inference. Typically, estimation proceeds using Monte Carlo Markov chain methods to sample the posterior

joint distribution of parameters and functions thereof (e.g Gamerman and Lopes 2006). When covariate

effects or multivariate extremes are present, Bayesian procedures can be computationally demanding;

approximate methods are often therefore necessary.
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Modelling steps

For a sample of independent observations, we might adopt the following modelling steps: (1) Define an

appropriate probability of threshold exceedence pu, (2) estimate the threshold u as a function of covariates,

e.g. using quantile regression with exceedence probability pu, (3) estimate the rate of threshold exceedence λ

using the Poisson process model, (4) estimate the shape ξ and scale σ of the generalised Pareto distribution,

and (5) simulate under the model to estimate return values corresponding to desired return periods.

Illustrations

The directional dependence of large values of storm peak HS for northern North Sea hindcast data is

discussed by Jonathan and Ewans (2007a) and illustrated in Figure 1. The land shadow of Norway is

evident for storm peak directions in the interval (45, 100). Storms travelling up the North Sea from

the South have directions in the interval (140, 200), and those travelling down from the Norwegian Sea

approximately (290, 360). The most extreme storm peak events, and those with the longest extreme

value tail, can be seen to correspond to Atlantic storms with directions in the interval (230, 270). The

corresponding estimates for GP shape ξ and scale σ, with 95% bootstrap uncertainty bands, are shown in

Figure 2. The largest value of shape corresponds to Atlantic storms as expected. Minima of both shape

and scale correspond to short-fetched storms from the Norwegian coast.

[Figure 1 about here.]

[Figure 2 about here.]

Figure 3 shows contours of marginal median 100-year storm peak HS for locations in the Gulf of Mexico,

estimated from a thin–plate spline model in Jonathan and Ewans (2011b).

[Figure 3 about here.]

5. Multivariate modelling

Careful statistical description is important to understand extreme ocean environments, and design and

assessment of ocean structures. For example, wave climate can be described in terms of sea-state variables

such as the significant wave height, HS , and spectral peak wave period, TP , or mean zero up-crossing

wave period, TZ . Spectra for an extreme sea state, such as the 100-year return-period sea state are often
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required for assessing dynamic loads. Spectral properties of extreme sea states are typically estimated by

jointly estimating values of HS and TP corresponding to a given return period. Alternatively, we might

wish to model storm peak HS over a spatial grid of locations; values of HS at neighbouring locations will

be dependent in general. Or we might be interested in modelling extreme current profiles with depth. In

any case, were we able to justify assuming (effective) independence of random variables, modelling would

be relatively straight forward - but this is usually not possible. In general, estimation of extreme wave

environments requires that dependence between variables be characterised adequately.

In univariate EV theory, the asymptotic form of the distribution of threshold exceedances (i.e. GP) and

block maxima (i.e. GEV) can be derived theoretically. The same is not true for multivariate extremes.

No finite-dimensional parameterisation of the class of multivariate EV distributions exists. Therefore,

modelling typically proceeds by selecting one of a variety of sub-families of distributions or a suitable

asymptotic argument. Unfortunately there is as yet no unifying approach, and the literature is rather

confusing. The work of Beirlant et al. (2004) provides an accessible introduction. For modelling purposes,

we find that the conditional extremes model of Heffernan and Tawn (2004) is a flexible framework for general

multivariate extreme value modelling which is easily implemented and extended. If concerned specifically

with spatial extremes, methods related to max–stable processes are promising, despite unrealistic modelling

assumptions regarding componentwise maxima and restrictive modelling assumptions (see Section 5.5).

Appendix B provides a motivation for extremal dependence thinking and describes simple diagnostic stat-

istics for the different forms of extremal dependence. The appendix also motivates ideas of spatial extremes,

including a description of the extremal coefficient diagnostic useful for site pooling.

5.1. Types of model for multivariate extremes

Suppose we wish to model extremes of a sample of values drawn from some multivariate distribution.

We need to estimate the tail behaviour of the multivariate distribution from which the sample is drawn,

based on the sample alone. There are essentially four approaches we could take, described below under the

headings extremal dependence models, parametric models, conditional extremes models and max–stable

models. The extremal dependence approach is useful primarily for introducing the different forms of ex-

tremal dependence (namely asymptotic dependence, asymptotic independence and perfect independence),

and estimating the coefficient of tail dependence (see Section 5.2); it can also be used directly for model-

ling when all variables become extreme together. A large number of parametric models for multivariate

extremes has been proposed, which themselves can be classified according to the form of their extremal

dependence (see Section 5.3). The conditional extremes model is motivated by different asymptotic argu-
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ments, and provides the basis for modelling more general situations for all forms of extremal dependence

(see Section 5.4). Max–stable models on componentwise maxima (see Section 5.5) allow extension of max–

stability (see Appendix A.2) to the multivariate case, in a rather restrictive sense as explained below, and

are the basis for models of spatial extremes using max–stable processes.

Transforming marginals

Many models for multivariate extremes are most easily described and applied when all variables follow a

common marginal distribution. In practice we achieve this using the probability integral transform (see

e.g. Jonathan et al. 2009). For a sample {xij}n,pi=1,j=1 of n observations on p variables X1, X2, ...Xp, we

model variable Xj marginally independently using an appropriate distribution Fj (e.g. GP for threshold

exceedances). Then for each observation xij of that variable, we evaluate the cumulative distribution

function F̂j(xij). We then find the value of the argument x∗ij of the desired common marginal cumulative

distribution function F ∗(x∗ij) (which might be Gumbel or Fréchet) such that

F̂j(xij) = F ∗(x∗ij) for all i, j

thereby establishing a transformed sample {xij}n,pi=1,j=1 exhibiting common marginal distribution F ∗. The

remaining dependence structure between variables can be described as a copula. Typical forms for the F ∗

are the standard Gumbel cumulative distribution function F ∗(x) = exp(− exp(−x)) for x ∈ (−∞,∞), and

the standard Fréchet cumulative distribution function F ∗(x) = exp(−1/x) for x > 0.

Copula models

The joint distribution F of random variables X1, X2, ..., Xp may be written as

F (x1, x2, ...xp) = C{F1(x1), F2(x2), ..., Fp(xp)}

where F1, F2, ..., Fp are univariate marginal distributions and C is a p-dimensional distribution on [0, 1]p

known as a copula. C is uniquely determined for well-behaved distributions F . If F1, F2, ..., Fp are well-

behaved, we can also write

C(u1, u2, ..., up) = F{F−1
1 (u1), F−1

2 (u2), ..., F−1
p (up)}

for {u1, u2, ..., up} ∈ [0, 1]p. For example, we might assume that F is a multivariate Gaussian and

F1, F2, ..., Fp all GP with different parameters. For a copula to describe max–stable multivariate extremes,
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it must satisfy max–stability constraints (see Appendix B.2.2).

5.2. Extremal dependence

Consider modelling extremes of the random vectorX1, X2, ..., Xp (corresponding to e.g. (HS , TP ) for p = 2),

assuming that marginal distributions of individual variables have been transformed to Gumbel scale by

means of the probability integral transform above. Extremal dependence modelling assumes particular

behaviour of the joint survivor function as described in more detail in Appendix B.1, applicable for a wide

range of multivariate EV distributions (but not all, see e.g. Schlather 2001). We describe the joint tail of

a distribution using its coefficient of tail dependence, η, a constant ∈ (0, 1], which quantifies the extent of

extremal dependence for the distribution. For Gumbel marginals, and large values (x1, x2, ..., xp) we have

(from Appendix B.1 and Ledford and Tawn 1997)

Pr(X1 > x1 + t,X2 > x2 + t, ...,Xp > xp + t) ≈ exp(−t/η) Pr(X1 > x1, X2 > x2, ..., Xp > xp) (2)

for fixed t > 0. When η=1 we say that the distribution is asymptotically dependent. Otherwise, it is

asymptotically independent. As described in Appendix B.1, the value of η can be estimated directly from

the sample. Equation 2 can therefore also be used directly for estimation of probabilities associated with

extreme sets of the form (X1 > x1 + t,X2 > x2 + t, ...,Xp > xp + t) provided that an appropriate set

(X1 > x1, X2 > x2, ..., Xp > xp) exists in the sample. The problem is essentially therefore one of threshold

selection.

Asymptotic independence requires careful thought. For example, note that for a bivariate Normal distri-

bution with correlation ρ, the coefficient of tail dependence is given by η = (1 + ρ)/2. In the case ρ = 1

we have perfect dependence between the variables and also asymptotic dependence. When ρ < 1 we have

η < 1 and hence variables will be asymptotically independent (even for ρ close to unity). Wrongly assuming

a model imposing asymptotic independence will reduce the rate of joint occurrence of rare events.

5.3. Parametric models

Numerous authors in the statistic literature (e.g. Tawn 1988a, Tawn 1988b, Joe 1990, Coles and Tawn

1991) have proposed parametric forms of bivariate and multivariate extreme value distributions exhibiting

different dependence structures. Kotz and Nadarajah (2000) and Beirlant et al. (2004) provide relatively

recent reviews. These models are typically limited to low dimensions. Modelling the sample requires fitting

the distribution of choice, estimating its parameters, then confirming goodness of model fit and modelling
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assumptions made using diagnostic tests. The approach is valid when the distributional form is chosen

appropriately. Almost all parametric distributions appropriate for modelling extremes of multivariate

samples can be classified in terms of the value of their coefficient of tail dependence η, a function of

the parameters of the distribution. However, it is often difficult to decide between different parametric

forms (with possibly different extremal dependence structures) based on goodness of fit statistics. Direct

estimation of η may be useful in these circumstances to advise model form.

In the engineering literature, Ferreira and Guedes-Soares (2002) present a method to estimate bivariate

distributions of significant wave height, HS and mean wave period, TZ . The method consists of (1)

transforming individual variables using the Box-Cox transformation so that, marginally, transformed values

are consistent with samples from a Normal distribution (as described above), (2) fitting a bivariate Normal

model to transformed data. The approach is illustrated in application to modelling of Waverider buoy

data at Figuera da Foz, Portugal. The approach is appropriate for modelling the body of a bivariate

distribution, provided that the Box-Cox transformations provide fit adequately. However, the method

imposes a particular structure to extreme tail behaviour which may not be supported by the sample. In a

similar vain, methods of (multivariate) kernel density estimation, appropriate for modelling the body of a

distribution, impose the kernel structure on extreme tails also with little or no justification. Dong et al.

(2012) develop bivariate models with specified parametric forms for the joint distribution of significant

wave height and peak period, using maximum entropy estimation; this work also suffers from a lack of

asymptotic justification for the model form assumed.

5.4. Conditional extremes

There are short-comings to direct fitting of parametric multivariate EV distributions, since typically the

appropriate distributional form is unknown, and different distributional forms are often impossible to

distinguish based on empirical evidence. Direct estimation using Equation 2 is also problematic, e.g for

samples which are not simultaneously extreme in all their components, since the set (X1 > x1 + t,X2 >

x2+t, ...,Xp > xp+t) is likely to be empty if (X1 > x1, X2 > x2, ..., Xp > xp) is not. Moreover the approach

becomes unmanageable as p increases; for example, we might wish to jointly model extremes of wave

spectral parameters (HS , TP ) over 1000 locations, requiring a 2000-dimensional model, which would not

easily be estimated without making simplifying assumptions – parameter estimation is intractable. Authors

have therefore taken a different conditional approach, the basis of which is to take each variable in turn as a

conditioning variate, and model remaining variables conditional on a large value of the conditioning variate.

In a bivariate case we might model X2|X1 = x1 for large x1, and X1|X2 = x2 for large x2. The advantage
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of this approach is that it might extend to higher dimensions, and to samples for which not all variables

are simultaneously extreme. A disadvantage until recently, was that the form of the conditional model

had to be assumed (or itself estimated) from the sample. For example, Haver (1985) proposed a model

for extremes of (HS , TP ) data, based on (1) modelling the extreme tail of HS using a Weibull form, (2)

modelling the distribution of TP , for a given (range of) HS using a log-normal form, (3) estimating values

for the parameters in the log-normal distribution for TP |HS = h corresponding to extreme values h (beyond

the sample) by regressing the log-normal parameter estimates on HS for the sample and extrapolating,

and hence estimating extreme quantiles of (HS , TP ). Justification for the choice of log-normal conditional

model, and for the forms of models for log-normal parameters as a function of HS was goodness of fit to

the sample; these may not be adequate when extrapolating beyond the sample.

The conditional approach of Heffernan and Tawn (2004) goes some way to overcoming these difficulties.

Based on asymptotic arguments, they derive a parametric equation for the form for one variable condi-

tional on a large value of another, valid for extremes from a wide class of multivariate distributions with

Gumbel marginals. The conditional approach consists of (1) transforming each variable so that margin-

ally its values are consistent with a sample from the standard Gumbel distribution, (2) estimating the

parameters of the parametric model for values of one variable conditional on large values of the other,

(3) simulating (and back-transforming) to characterise extremal behaviour of the joint distribution (on

the original scale). The major advantage of the Heffernan and Tawn conditional approach compared with

previous conditional models, is that the functional forms for marginal fitting and conditional modelling are

motivated by asymptotic arguments. There is also no need to estimate the coefficient of tail dependence

nor restrict to componentwise maxima. Model form, motivated by the assumption of a particular limit

representation for the conditional distribution, is appropriate to characterise the conditional behaviour of

a wide range of theoretical examples of bivariate (and higher-dimensional) distributions for extremes. For

positively associated variables X1, X2, ..., Xp the model for large xj is

(X−j |Xj = xj) = a−jxj + x
b−j
j Z−j (3)

where X−j represents all variables except Xj , and a−j and b−j are vectors of location and scale parameters

respectively to be estimated, with a−j ∈ [0, 1]p−1 and b−j ∈ (−∞, 1)p−1, and componentwise multiplication

is understood. Z−j are random (p−1)-vectors, independent of Xj , converging with increasing xj to a non-

degenerate limiting distribution G−j . Joint tail behaviour is then characterised by {a−j}pj=1, {b−j}pj=1 and

{G−j}pj=1. The form of distributions G is not specified by theory. Note that modelling using Equation 3

reduces to estimating a (large) number of straight forward regression models for pairs of variables.
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From a practical perspective, the main advantages of conditional extremes (and related) models are that

they admit all forms of extremal dependence (as opposed to approaches based on max–stable models), and

that they are relatively simple to implement and apply in high dimensions.

Illustrations

The conditional approach has been used as the basis for studies by us, including joint extremes of wave

spectral parameters (Jonathan et al. 2010) and extreme current profiles with depth (Jonathan et al. 2012b).

In Jonathan et al. 2010, the joint characteristics of storm peak peak period (TP ) and storm peak HS are

quantified using the conditional model for measured and hindcast data taken from different locations.

Figure 4 illustrates estimates for conditional model parameters a and b from Equation 3 for the four

applications considered. The figure suggests that the northern North Sea and Gulf of Mexico measured

samples in particular are different to one another with respect to parameter a. We would expect this

difference to be reflected in design criteria for the two locations, for example with respect to specification

of design contours (Jonathan et al. 2012a).

[Figure 4 about here.]

In Jonathan et al. (2012b), observed vector ocean currents at each of a number of water depths are

expressed as components with respect to major- and minor-axis of current variation at that depth using

Principal Components Analysis. Each current component is then independently decomposed into the

sum of (deterministic periodic) tidal and (random) non-tidal currents using a local harmonic model. The

marginal and dependence structure of extremes of hourly maxima and minima of non-tidal components

is characterised using the conditional extremes model above. We simulate under this model to estimate

characteristics of extreme current profiles corresponding to arbitrary return periods, and quantify the

uncertainty of those estimates. For a sample collected over a 2.5- year period in 250m water on the outer

shelf of North Western Australia, the model predicts monthly instantaneous extreme conditional profiles

well. Figure 5 compares median conditional total current profiles (along the major axis of current variation

at that depth) with measured profiles for a 10 year return period. The conditional profile provides an upper

bound for the instantaneous observed profile.

[Figure 5 about here.]

In Ewans and Jonathan (2012) the conditional extremes model is extended to incorporate covariate effects.
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5.5. Multivariate max–stable models

Here, ideas of max–stability (see Appendix A.2) are extended from a univariate to a multivariate context.

In order to achieve this, we are forced to consider modelling of so called componentwise maxima. For a

set of n observations {xij}n,pi=1,j=1 on p variables X1, X2, ..., Xp, the value of the componentwise maximum

for variable j is mj = maxi{xij}, the maximum value across all observations for that variable. In the

componentwise maximum approach we perform EV analysis on multivariate observations of the form m =

{mj}pj=1. Note that m may not actually exist in the sample! Componentwise maxima are useful to model

certain types of dependence structure (namely asymptotically dependence and perfectly independence) but

not others (namely asymptotically independence). Despite these restrictions, max–stable models provide

a useful framework for multivariate extreme value analysis, particularly spatial extremes (see below).

We stress that max–stable models apply to componentwise maxima only, and may therefore exaggerate

dependence effects, although recent work (see Appendix B.2) suggests how these restrictions may be

overcome.

Spatial extremes

The last decade has seen the emergence of useable statistical models based on max–stable processes, at

least within in academia. The application of max–stable processes is complicated due to unavailability of

the full multivariate density function. Padoan et al. (2010) develops inferentially practical, likelihood-based

methods for fitting max–stable processes derived from a composite likelihood approach. The procedure

is sufficiently reliable and versatile to permit the simultaneous modelling of marginal and dependence

parameters in the spatial context at a moderate computational cost. Davison and Gholamrezaee (2012)

describes an approach to flexible modelling for maxima observed at sites in a spatial domain, based on fitting

of max–stable processes derived from underlying Gaussian random process models. Generalised extreme-

value margins as assumed throughout the spatial domain, and models incorporate standard geo-statistical

correlation functions. Estimation and fitting are performed through composite likelihood inference applied

to observations from pairs of sites. Davison et al. (2012) also provides a good introduction and review.

Erhardt and Smith (2011) uses approximate Bayesian computation to circumvent the need for a joint

likelihood function by instead relying on simulations from the (unavailable) likelihood avoiding the need

to construct composite likelihoods at higher computational cost.

These spatial extremes methods are potentially of value to metocean design, since they provide a framework

within which extremal behaviour of complete ocean basins can be modelled, incorporating appropriate

marginal and dependence structure and avoiding the need for site pooling in particular. It might be
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possible that in future, only one EV modelling task would be necessary per hindcast. That model, for the

whole ocean basin, could then be interrogated routinely to estimate design values for a particular location.

The ocean engineer would no longer in principle need to perform further site–specific analysis. For this

reason, there follows a brief motivation for max–stable processes and the composite likelihood methods to

estimate them. The outline draws heavily on the work of Smith (1990) and the article of Padoan et al.

(2010).

Typically, marginal modelling is thought of separately to modelling of dependence structure; we assume

GEV or GP marginals, then worry about a model for the multivariate dependence structure or copula.

These models only admit certain types of dependence structure, namely perfect independence or asymptotic

dependence; they do not admit asymptotic independence in particular (see e.g. Gabda et al. 2012), whereas

the model of Heffernan and Tawn (2004) does. This is possibly not of great concern if diagnostics suggest

that asymptotic dependence is appropriate, given other advantages the models offer and other mitigating

recent developments.

Max–stable processes

From the practical perspective, max–stable processes are attractive since they provide a standard way of

thinking about spatial extremes, including a framework for estimating EV models and making inferences

(e.g. simulating) using the models. They describe the distribution of maxima (in time) within an arbitrary

spatial domain. Appendix B.2 gives a mathematical outline. Max–stable processes can be thought of as

infinite-dimensional generalisations of EV distributions. They require the definition of a function f(s, r)

called the event profile function, which describes (in a typical metocean context) how a storm centred at

location s influences extremes (perhaps of HS) at location r. In 2-D space, we might assume a Gaussian

form for f

f(s, r) = f0(s− r) = (2π|Σ|1/2)−1 exp{−1

2
(s− r)′Σ−1(s− r)}

parameterised by the diagonal elements (σ11 and σ12 and the off-diagonal σ12 of the covariance matrix

Σ). In fitting this model using a sample, we estimate the elements of Σ. For mainly bivariate choices of

f (including the above) we can write down the joint distribution and, in particular, the joint density and

hence the pairwise likelihood of extremes at any two locations in closed form.

Composite likelihood

The analysis of spatial extremes is concerned with the joint modelling of a spatial process at large numbers

of locations. The full likelihood function describes the dependence across all locations. However, for
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max–stable processes, it is not possible to write down this likelihood for more than pairs of locations

in general. Standard maximum likelihood estimation is therefore impossible. Fortunately, methods of

composite likelihood approximation have been developed (Lindsay 1988, Cox and Reid 2004, Varin 2008)

which permit the simultaneous and consistent modelling of joint and marginal parameters in the spatial

context at a moderate computational cost.

For a sample {{xij}
nj
i=1}

p
j=1 of n =

∑p
j=1 nj observations from p locations, the full likelihood function would

take the form

L(parameters related to all locations; {{xij}
nj
i=1}

p
j=1)

were it accessible. Were we able to assume (unrealistically) that observations corresponding to different

locations were independent, the full likelihood function would be

p∏
j=1

Lj(parameters related to location j; {xij}
nj
i=1))

where Lj , j = 1, 2, ..., p is the likelihood corresponding to the jth location. In a spatial context, we

might expect that dependence between pairs of locations decreases with increasing distance, motivating an

approximate likelihood of the form

p∏
j=1

p∏
k=1,k 6=j

wjkLjk(parameters related to locations j, k; {xij}
nj
i=1, {xik}

nk
i=1)

where Ljk, j, k = 1, 2, ..., p, j 6= k is the pairwise likelihood for jth and kth locations and wjk ≥ 0, j, k =

1, 2, ..., p are distance–related weightings. Since the pairwise likelihood between locations is available in

closed form, we have a procedure to model marginal and spatial extreme characteristics across space.

Although not fully understood theoretically, composite likelihood methods have been found to perform

well in many applications, including spatial extremes (e.g. Ribatet et al. 2012). The efficiency of pairwise

likelihood methods for simple time series problems has received careful attention. Efficiency tends to be

poor in (e.g.) long–memory auto–regressive and in moving–average processes (e.g. Davis and Yau 2011).

In principle, the parameters of the marginal and spatial EV models might be considered smooth functions

of covariates (e.g. location, storm direction). The ideas introduced in Section 4 are therefore relevant

here too, as are random fields and spatial (Gaussian) process models for covariates (e.g. Davison et al.

2012). The max–stable Gaussian EV process with event profile f(s, r) described above has an equivalent

max–stable copula representation.
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6. Bayesian inference

Informally, Bayesian inference seeks to update prior information about (the parameters or variables Θ of)

a model with information gained from observation to generate improved posterior information. The prior

information is specified by a probability density f(Θ). The information gained from observation is specified

by the likelihood f(D|Θ) of a sample D (= {xi}ni=1 say) of observations related to the precise model form

being estimated. These are then combined using Bayes theorem

f(Θ|D) =
1∫

Θ f(Θ)f(D|Θ)dΘ
× f(Θ)× f(D|Θ) (4)

to yield posterior information specified in the posterior density f(Θ|D). Bayesian inference provides an

intuitively-appealing and self-consistent basis for modelling. It enables the modeller to combine data from

observation with past experience and expertise in a consistent manner. It enables prediction and modelling

uncertainty to be made naturally. For example, we can estimate the predictive density f(q|D) of extreme

quantile q given the posterior density

f(q|D) =

∫
Θ
f(q|Θ)f(Θ|D)dΘ

thereby capturing and systematically incorporating sources of uncertainty in the modelling procedure.

Specialised methods for estimation using Bayesian inference have evolved. Perhaps the most important

is Monte Carlo Markov chain (MCMC, see Gamerman and Lopes 2006). This is a simulation approach

which generates (after suitable burn-in) a serially-correlated sample from the full joint posterior f(Θ|D).

Notably, MCMC avoids the need to integrate the first (integral) term on the right hand side of Equation

4 numerically. Bayesian inference is fast becoming the default tool in academic statistics, and spreading

into business and industry. Gibbs sampling from full conditionals provides slick computation, and the

Metropolis–Hastings algorithm a general–purpose sampler (see Gamerman and Lopes 2006). Reversible

jump MCMC (Green 1995) allows model complexity itself to be inferred.

There are difficulties however with Bayesian inference. Fundamentally, it is subjective. Different modellers

will specify different priors and therefore obtain different inferences from the same data. Specifying prior

information as a (multivariate) density is problematic. Estimation using MCMC is a specialist task in

general. Estimation in high dimensions can become prohibitively complex computationally. All these

areas are actively researched in the statistics community. Despite these difficulties, the appeal of Bayesian

inference is in the authors’ opinion overwhelming.
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There is already a large literature on Bayesian inference relating to extremes and metocean applications.

Coles and Powell (1996), Coles (2001) and Beirlant et al. (2004) review Bayesian methods in EV analysis.

Scotto and Guedes-Soares (2007) outline a Bayesian inference for parameter estimation in EV analysis using

the Metropolis-Hastings algorithm implemented in an appropriate Markov Chain Monte Carlo scheme.

MacDonald et al. (2011) develop a flexible mixture model for extreme values. Wadsworth et al. (2010)

and Reeve et al. (2012) adopt a Bayesian approach to estimating appropriate measurement scales for EV

analysis.

7. Discussion

Extreme value analysis is inherently different to other empirical modelling, in that estimation of tails (rather

than bodies) of distributions, and extrapolation beyond the sample (rather than interpolation within) is

demanded. Intuition accumulated from other areas of empirical modelling can be misleading. This review

outlines areas of opportunity for improved extreme value modelling in ocean engineering. Four main areas

are identified: (1) improved understanding and use of basic EV techniques and tools, (2) modelling with

covariates, (3) modelling dependence including spatial modelling, and (4) Bayesian inference. These areas

are actively developed in the statistics community, and are available for application in marine design.

Incorporation of covariate effects will improve model fits in general, and reduce modelling uncertainty.

Suitable tools (e.g. based on spline methods, random fields, spatial processes) have been developed.

Regarding modelling of multivariate extremes, effective modelling will improve the specification of design

conditions (e.g. for HS and associated values for other variables). Approaches such as the conditional

model of Heffernan and Tawn (2004) are easily implemented, and provide generalisations of methods such

as I-FORM (e.g Winterstein et al. 1993). Modelling spatial dependence well will provide single EV models

applicable to complete ocean basins, avoiding the need for site pooling. Once the model is established,

the metocean engineer may not ever need to perform EV analysis in principle; at the very least the basin

model would provide a reliable first estimate for establishing site–specific criteria. Modelling of spatial

extremes is an active area of research in the statistics community. Bayesian inference provides a consistent

framework for statistical modelling which is rapidly becoming the standard approach in academia.

There is considerable academic software available for extreme value modelling, mostly written in the R

language. These packages are available (from CRAN) for general academic use, but not for commercial

purposes. The modules are generally written to a reasonable programming standard, and being continu-

ously developed within the statistics community. Stephenson and Gilleland (2006) provide an overview of
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existing software for EV analysis, summarising that software currently available for the analysis of extreme

values goes some way towards allowing practitioners to perform complicated tasks relatively easily. They

note a confusing mixture of different methods and techniques and call for more coherent software develop-

ment. Not one of the packages has been developed or tailored to metocean requirements (with the possible

exception of WAFO). Packages such as TEXMEX (see CRAN) and VGAM have elements which appear

particularly useful for modern metocean applications.

The potential for applying modern methods of extreme value analysis to ocean engineering tasks is clear.

The mathematical foundations of modern extreme value theory are relatively straight forward and intuit-

ive. Indeed, many of the ideas developed by statisticians (e.g. max–stable process, extremal coefficient)

have a natural and useful interpretation in the metocean context. The hurdle to wider adoption of such

methods lies in a combination of unfamiliar but not impenetrable mathematical terminology, unfamiliar

academic statistical software and decades of engineering practice and codification based on an empirical

mix of well-established but more elementary and limited approaches. Awareness in the ocean engineering

community, leading to careful consideration and incorporation of the effects of sample size, measurement

scale, threshold, covariates, extremal dependence – all sources of modelling uncertainty and implications

of modelling choices made – will lead eventually to better marine design.
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Appendices

A. Univariate extremes

This section attempts to provide informal motivation for extreme value thinking useful to the ocean en-

gineer, starting with a motivation based on the distribution of the maximum of a sample (A.1), then in-

troducing the concept of max–stability (A.2) and the generalised extreme value (GEV) distribution (A.3)

suitable for modelling block maxima. Appendix A.4 illustrates the duality between the GEV distribution

for block maxima and the generalised Pareto (GP) distribution for peaks over threshold (A.5). Appendix

A.5 also provides a fuller motivation for the result due to Pickands (1975). Appendix A.6 outlines the use

of the Poisson process model in extreme value analysis, and Appendix A.7 introduces the extremal index

used to characterise the extent of serial correlation or clustering in a time series of extremes.

A.1. Motivation

Suppose {Xi}ni=1 are independent, identically distributed random variables with cumulative distribution

function F with upper end point x+, defined as the smallest value of x for which F (x) = 1. Then

Pr(max(X1, X2, ..., Xn) ≤ x) = Fn(x)

For x < x+, as n → ∞, Fn(x) → 0. That is, the limiting distribution is degenerate, a point mass at x+.

A degenerate limiting form is not useful for empirical modelling of data.

Therefore to model the tail behaviour of F , we choose to re-scale the random variables. Consider Yn =

a−1
n (max(X1, X2, ..., Xn)− bn) for (sequences of) constants an(> 0) and bn ∈ (−∞,∞). Can we find values

of an, bn such that Yn → Y as n→∞, such that Y no longer has a degenerate distribution? By definition

Pr(Yn ≤ y) = Fn(bn + any)

=

(
1− n(1− F (bn + any))

n

)n
≈ exp(−n(1− F (bn + any))) for large n

using (1 +x/n)n ≈ exp(x) for large n in the last line. The corresponding limit as n→∞ exists if and only

if limn→∞ n(1− F (bn + any)) exists.
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A.2. Max–stable distributions

Constants an and bn can be found for most continuous distributions F . Remarkably, in all these cases, the

limiting distribution is the same. We say that these limiting distributions are max–stable. The form of

the limiting distribution is

n(1− F (bn + any)) →
(

1 + ξ
y − µ
σ

)− 1
ξ

as n→∞ for ξ 6= 0

( → exp(−y − µ
σ

) when ξ = 0)

for location parameter µ ∈ (−∞,∞), scale parameter σ > 0 and shape parameter ξ ∈ (−∞,∞), with

y > µ and 1 + ξ(y − µ)/σ > 0. If ξ is negative, the limiting distribution has a finite upper end-point,

y+ = µ− σ/ξ.

A.3. Generalised extreme value distribution

Combining the results in sections A.1 and A.2, the unique limiting distribution for maxima from max–stable

distributions is the generalised extreme value distribution (GEV) with cumulative distribution function G

G(x) = exp(−
(

1 + ξ
x− µ
σ

)− 1
ξ

)

for location µ ∈ (−∞,∞), scale σ > 0 and shape ξ ∈ (−∞,∞), with 1 + ξ(x− µ)/σ > 0, with the obvious

result when ξ = 0.

Note also that maxima of max–stable distributions are also max–stable, so that Gk(x) = G(ax + b) for

a > 0, b ∈ (−∞,∞) and k = 1, 2, ..., and that distributions F1 and F2 are said to be of the same type (or

to be equivalent) if F2(x) = F1(ax+ b).

A.3.1. Domain of attraction

Any max–stable distribution lies within the domain of attraction (DOA) of the GEV for some ξ. For

example, the classical Weibull distribution converges to the GEV with ξ = 0. That is, for cumulative

distribution function F (x) = 1 − exp(−cxτ ), some algebra show that appropriate normalising constants

are an = (cτ)−1(c−1 log n)(1/τ)−1 and bn = (c−1 log n)1/τ to leading order for large n (see, e.g. Embrechts

et al. 2003).
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A.3.2. Return values from GEV

We are interested in estimating the return value corresponding to a period P = 1/p (typically longer than

1 year). Formally we define this return value, xp, as the value that will be exceeded with probability p

annually. Informally, this is also close to the most probable maximum for a return period of 1/p years. If

annual maxima are GEV distributed with parameters ξ, σ and µ, the return period is defined by

1− p = exp(−
(

1 + ξ
xp − µ
σ

)− 1
ξ

) for ξ 6= 0

so that

xp = µ+
σ

ξ
(1− (− log(1− p))−ξ) for ξ 6= 0

In practice, for a sample {xi}ni=1 corresponding to time period of exactly one year, we estimate the GEV

model obtaining parameter estimates ξ̂, σ̂ and µ̂ corresponding to annual occurrence. We can use these as

plug-in estimates in the equation above to estimate the return value.

In reality, we rarely fit the GEV distribution directly to maxima, since there are alternative approaches

which make use all occurrences exceeding a threshold (which are therefore more efficient).

A.4. Correspondence between maxima and threshold exceedances

If X is a max–stable random variable with distribution function F , the following approximate argument

provides the form of the distribution of threshold exceedances. For a sample {xi}ni=1 of independent draws

from F , since draws are independent we have

Pr(maximum of sample ≤ x) = Fn(x)

Provided n is large enough, the distribution of the maximum is well approximated by the GEV

Fn(x) ≈ exp(− (1 + ξ(x− µ)/σ)
− 1
ξ )

Taking logarithms

n logF (x) ≈ − (1 + ξ(x− µ)/σ)
− 1
ξ

Then a Taylor expansion of logF (x) about 1 gives logF (x) ≈ −(1− F (x)) so that

Pr(X > x) = 1− F (x) ≈ 1

n
(1 + ξ(x− µ)/σ)

− 1
ξ
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Simple rearrangement then gives

Pr(X > x|X > u) = (1− F (x))/(1− F (u)) ≈ (1 + ξ(x− u)/σ̃)
− 1
ξ

where σ̃ = σ + ξ(u − µ). The last line is the generalised Pareto (GP) distribution. Note that the shape

parameter is common to GP and GEV.

Equivalently, for independent Poisson-distributed occurrences of threshold exceedances with GP–distributed

sizes, we can also show informally that the distribution of the maximum (corresponding to some period)

is GEV–distributed. Recalling that Pr(N = k) = (λk/k!) exp(−λ), k = 0, 1, 2, ... for Poisson–distributed

random variable N with rate λ > 0 in the second line below

Pr(maximum in period ≤ x) =

∞∑
k=0

Pr(k storms in period)F k(x)

=
∞∑
k=0

λk

k!
exp(−λ)F k(x)

= exp(−λ(1− F (x)))

= exp(−λ
(

1 + ξ
x− u
σ̃

)− 1
ξ

)

where λ is the expected number of exceedances in the period, and σ̃ = σ + ξ(u− µ). If we choose λ to be

(1 + ξ(u− µ)/σ)
− 1
ξ (without loss of generality), we recover the original GEV form.

A.5. Generalised Pareto distribution

The generalised Pareto distribution has cumulative distribution function H given by

H(x) = 1−
(

1 + ξ
x− u
σ̃

)− 1
ξ

for threshold u ∈ (−∞,∞), scale σ̃ > 0 and shape ξ ∈ (−∞,∞) with x > u and 1 + ξ(x− u)/σ̃ > 0.

A.5.1. GP tail approximation

Consider a random variable X with continuous cumulative density function F with upper end point x+.

Pickands (1975) showed that the conditional distribution of X given X > u for some threshold u can be

approximated by the generalised Pareto distribution defined above (and see also, e.g., Falk et al. 2004).

Restricting discussion to max–stable limiting distributions, continuing the development in section A.2, we
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see after some algebra that

1− F (bn + any)

1− F (bn)
→
(

1 + ξ
y

σ∗

)− 1
ξ

as n→∞ for ξ 6= 0

where σ∗ = σ − ξµ and y > 0. Setting bn = u and an = a(u) > 0, then as n → ∞ (or equivalently as

u→ x+)

Fu(u+ a(u)y) =
F (u+ a(u)y)− F (u)

1− F (u)

= 1− 1− F (u+ a(u)y)

1− F (u)

→ 1−
(

1 + ξ
y

σ∗

)− 1
ξ

for any y > 0. Setting x = u+ a(u)y we see that

Fu(x) ≈ 1−
(

1 + ξ
x− u
σ̃

)− 1
ξ

where σ̃ = a(u)σ∗, for exceedances x of high threshold u. In theory, the function a(u) is given by the

reciprocal hazard function for F evaluated at u (see, e.g., Reeve et al. 2012). In practice, ξ and σ̃ are

estimated empirically from data.

A.5.2. Return values from GP

Assuming a GP model with parameters u, σ̃ and ξ is appropriate for threshold exceedances of X, the

P = 1/p-year return value xp is defined by

1− p = exp(−λ
(

1 + ξ
xp − u
σ̃

)− 1
ξ

)

where λ is the expected number of exceedances per annum.

A.6. Poisson process

Suppose we count the number of events Ni = 0, 1, 2, ... occurring on each of i = 1, 2, ..., n intervals

{(ai, bi]}ni=1 on an interval (0, T ] of the real line, with bi ≤ ai+1. The set {Ni}ni=1 follows a Poisson

process if

Pr(Ni = ni, i = 1, 2, ..., n) =

n∏
i=1

Λnii
ni!

e−Λi
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where Λi =
∫ bi
ai
λ(t)dt and λ(t) > 0 is the rate of the Poisson process at t ∈ (0, T ]. The number of

points in each interval is Poisson–distributed and the numbers of points in disjoint intervals are independ-

ently distributed. The probability of obtaining exactly one event in each interval {(ai, bi]}ni=1 is therefore∏n
i=1 Λie

−Λi , and the probability of obtaining no events elsewhere is e−(Λ−
∑n
i=1 Λi), where Λ =

∫ T
0 λ(t)dt.

Since the corresponding events are independent, the probability of obtaining exactly n events on (0, T ] at

points {ti}ni=1 (each with the corresponding interval) is

Pr(t1, t2, ..., tn) =
n∏
i=1

Λie
−Λi × e−Λ−

∑n
i=1 Λi = e−Λ

n∏
i=1

Λi

Now assume that the intervals (ai, bi] are of constant width ∆ and divide the expression above by ∆n. For

sufficiently small ∆ we see that Λi ≈ λ(ti)∆. In the limit as ∆→ 0, we obtain the density (or likelihood)

f(t1, t2, ..., tn) = e−Λ
n∏
i=1

λni

But the probability of obtaining exactly n events in (0, T ] is also given by

Pr(N = N(0,T ] = n) =
Λn

n!
e−Λ

and hence the conditional density f(t1, t2, ..., tn|N = n) becomes

f(t1, t2, ..., tn|N = n) = n!
n∏
i=1

λ(ti)

Λ

which can be interpreted as the density of n independently distributed distinguishable points, each with

density

f(t|N = n) =
λ(t)

Λ

This is the non-homogeneous Poisson process, a useful general basis for many spatio-temporal models for

different choices of rate and domain. It can be generalised to higher dimensions. In particular, if we assume

an intensity λ(x, t) defined on [u,∞)× (0, 1]

λ(x, t) =
1

σ
(1 + ξ

u− µ
σ

)−1/ξ−1

for location µ ∈ (−∞,∞), scale σ > 0 and shape ξ ∈ (−∞,∞), with x > µ and 1 + ξ(x − µ)/σ > 0, the

conditional distribution Pr(X ≤ x|T = t) has the generalised Pareto form given in Section A.5. Hence,
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with this choice of intensity, we can use the Poisson process for maximum likelihood inference in extreme

value analysis.

A.7. Estimating time series dependence using the extremal index

Suppose XF
t , t = 1, 2, 3, ... is a time series of random variables with unit Fréchet marginal distribution,

Pr(XF
t ≤ f) = e−1/f , f > 0. If the random variables are independent, the scaled maximum of n = 1, 2, 3, ...

consecutive points, MF
n = max{XF

i , X
F
i+1, ..., X

F
i+n−1}/n for any i = 1, 2, 3, ... will also satisfy Pr(MF

n ≤

f) = e−1/f . With appropriate (and plausible) assumptions (see, e.g. Ledford and Tawn 2003) an analogous

asymptotic result emerges for dependent random variables

Pr(MF
n ≤ f) = e−θ/f

for f > 0, where θ ∈ [0, 1] is known as the extremal index. The extremal index θ (see Leadbetter et al. 1983

and Smith and Weissman 1994) is a measure of within-series extremal dependence. Independent data have

θ = 1, although θ = 1 does not necessarily imply independence in the full data set, merely independence

between extremes. The closer θ is to zero, the stronger the dependence between extremes. For series in

which the extremes are not independent, the extreme points will tend to occur in independent clusters; the

mean cluster size is given by the reciprocal θ−1. The above equation provides a straight forward estimation

procedure for θ from a sample of time series: first transform to unit Fréchet marginal, then calculate scaled

cluster maxima for different cluster sizes n, then estimate the value of θ for exceedances of threshold u.

For sufficiently large n and u, the value of θ should stabilise. See Ferro and Segers (2003) and Ledford and

Tawn (2003) for refinements and more recent developments.

B. Multivariate extremes

The following is an informal outline of some concepts in multivariate EV analysis possibly useful to the

practising ocean engineer. We start by describing different forms of extremal dependence (B.1), discussing

the different forms of multivariate extremal dependence and how to estimate them. We then look at spatial

extremes (B.2), motivating the field of max–stable processes using the so called Smith model, and outlining

the extremal coefficient useful to quantify the extent of spatial dependence.
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B.1. Extremal dependence

The bivariate random variable (X,Y ) with common marginal distribution is said to be asymptotically

independent if limx→∞ Pr(X > x|Y > x) = 0 and asymptotically dependent if limx→∞ Pr(X > x|Y >

x) > 0. In multivariate EV analysis it is usual to consider the properties of quantities such as the joint

survivor function Pr(X > x, Y > x), and the conditional probability Pr(X > x|Y > x), for large x.

Let (XF , YF ) be a bivariate random variable with unit Fréchet marginal distributions (i.e. Pr(XF ≤ f) =

e−1/f , f > 0). In the special case that XF and YF are independent, then Pr(XF > f |YF > f) = Pr(XF >

f) → 0 as f → ∞. Hence XF and YF and also asymptotically independent. In the special case that

XF = YF , then Pr(XF > f |YF > f) = 1 so that XF and YF are asymptotically dependent. In general,

we can assume that Pr(XF > f, YF > f) is regularly varying at infinity with index − 1
η , η ∈ (0, 1] (see

Bingham et al. 1987). That is

lim
f→∞

Pr(XF > sf, YF > sf)

Pr(XF > f, YF > f)
= s
− 1
η for some fixed s > 0

For sufficiently large values of f , this equation suggests

Pr(XF > sf, YF > sf) ≈ s−
1
η Pr(XF > f, YF > f)

If we transform variables from Fréchet (XF , YF ) to Gumbel (XG, YG) marginal distributions, such that

Pr(XG < g) = exp(−e−g) = Pr(XF < eg), g ∈ (−∞,∞), we obtain for t > 0

Pr(XG > g + t, YG > g + t) = Pr(XF > eg+t, YF > eg+t)

≈ e
− t
η Pr(XF > eg, YF > eg) for large g

= e
− t
η Pr(XG > g, YG > g)

The index η provides a measure of the dependence between the marginal tails, effectively the rate of decay

of the joint survivor function for large arguments. It is clear, if we approach multivariate EV modelling

from the perspective of multivariate regular variation, that estimation η is important.

Ledford and Tawn (1996)) introduce the model Pr(XF > f, YF > f) = `(f)f
− 1
η where `(f) is a slowly-

varying function (i.e. limf→∞ `(sf)/`(f) = 1), applicable to a broad range of distributions with unit
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Fréchet marginal variables, with η referred to as the coefficient of tail dependence. Under this model

Pr(XF > f |YF > f) =
Pr(XF > f, YF > f)

Pr(YF > f)

= `(f)f
− 1
η (1− e−

1
f )−1

≈ `(f)f
1− 1

η for large f

≈ `(f) Pr(YF > f)
1
η
−1

for large f

Thus at η = 1 (and limf→∞ `(f) 6= 0), XF and YF are asymptotically dependent. Otherwise, for η < 1 (or

η = 1 and limf→∞ `(f) = 0), XF and YF are asymptotically independent. In practice, η can be estimated

by noting, for the minimum LF of XF and YF , that Pr(LF > f) = Pr(XF > f, YF > f) = `(f)f
− 1
η . Hence,

conditionally, for s > 0

Pr(LF > f + s|LF > f) =
`(f + s)

`(f)
(1 +

s

f
)
− 1
η

≈ (1 +
s

f
)
− 1
η for large f

The final expression takes generalised Pareto (GP) form; the shape parameter from a GP fit to LF (with

threshold f) therefore yields an estimate for η.

Ledford and Tawn (1997) introduce a more flexible asymptotic form for the joint survivor function. For

modelling purposes, this reduces to assuming Pr(XF > x, YF > y) ≈ `(x, y)x−cXy−cY , where cX+cY = 1/η

with x, y > 0 again simultaneously large. Now `(x, y) is a bivariate slowly varying function with limit φ(x, y)

(i.e. limf→∞ `(fx, fy)/`(f, f) = φ(x, y), and φ(fx, fy) = φ(x, y) for all f > 0 ). Under this model again,

for t > 0

Pr(XG > x+ t, YG > y + t) = Pr(XF > ex+t, YF > ey+t)

≈ `(exet, eyet)e−t(cX+cY )e−xcXe−ycY for large x and y

=
`(exet, eyet)

`(ex, ey)
e
− t
η (`(ex, ey)e−xcXe−ycY )

≈ e
− t
η Pr(XF > ex, YF > ey) for large x and y

= e
− t
η Pr(XG > x, YG > y)

Summary statistics such as the coefficient of tail dependence η characterise the strength of extremal associ-

ation concisely. In application, if an incorrect assumption is made on the form of the extremal dependence,

then any inferences drawn from a model will be invalid. For example, we might wrongly assume two vari-
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ables to be asymptotically dependent, when in fact they are asymptotically independent; a model would

then overestimate the probability of joint extreme events.

Estimating extremal dependence using χ and χ̄

Coles et al. (1999) introduce the diagnostic pair (χ , χ) to summarise the extremal dependence of an

arbitrary pair of random variables. For random variables X and Y with common marginal distribution we

have

χ = lim
x→∞

Pr(X > x|Y > x)

and

χ = 2η − 1

In practice, χ is easily estimated as the limit as x increases of χ(x) = Pr(XG > x|YG > x) for threshold

x following transformation to Gumbel (or other suitable) marginal scale; χ is best estimated from η. χ

quantifies asymptotic dependence: χ = 0 for asymptotic independence and χ = c for some c ∈ [0, 1] for

asymptotic dependence. As c increases, so does the extent of asymptotic dependence. The value of χ

is also related to the exponent measure (see Section B.2.2 below). Conversely, χ quantifies asymptotic

independence: χ = 1 for asymptotically dependence, otherwise χ = c for some c ∈ (−1, 1) for asymptotic

independence, with c = 0 indicating perfect independence. If c > 0 we say that the association between

variables is positive, and if c < 0 the association is negative. Eastoe et al. (2012) estimate χ, χ̄ and η for

the 8m array at the USACE Field Research Facility. The conditional extremes model (see Section 5) is

sufficiently flexible to accommodate different forms of asymptotic dependence and independence whereas

methods requiring a max–stability assumption are not.

For random variables X and Y with joint cumulative distribution function F and marginal cumulative

distribution functions F1 and F2 respectively, Coles et al. (1999) introduce useful estimates χ(u) and χ̄(u)

with u ∈ (0, 1) for χ and χ̄ respectively based on the bivariate copula function C and its corresponding

copula survivor function C̄.

χ(u) = 2− loge(C(u, u))

loge(u)
for 0 < u < 1

and

χ̄(u) =
2 loge(1− u)

loge(C̄(u, u))
for 0 < u < 1

where

C(u1, u2) = Pr(X ≤ F−1
1 (u1), Y ≤ F−1

2 (u2)) = F (F−1
1 (u1), F−1

2 (u2))
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and

C̄(u1, u2) = Pr(X > F−1
1 (u1), Y > F−1

2 (u2)) = 1− u1 − u2 + C(u1, u2)

such that χ(u)→ χ and χ̄(u)→ χ̄ as u→ 1. Poon et al. (2003) provide alternative estimates for χ and χ̄

under an appropriate tail model within a censored likelihood framework.

B.2. Spatial extremes

This section provides an informal introduction to the rapidly growing field of spatial extreme value mod-

elling of componentwise maxima, using the so called Smith model as motivation.

B.2.1. Max–stable process

Following Smith (1990), suppose we have a region S of 2-D space within which storm centres can occur,

and a (frequency) measure ν of the distribution of storms over S. Suppose that hi > 0 represents the

magnitude of a storm indexed by i = 1, 2, 3, ..., and that hif(si, r) represents the value of significant wave

height (HS) at location r (from a set of locations r ∈ index set R) for a storm of size hi centred at si;

the function f represents the distribution of HS corresponding to each storm. We are interested in the

maximum value Zr at location r of HS over independent storms

Zr = max
i
{hif(si, r)}, r ∈ R

We know that Poisson processes have proved invaluable in describing extremes in 1-D. We can construct

a Poisson process to describe the current situation also, reducing to the existing univariate EV results

marginally, using the following approach. We suppose that events {hi, si} form a Poisson process with

intensity measure h−2dhdν (where the choice of h−2dh guarantees that all marginal distributions will be

unit Fréchet). We also assume (a convenient normalisation only) that
∫
S f(s, r)dν = 1.

Now consider the event (Z1 ≤ z1, Z2 ≤ z2, ...), i.e. that the maximum values of HS jointly across all
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locations due to all storms, do not exceed the specified values.

Pr(Z1 ≤ z1, Z2 ≤ z2, ...) = Pr(Zr ≤ zr, for all r)

= Pr(max
i
{hif(si, r)} ≤ zr), for all r)

= Pr(hif(si, r) ≤ zr, i = 1, 2, ..., for all r)

= exp(−
∫
S

∫ ∞
0

I(hmax
r
{z−1
r f(s, r)} > 1)h−2dhdν)

= exp(−
∫
S

max
r
{z−1
r f(s, r)}dν)

where I is the indicator function (= 1 when its argument is true and = 0 otherwise), and the fourth line

derives from the fact that for any Poisson process (e.g with respect to variable x with intensity λ(x))

Pr(time of last occurrence ≤ x∗) = exp(−
∫ ∞
x∗

λ(x)dx)

Now we also see, because of the normalising assumption
∫
S f(s, r)dν = 1, that marginally

Pr(Zr ≤ zr) = exp(−1/zr) for any particular r ∈ R

That is, all marginal distributions are unit Fréchet. The remaining (dependence) structure of the process

is governed by our specification of f , as outlined in the section 5.5.

de Haan (1984) provides a constructive representation of max–stable processes which includes the Smith

model and others, including that of Schlather (2002). de Haan and Pickands (1986) studies the minima

of min–stable processes, and Wadsworth and Tawn (2012) shows how the constructive representation can

also be used for min–stable and inverted max–stable processes which are asymptotically independent.

Wadsworth and Tawn (2012) further suggests a hybrid spatial dependence model as the weighted max-

imum of max–stable and inverted max–stable processes incorporating both asymptotic dependence and

asymptotic independence. Further, Huser and Davison (2012, draft) shows that a max–stable model for

spatial componentwise maxima also provides a model for spatial exceedences of high thresholds. Using a

censored likelihood approach, they illustrate application of spatial extremes models to peaks over threshold.

Wadsworth and Tawn (2012) includes a similar illustration. These developments suggest a route to large

scale modelling of spatial peaks over threshold with a range of extremal dependence structures.
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B.2.2. Exponent measure

It is convenient to express Pr(Zr ≤ zr, r = 1, 2, ...) in the form

Pr(Z1 ≤ z1, Z2 ≤ z2, ...) = exp(−V (z1, z2, ...))

where V (z1, z2, ...) is known as the exponent measure. It can be shown (e.g. Beirlant et al. 2004) that

max–stability constrains V to be homogeneous of order −1, that is

V (rz1, rz2, ...) = r−1V (z1, z2, ...)

Only distributions which correspond to a V which is homogeneous order −1 form valid max–stable pro-

cesses. In particular, not all copula models are max–stable. Because of their homogeneity property, max–

stable processes can also be motivated from the perspective of a spectral representation (e.g. Schlather

2002).

B.2.3. Extremal coefficient and site pooling

For exponent measure V , the extremal coefficient θD = V (1, 1, ...), i.e. the value of the exponent measure

at (1, 1, ...), is a useful summary of the extent of spatial dependence, and can be thought of as the effective

number of sites being pooled in a pooling analysis. For q locations, the extremal coefficient is defined by

the equation

Pr(Z1 ≤ z, Z2 ≤ z, ..., Zq ≤ z) = exp(−V (1, 1, ...)/z) = exp(−θD/z)

for z > 0, θD ∈ [1, q] since V is homogeneous order −1. Further, since the marginal distribution of any

particular Z is Fréchet, we see that

exp(−θD/z) = {exp(−1/z)}θD = Pr(Zr ≤ z)θD

providing the pooling interpretation of θD. The extremal coefficient can be estimated empirically from

data (once transformed to unit Fréchet marginals), summarising the degree of dependence and hence the

effectiveness of any site pooling strategy. For two locations, the extremal coefficient also has a natural

interpretation in terms of conditional bivariate exceedances

lim
z→∞

Pr(Z1 > z|Z2 > z) = 2− θD
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showing its relationship to the dependence diagnostic χ, namely θD = 2− χ (see Section B.1).
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Figure 1: Quantiles of storm peak HS with direction for the northern North Sea hindcast data discussed in Jonathan and
Ewans (2007a). The characteristics of extreme values of storm peak HS are dependent on storm peak direction.
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Figure 2: Estimated values for generalised Pareto shape ξ and scale σ for the northern North Sea hindcast data discussed in
Jonathan and Ewans (2007a), with 95% bootstrap confidence bands. The characteristics of the estimated parameters reflect
those of the quantiles shown in Figure 1.
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Figure 3: Illustrative contours of estimated median 100-year storm peak HS for a grid of locations throughout the U.S. Gulf
of Mexico. Values of contour levels have been withheld for reasons of confidentiality. From Jonathan and Ewans (2011b)

.
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Figure 4: Point and bootstrap convex hull estimates for conditional model parameters a and b for for four applications of
modelling storm peak TP given storm peak HS . Point estimates (A-D) and bootstrap convex hulls shown corresponding to a
measured northern North Sea sample (A, circles), a northern North Sea hindcast sample (B, dots), a measured Gulf of Mexico
sample (C, squares), and a Australian North–West shelf hindcast (D, crosses). From Jonathan et al. (2009).
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Figure 5: Median (solid) conditional total current profiles along major axis, cMk, with depth (k = 1, 2, ..., 8) for monthly
maxima of (a) cM1, (b) cM4, (c) cM6 and (d) cM8 estimated from conditional simulation of hourly extremes (black) and
measurements of measured profiles (grey). Also shown are corresponding 25%iles and 75%iles (dashed). Conditional profiles
from simulation provide an upper bound for the instantaneous profile. From Jonathan et al. (2012b).
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