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ABSTRACT
Understanding the interaction of ocean environments with

fixed and floating structures is critical to the design of offshore
and coastal facilities. Structural response to environmental load-
ing is typically the combined effect of multiple environmental
parameters over a period of time. Knowledge of the tails of
marginal and joint distributions of these parameters (e.g. storm
peak significant wave height and associated current) as a function
of covariates (e.g. dominant wave and current directions) is cen-
tral to the estimation of extreme structural response, and hence
of structural reliability and safety. In this paper, we present a
framework for the joint estimation of multivariate extremal de-
pendencies with multi-dimensional covariates. We demonstrate
proof of principle with a synthetic bi-variate example with two
covariates quantified by rigorous uncertainty analysis. We fur-
ther substantiate it using two practical applications (associated
current given significant wave height for northern North Sea and
joint current profile for offshore Brazil locations). Further appli-
cations include the estimation of associated criteria for response-
based design (e.g., TP given HS), extreme current profiles with
depth for mooring and riser loading, weathervaning systems with
non-stationary effects for the design of FLNG/FPSO installa-
tions, etc.

∗Address all correspondence to this author.

1 Introduction

Metocean engineers are often tasked with estimating joint
extremes. This task in general is framed as the estimation of
associated values of a set of environmental variables given the
occurrence of large values of a dominant environmental or struc-
tural response variable. Typical examples might be the spec-
ification of associated peak period corresponding to a signifi-
cant wave height with given return period, or the specification
of significant wave height and spectral peak period correspond-
ing to a large value of a particular structural response. This is
central to the estimation of the statistics of extreme structural
response, and hence of structural reliability and safety. Thus
characterising the joint structure of extremes of environmental
variables is important for improved understanding of those envi-
ronments. Yet many applications of multivariate extreme value
analysis adopt models that assume a particular form of extremal
dependence between variables without justification, or restrict at-
tention to regions in which all variables are extreme. The condi-
tional extremes model of Heffernan and Tawn [2004] provides
one approach to avoiding these particular restrictions. Ewans
and Jonathan [2014] discusses the Heffernan and Tawn model
for the specification of joint extremes in the offshore industry in
the context of other approaches. Broadly this framework applies
to estimating multivariate extremal dependence in the stationary
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case, i.e. in the absence of covariates. Extremal marginal and
dependence characteristics of environmental variables typically
vary with covariates (such as wave direction). Therefore reliable
descriptions of extreme environments should also therefore char-
acterise any non-stationarity.

The directional variability of extreme environments is im-
portant to estimate, particularly for complex responses of float-
ing structures, but also for the design of safety-critical top-side
facilities on fixed structures (see, for example, Tromans and Van-
derschuren [1995], Winterstein et al. [1993]). Estimation of joint
extremal behaviour is of considerable interest in ocean engineer-
ing in particular (see, for example Jonathan and Ewans [2013]).
Jonathan et al. [2010] applies the conditional extremes model
to storm peak significant wave height and associated spectral
peak period for hindcast samples from different ocean basins.
Jonathan et al. [2012] considers the joint modelling of directional
ocean currents. Jonathan et al. [2013] extends the conditional ex-
tremes model of Heffernan and Tawn to the non-stationary case,
i.e. to include covariate effects, using Fourier representations
of model parameters for single periodic covariates, extended by
[Jonathan et al., 2014] to include general-purpose spline rep-
resentations for model parameters as functions of multidimen-
sional covariates, common to all inference steps. The current
work further extends the bivariate non-stationary conditional ex-
tremes work with one-dimensional covariate to a framework al-
lowing two-dimensional covariates (extendible to multi-dimensional
covariates and to multivariate responses) quantified by rigorous
uncertainty analysis. To handle the increased computational bur-
den in the multi-dimensional covariate space, we exploit fast
techniques already presented in [Raghupathi et al., 2016] which
estimated whole-basin independent criteria for a large spatial neigh-
bourhood in the Gulf of Mexico (GoM) accounting for spatial
and storm directional variability of peaks over threshold.

The approach to modelling is as follows. We use a non-
crossing quantile regression to estimate appropriate non-stationary
marginal quantiles simultaneously as functions of covariate; these
are necessary as thresholds for extreme value modelling, and for
standardisation of marginal distributions prior to application of
the conditional extremes model. Then we perform marginal ex-
treme value and conditional extremes modelling within a roughness-
penalised likelihood framework, with cross-validation to esti-
mate suitable model parameter roughness. Finally, we use a
bootstrap re-sampling procedure, encompassing all inference steps,
to quantify uncertainties in, and dependence structure of, param-
eter estimates and estimates of conditional extremes of one vari-
ate given large values of another. We validate the approach using
simulations from known joint distributions, the extremal depen-
dence structures of which change with covariate.

The rest of the paper is organised as follows. §2 presents
the modelling steps in detail explaining the 2D case formula-
tion as well as the extensions to higher-dimensions. §3 describes
the basis of the validation strategy through rigorous uncertainty

quantification with the help of a synthetic example with known
dependence characteristics. In §4 and 5, we present the results of
applying the method to

1. storm peak significant wave height and associated currents
for extra-tropical storms at a northern North Sea (NNS) loca-
tion, with storm direction and current direction as covariates

2. current profile with current direction at different depths given
an extreme surface current at an offshore Brazil (OB) loca-
tion.

Finally, in §6 we summarise possible extensions and recommen-
dations for future work.

2 Non-Stationary Conditional Extremes (NSCE) Method
2.1 Outline of bivariate NSCE with 2D covariate

Consider two random variables Ẋ1 and Ẋ2 (representing oceano-
graphic parameters such as significant wave height and current
speed), respectively functions of the 1D covariates θ1 and θ2. We
want to characterise the joint extremal behaviour of Ẋ1 and Ẋ2 as
a function of θ1 and θ2. Briefly, we want to estimate Ẋ1, Ẋ2|θ1,θ2
for large values of at least one of Ẋ1 and Ẋ2. We achieve this by
estimating of conditional extremes model for Ẋ2|Ẋ1,θ1,θ2. The
steps needed to estimate these conditional extremes models and
simulate under them follow the Heffernan amd Tawn approach
for stationary joint extremes can be summarised as follows.

1. Estimate marginal extreme value model Ẋ1|θ1,
2. Estimate marginal extreme value model Ẋ2|θ2,
3. Transform Ẋ1 and Ẋ2 to random variables X1 and X2 respec-

tively with stationary standard Gumbel distributions,
4. Estimate conditional extremes models X2|X1,θ1,θ2
5. Using conditional extremes model, simulate realisations of

covariates and variates corresponding to a specified return
period of interest on Gumbel scale,

6. Transform the realisations from Gumbel to original (physi-
cal) scales to get the estimates of associated design criterion
for a given return period

Threshold selection for marginal and dependence modelling is a
key concern, and can be quite challenging. Estimating models
for different threshold levels and then averaging over models for
different thresholds to incorporate uncertainty in threshold selec-
tion is a wise procedure. In future, Bayesian implementation of
the conditional extremes model will allow the most natural in-
corporation of threshold uncertainty.

2.2 Extension to p-variate NSCE with nD covariate
We now characterise parameter non-stationarity in marginal

and dependence models with respect to multi-dimensional co-
variates in terms of tensor products of splines. Given sufficient
computational resource, and slick spline algorithms such as GLAMS
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(Currie et al. 2006 as applied in [Raghupathi et al., 2016] for the
marginal case), the bivariate conditional extremes approach with
2D covariate is therefore straightforward to extend to nD covari-
ates. Moreover, since the dependence model for p (p > 2) re-
sponses (i.e. Ẋ1, Ẋ2, ..., Ẋp) can be written in terms of a set of
pairwise dependence models, the approach is also extendible to
multivariate responses. A p-variate conditional extremes model
with nD covariate can therefore be constructed. The dependence
model for p (p > 2) responses X1,X2, ...,Xp on Gumbel scale can
be expressed in terms of the set of pairwise dependence models
X j|Xk for j = 1,2, ...p and k = 1,2, ...p. For positively dependent
random variables X j, Xk with standard Gumbel marginal distribu-
tions for any fixed value t j of θ j and tk of θ k (or t jk = t j ∪ tk of
θ j ∪ θ k), we extend the asymptotic argument of Heffernan and
Tawn [2004] for the form of the conditional distribution of X j
given large values of Xk. We assume

(X j|Xk = xk,θ j ∪θ k = t jk) = α jk(t jk)xk + x
β jk(t jk)

k Wjk(t jk) (1)

for xk > ψk(tk), a threshold non-stationary with respect to θ k
only, with non-exceedance probability τk above which the con-
ditional extremes model fits well. The parameter functions α jk ∈
[0,1], β jk ∈ (−∞,1] vary smoothly with covariates θ j∪θ k. Wjk is
a random variable drawn from an unknown distribution, the char-
acteristics of which also vary smoothly with θ j∪θ k. We assume
that the standardised variable Z jk = (Wjk − µ jk)/σ jk follows a
common distribution G jk, independent of covariates, for smooth
location and scale parameter functions µ jk and σ jk of θ j ∪ θ k,
with σ jk > 0. We rewrite (1) for any value t jk of θ j ∪θ k:

(X j|Xk = xk,θ j ∪θ k = t jk) = α jk(t jk)xk (2)

+ x
β jk(t jk)

k (µ jk(t jk)+σ jk(t jk)Z jk)

For potentially negatively dependent variables (corresponding to
α jk = 0 and β jk < 0, see Heffernan and Tawn 2004), extended
forms of the equations above are available in the stationary case,
and can be easily specified for the non-stationary case also. How-
ever, for most applications of practical interest, and for oceano-
graphic applications in particular, we expect α jk > 0 so that pos-
itive dependence only need be considered. In practice, were we
to estimate α jk to be approximately zero, the extended form of
the conditional extremes model would then need to be consid-
ered. To estimate the parameter functions α jk, β jk, µ jk and σ jk,
we follow Heffernan and Tawn [2004] in assuming that G jk is the
standard Gaussian distribution. The corresponding negative log
likelihood for a sample of pairs (xi

j,x
i
k) from the original sample

with covariate t i
jk for which xi

k > ψk(tk
i )

`CE, jk = ∑
i,xi

k>ψ i
k

logsi
jk +

(xi
j−mi

jk)
2

2(si
jk)

2 (3)

where

mi
jk = α jk(t i

jk)x
i
k +µ jk(t i

jk)(x
i
k)

β jk(t i
jk)

si
jk = σ

i
k(t

i
jk)(x

i
k)

β jk(t i
jk)

Adopting a penalisation procedure to regulate parameter rough-
ness, the penalised negative log likelihood is:

`∗CE, jk = `CE, jk +λα jk Rα jk +λβ jk
Rβ jk

+λµ jk Rµ jk +λσ jk Rσ jk (4)

where parameter roughnesses Rα jk , Rβ jk
, Rµ jk , Rσ jk are easily

evaluated, and roughness coefficients λα jk , λβ jk
, λµ jk , λσ jk are es-

timated using cross-validation. To reduce computational burden,
we choose to fix the relative size of the roughness coefficients so
that only one roughness coefficient λ jk (= δα jk λα jk + δβ jk

λβ jk
+

δµ jk λµ jk +δσ jk λσ jk) is estimated.
The values of δα jk ,δβ jk

,δµ jk and δσ jk used are set by careful
experimentation. Residuals:

ri
jk =

1
σ̂ jk(t i

jk)
((xi

j− α̂ jk(t i
jk)x

i
k)(x

i
k)
−β̂ jk(t i

jk)− µ̂ jk(t i
jk)) (5)

evaluated for xi
k > ψk(t i

k) are inspected to confirm reasonable
model fit, where all estimated parameter functions are evaluated
at covariate values corresponding to xi

k. The set of residuals is
also used as a random sample of values for Z jk from the unknown
distribution G jk for simulation to estimate extremes quantiles.

2.3 Parameter functional forms
Physical considerations usually suggest that parameters ψ̇k,

ξ̇k and ζ̇k (marginal threshold and GP model estimates) would
be expected to vary smoothly with respect to covariates θ k, and
that α jk, β jk, µ jk and σ jk would vary smoothly with respect to
θ j ∪ θ k. Adopting the notation η for a typical parameter func-
tion of covariate vector θ , this can be achieved by expressing
η(θ) in terms of an appropriate basis for the covariate domain.
For a one-dimensional covariate, periodic on [0,360), we might
adopt a basis of periodic B-splines of appropriate order. We cal-
culate the B-spline basis matrix B (ms× ps) for an index set of
ms (typically less than sample size, n) covariate values, at ps uni-
formly spaced knot locations on [0,360). Specifically, for ex-
ample in the case of a bi-directional covariate, we would define

3 Copyright c© 2016 by ASME



B-spline bases Bθ1 (mθ1× pθ1), Bθ2 (mθ2× pθ2) for two covariate
direction respectively, from which the full bi-directional basis B
(ms× ps = mθ1mθ2 × pθ1 pθ2) is evaluated as

B = Bθ1 ⊗Bθ2 (6)

where ⊗ represents the Kronecker product. Values η of η(θ) on
the index set can then be expressed as η = Bβ for some vector β

(ps×1) of basis coefficients to be estimated.
The roughness R of η is evaluated on the index set using the

approach of Eilers and Marx [2010]. Writing the vector of dif-
ferences of consecutive values of β as ∆β , and vectors of second
and higher order differences using ∆

g
β = ∆(∆g−1

β ), g > 1, the
roughness R of β is given by

R = β
′Pβ (7)

where P = (∆g)′(∆g) for differencing at order g. We use g = 1
throughout this work.

2.4 Simulation procedure for pairwise dependence
Inferences concerning the probabilities of extreme sets in-

volving Ẋ j and Ẋk, for some value or interval of covariates are
drawn using the non-stationary conditional extremes approach
by simulating joint occurrences using the estimated marginal and
conditional extremes models. To simulate realisations of ex-
ceedances of a high quantile of the conditioning variate Ẋk and a
corresponding value of the conditioned variate Ẋ j corresponding
to a pre-specified return period, for some interval I of covariates
θ j ∪θ k, we proceed as follows:

1. Estimate the number of values to be simulated from the co-
variate interval I (for example, using the estimated Poisson
rate ρ corresponding to I for the return period of interest).

2. For each individual to be simulated

(a) Draw the necessary number of value of covariates ts
jk

at random from the interval I.
(b) Draw a value of residual rs

jk from the set of residuals
obtained during model fitting,

(c) Draw a value xs
k of the conditioning variate from its

standard Gumbel distribution,
(d) If the value xs

k exceeds ψk continue, else return to the
start of 2.

(e) Estimate the value of the conditioned variate xs
j using:

xs
j = α̂ jk(ts

jk)x
s
k +(xs

k)
β̂ jk(ts

jk)(µ̂ jk(ts
jk)+ σ̂ jk(ts

jk)r
s
jk)(8)

where the obvious notation is used for the estimated values
of model parameters, evaluated at covariate value ts

jk.

3. Transform the pair xs
k,x

s
j in turn to the original scale (to

ẋs
k, ẋ

s
j) using the probability integral transform.

Note that this procedure can be extended to include realisations
for which xs

k ≤ ψk(ts
k), by drawing a pair of values (for the con-

ditioning and conditioned variates) at random from the subset
of the Gumbel-transformed original sample within interval I (for
which the conditioning variate is ≤ ψk) at step 2d.

2.5 Simulation procedure for multivariate dependence
Extending the simulation procedure from §2.4 to p > 2 re-

sponses is straightforward, given the following two observations.
Firstly, the tail of the distribution of X¬k|Xk, where X¬k =

X1,X2, ...,Xk−1,Xk+1, ...,Xp can be estimated from the p−1 pair-
wise models X j|Xk j 6= k provided that the residuals ri

jk for each
individual i (and all j) are sampled together during the simulation
procedure. This retains the dependence structure of of X¬k|Xk in
the simulated realisations. Therefore, given that we can spec-
ify a conditioning variate Xk, we are able to simulate conditional
extremes of all other variates.

Secondly, we can specify the conditioning variate Xk as fol-
lows. Suppose we are required to simulate realisations from
an extreme set E of the joint distribution of Ẋ1, Ẋ2, ..., Ẋp. We
can always partition E into a set of (non-overlapping) subsets,
such that in each subset one response Ẋk is more extreme in its
marginal distribution that all other variables. For this subset, it
is sensible to use Ẋk (or its Gumbel analogue Xk) as conditioning
variate. Simulation from E therefore can be achieved by a set
of simulations, one for each of the subsets of the partition of E.
In this work, we focus discussion of method development on the
bivariate case p = 2, but apply it to p > 2 also below.

3 Uncertainty quantification for synthetic data
We validate the non-stationary conditional extremes method-

ology by first applying it on a synthetic example before venturing
into practical applications. First, we specify an underlying “true”
non-stationary bivariate extreme value model whose characteris-
tics are known. Using the true model, we simulate one or more
samples of data and then fit an NSCE model. We then com-
pare estimates of marginal and conditional cumulative distribu-
tion functions (cdfs) for arbitrary combinations of covariates and
specified return periods by simulation under the “true” model,
and simulation under the “fitted” NSCE model.

Uncertainty present in simulations under the true model is
true, natural, inherent or aleatory. It cannot be reduced without
changing the true underlying physics. Aleatory uncertainty is
therefore the lowest level of uncertainty we can realistically hope
to achieve in the fitted model also, and corresponds to the width
or spread of the “true” cdf. In comparing cdfs under the true and
fitted models, we therefore seek to assess that (a) the location of
the “fitted” cdf is approximately the same as that of the truth, and
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that (b) the width of the fitted cdf is at least as large as (but not
too much larger than) that of the truth.

The extra uncertainty in cdfs under the fitted model is due to
our lack of understanding of the truth as represented by the data
sample used for fitting. This uncertainty is sometimes known as
epistemic uncertainty, and can in principle be reduced by fitting
using a larger sample. But the overall uncertainty in fitted cdfs
can never be reduced below the level of aleatory uncertainty.

We choose to compare cdfs in the following way, to explore
aleatory and epistemic uncertainty of marginal and dependence
characteristics.

1. Generate many samples directly under the true model and
estimate empirical cdfs. Estimates are labelled “Truth” or
“Data”. This represents the “Aleotary (A)” uncertainty de-
scribed above.

2. For a particular sample generated under the true model, fit
the NSCE model. Simulate under the fitted model to es-
timate empirical cdfs. Estimates are labelled “1-EVA” or
“Model”. This represents the “Epistemic (E)” uncertainty
described above.

3. For each of a large number of samples generated under the
true model, fit the NSCE model. Simulate under the fitted
models to estimate empirical cdfs using all simulations. Es-
timates are labelled ‘‘M-EVA” or “M-Model”. This repre-
sents the combined “Aleotary + Epistemic (A+E)” uncer-
tainty described above.

The number of comparisons which could be made is huge; we
judge that those made is sufficient to demonstrate the quality of
the NSCE approach. Examples of model validation for applica-
tions to synthetic and metocean data are given in forthcoming
sections.

3.1 2D Synthetic Case
We now present the results of applying our non-stationary

conditional extremes model using a synthetic example and val-
idating using the diagnostics procedure described earlier. First,
we describe the test dataset with known parameters (truth) used
for model validation throughout this section. We then present
the results of model validation and return value diagnostics for
the marginal models and finally the conditional validation.

Figure 1 illustrates the generation of synthetic example used
for the development and validation of the proposed approach.
Figure 1 shows the plot of bi-variate Gaussian distributed variates
X ,Y with different correlation (α = 0.1,0.3,0.6,0.9) in differ-
ent directional sectors θX ,θY . Notice the sector (θX > 180,θY >
180) with high correlation specified with α = 0.9. We have used
the same rate of occurrence ρ = 1 for all the covariate sectors
for simplicity. For sake of illustration from now onwards, we
shall use practical metocean terminology in the place of generic
variates X and Y , i.e., we shall be dealing with a common meto-

cean variates HS which is the significant wave height (measured
in meters) and TP which is the peak spectral period (measured in
seconds). We would like to first marginally model HS and TP and
eventually estimate the conditional distribution of TP given HS.
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FIGURE 1. Synthetic Case: True parameters based on which the
marginal and dependence data has been generated. Bi-variate Gaussian
dependent data in Gumbel scale with different correlation parameters
(α) for different directional covariate sectors with the same rate of oc-
currence (ρ).

3.2 Marginal Diagnostics
Figure 2 shows the plot of marginal parameter estimates of

the threshold, rate of occurrence, GP shape and scale for the sim-
ulated case of HS and TP. This shows the results of marginally
fitting a threshold (using non-crossing quantile regression), Pois-
son rate of occurrence and a GP shape and scale model. using
the same synthetic example shown in Figure 1) with 1000 storm
events as input for this analysis. For the threshold selection, we
chose the threshold corresponding to a non-exceedance proba-
bility or NEP of 0.8 (Figure 2 (a) and (b)). The GP shape and
scale model parameters are estimated by determining the opti-
mal roughness penalty that minimizes lack of fit (Figure 2 (i)
and (j)).

Synthetic Case Marginal Diagnostics: Having estimated the
model parameters, we now validate its output by generating sam-
ples from the truth and model for a given return period and plot-
ting omni-directional and sectoral distributions. Specifically, we
simulate multiple realisations of sets of sea-state HS events cor-
responding exactly to the period of the original sample under a
model. For each set simulated, we construct a cumulative distri-
bution function F , potentially restricted to some co-variate in-
terval A, and estimate 2.5% and 97.5% values of the cdf for
each value of HS. To emphasise tail behaviour, we actually plot
1− log(F). These curves (representing the epistemic (E) uncer-
tainty), with 95% confidence intervals, are illustrated in black in
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FIGURE 2. Synthetic Case: Marginal parameter estimates of HS (left)
and TP (right). (a) & (b) Raw data with non-crossing quantile estimates.
(c) & (d) Poisson rate of occurence estimates. (e) & (f) Cross-validatory
selection of optimal roughness penalty of the Poisson model. (g) & (h)
GP model shape and scale estimates. (i) & (j) Cross-validatory selection
of optimal roughness penalty of the GP model.

Figure 3, are compared with the cumulative distribution function
for the original sample, illustrated in red (representing the aleo-
tary (A) uncertainty) in the Figure in terms of an empirical 95%
bootstrap uncertainty band estimated from 1000 bootstrap resam-
ples of the original sample. In addition, we simulate multiple re-
alisations of sets of sea-state HS events corresponding exactly to
the period of the original sample under many models shown in
green (representing the combined aleotary and epistemic (A+E)

uncertainty). Agreement is good between all the three curves for
omni-directional and sectoral estimates shown for HS. Similar
illustrations for TP estimates per directional octant also indicate
good agreement between the original sample and simulation.
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FIGURE 3. Synthetic Case: Validation of the marginal return value
estimation by comparing cdfs of bootstrap resamples of the original
data and realisations under the model(s) corresponding to the same time
period as the original for (top) HS and (bottom) TP. The plots show
1− log(F) to emphasise tail behaviour showing 95% quantiles for reali-
sations of data (red), from a single model (black) and from many models
(green). For each plot, the 8 right hand panels show the comparisons per
directional sector for the 8 directional octants centred (from left to right,
top to bottom) on covariate directions from NW, N, and NE; W and E;
SW, S and SE respectively. The left hand panel shows the equivalent
omni-directional comparison. The title for each plot, in brackets are the
numbers of actual and simulated events for each directional sector.
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3.3 Conditional Diagnostics
We first present the model as a result of applying our NSCE

to the synthetic data with a known dependence structure. This
allows us to validate the model in a straightforward manner. Fig-
ure 4 shows the plot of conditional parameter estimates from the
NSCE model along with the individual diagnostic plots for the
simulated case of HS and TP. Notice the α parameter of the HT
model with different values for the four covariate sectors which
reasonably matches the true input dependence model of Figure
1. This covariate dependence is also reflected in case of β which
often acts as a “counter balance”. Finally µ roughly equals to 0
and σ equals 1 as expected from fitting on a bi-variate Gaussian
distribution. We thus can be satisfied that the model parameters
are sensible and reflect the underlying true dependence structure.
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FIGURE 4. Synthetic Case: Bi-variate conditional extremes model
parameter estimates and diagnostic plots. (Right) showing α , β , µ and
σ parameters from the HT model as a function of bi-directional covari-
ates. Notice the α parameter of the HT model with different values
for covariate sectors which matches the true input dependence model
of Figure 1. This covariate dependence is also reflected in case of β

while µ roughly equals to 0 and σ equals 1 as expected. (Left) The
top three show plots of residual values as a function of conditioning and
conditioned variate and covariates. The fourth plot shows the empiri-
cal density fit of the residue showing a Gaussian-like distribution. The
last plot shows the negative log-likelihood (NLL) as a function of the
roughness penalty.

Synthetic Case Conditional Diagnostics & Return Value Es-
timation: We now describe the methodology to validate our con-
ditional extremes model. First we build the distribution of TP
conditioned on the variate HS satisfying certain predefined crite-
ria. For sake of illustration let us consider the case of TP|HS > h
where we characterise the instantaneous behaviour of the peak
period TP given that the significant wave height HS exceeding a

set threshold h. Here, we simulate multiple realisations of sets of
sea-state HS events and build the corresponding TP satisfying the
given condition (say HS > h in this case) exactly to the period of
the original sample under the model. This can be done for reali-
sations of the original samples and also the realisations under the
model.

Using this simulation procedure, we construct a cumulative
distribution function F , potentially restricted to some co-variate
interval A, and estimate 2.5% and 97.5% values of the cdf for
each value of TP|HS. As earlier we actually plot 1− log(F) to
emphasise tail behaviour. These curves with 95% confidence in-
tervals, are illustrated in black in Figure 5, is compared with the
cumulative distribution function for the original sample, illus-
trated in red in the Figure in terms of an empirical 95% boot-
strap uncertainty band estimated from 1000 bootstrap resamples
of the original data. Agreement is good for omni-directional and
sectoral estimates shown for TP|HS > 4,6. We notice that the
uncertainty bands are getting wider as we increase the threshold
as one expects due to decreasing number of samples above the
threshold.

Using a synthetic example with known dependency charac-
teristics, we have thus demonstrated the model adequacy through
appropriate diagnostics and uncertainty analysis. We shall now
illustrate the application of our approach to two practical exam-
ples.

4 Northern North Sea (NNS): Currents given waves
We now describe the application of the nD NSCE approach

for the modelling of extreme wave height (HS) and current speed
(CS) as a function of its two covariates i.e., wave direction θH
and current direction θC for the site in NNS. In this analysis,
only the winter period (Oct-Mar) is considered. For analysis of
current speed, residual current speed after removal of tidal cur-
rent is considered. We estimate the associated CS directionally
given a return value of HS.

Storm characteristics are isolated from the original time-
series using the procedure described in Ewans and Jonathan [2008].
Contiguous intervals of HS above a low peak-picking thresh-
old are identified, each interval now assumed to correspond to a
storm event. The peak-picking threshold corresponds to a direc-
tional quantile of HS with specified non-exceedance probability,
estimated using quantile regression. The maximum of significant
wave height during the storm interval is taken as the storm peak
significant wave height or HSP

S . The values of other variables
(θH , CS and θC) at the time of the storm peak significant wave
height are referred to as storm peak values of those variables.
The resulting storm peak sample consists of 310 observations of
(HS, θH , CS, θC) spanning 31 years.

Figure 6 shows the plot the raw values of peaks of significant
wave height HS as a function of its covariate, wave direction θH
(“FROM” orientation), current speeds CS as a function of current
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FIGURE 5. Synthetic Case: Validation of the conditional return value
estimation by comparing cdfs F of bootstrap resamples of the origi-
nal data and realisations under the model(s) corresponding to the same
time period as the original sample for TP|HS > 4,6. The plots show
1− log(F) to emphasise tail behaviour showing 95% quantiles of data
(red) and realisations from a single model (black) and many models
(green). In each plot, the 8 right hand panels show the cdf compar-
isons per directional sector for the 8 directional octants centred (from
left to right, top to bottom) on covariate directions (i.e., θH ) from NW,
N, and NE; W and E; SW, S and SE respectively. The left hand panel
shows the equivalent omni-directional comparison. The title for each
plot, in brackets are the numbers of actual and simulated events for each
directional sector.

direction θC (“FROM” orientation). We observe significant di-
rectional variation both for HS and CS. For HS, there is a shielding
effect from the East (around 90o) due to the European landmass.
There are currents present for all directions with higher values
from the North. Thus when we plot the sectoral scatter plot (top-
left of Figure 6 (c)), we see relatively less correlation in the sector
θH < 180o,θC < 180o. In the other sector θH > 180o,θC > 180o,
there is a higher correlation. For each variate individually, we
marginally estimate the threshold, the rate of occurrence above

the threshold, and finally the GP shape and scale as a function
of their respective covariates (Figure 7). The threshold and rate
of occurrence estimates are consistent with the underlying data
characteristics. While the GP scale for HS correctly reflects the
lack of events from the East (around 90o again due to landmass
effect), there is a corresponding counter balance effect for the
GP shape. No such trend is observed in CS. The model estimates
are validated by observing the marginal return value diagnostics
generated using the same procedure described in §3.2 shown in
Figure 8 indicating good agreement for the period of data.

For the dependence model, we then convert the variates to
Gumbel scale and fit a NSCE model as described earlier. Similar
to the model description for the synthetic example of §3, we see
covariate effects observed for the North Sea case clearly reflected
in the model. Figure 9 shows the plot of conditional parameter
estimates from the NSCE model (right) along with the individual
diagnostic plots (left) for the NNS case of HS and CS. The diag-
nostic plots (left) showing the residuals, its density functions and
fit negative log likelihood are all consistent and needs no further
elaboration. We now focus on the right-side plots describing the
model parameters as a function of bi-directional covariates.

Notice the α parameter of the HT model with different val-
ues across the four covariate sectors. As observed in the raw cor-
relation plots, the α values are relatively small around 90o for the
HS (shown as “Cvr1” in the plot) which is due to the landmass ef-
fect. Similarly, for the sector θH > 180o,θC > 180o, the α values
are higher as observed earlier in the scatter plot. This effect is al-
most “counter-balanced” in case of β which again shows strong
covariate effects. The values of µ and σ are again close to 0 and
1 respectively, consistent with the earlier case. We thus can be
satisfied that the model parameters are sensible and reflects the
underlying physical process. Of course, since we do not know
the actual true model (if there is one), the only way we can val-
idate it rigorously is by generating return value diagnostics as
done for the synthetic case.

Similar to the marginal case, we use a return value simula-
tion to assess the dependence model adequacy as described for
the synthetic case in §3.3. Accordingly, we simulate multiple
realisations of sets of sea-state HS events and build the corre-
sponding CS satisfying a given condition (say HS > h) exactly
to the period of the original sample under the model and esti-
mate 2.5% and 97.5% values of the cdf for each value of CS|HS.
We plot 1− log(F), with 95% confidence intervals, illustrated
in black in Figure 10, and compare with the cumulative distri-
bution function for the original sample, illustrated in red in the
figure in terms of an empirical 95% bootstrap uncertainty band
estimated from 1000 bootstrap resamples of the original data.
Agreement is good for omni-directional and sectoral estimates
shown for CS|HS > 4,8. We observe that the uncertainty bands
are progressively getting wider with higher thresholds due to de-
creasing sample size.

Having validated both the marginal and the conditional model,
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we can now estimate design criteria for any given return pe-
riod using the same simulation procedure. Figure 11 compares
the estimates of the independent design criterion of CS from the
marginal model and the joint design criterion of CS|HS for a pe-
riod of 100 years. It is is clear that the omni-directional joint
criterion (around 0.5 m/s at the median) is much less than the
independent criterion (0.8 m/s) which would have a significant
impact on the eventual design of the structures. Likewise our ap-
proach allows to estimate joint design criteria for any arbitrary
subset of covariates.

5 Offshore Brazil (OB): Current profile with depth
We now describe the second application of the nD NSCE

approach for the modelling of extreme currents (Cs j) at depths
j = 1,2, ..., p as a function of its respective current directions θC j
for the OB site. We would like to estimate the associated Cs j
directionally given a return value of surface current Cs1. Current
characteristics are isolated from the original time-series using the
procedure described in §4. The maximum surface current during
a time interval is taken as the Cs1. The values of other variables
(θC1, Cs j and θC j) at the time of the maximum surface current are
referred to as peak values of those variables. The resulting storm
peak sample consists of 348 observations spanning 5.2 years.

In this analysis, for illustration we have chosen two pairs
of depths to do the conditional analysis, one with a high degree
of correlation owing to closer depths and second that are suffi-
ciently far apart. Accordingly we chose Cs1, Cs2 and Cs43 for
our analysis. Figure 12 plots the raw values of peaks of surface
current Cs1 as a function of its covariate, θC1, current speeds Cs2
and Cs43 as a function of their respective current directions θC2
and θC43. From the figure, Cs1 and Cs2 have a high degree of
correlation across many sectors (mostly in the first sector θC1 <
180o,θC2 < 180o and the last sector θC1 >= 180o,θC2 >= 180o

) whereas Cs1 and Cs43 are much less correlated across all the
sectors.

As in the previous cases, here too we fit 3 marginal models
each for Cs1, Cs2 and Cs43 followed by two dependence mod-
els for Cs2|Cs1 and Cs43|Cs1. We validated these models with
the same diagnostic procedure as earlier but have chosen to only
present the results for sake of brevity. Figures 13 and 14 com-
pare the estimates of the independent design criteria of Cs j, j =
2,43 from the marginal model and the conditional design criteria
of Cs j|Cs1, j = 2,43 for a period of 100 years. It is clear that
the conditional median criterion for Cs2|Cs1 (around 0.8 m/s) is
higher and closer to the independent criterion (1.6 m/s) owing
to higher correlation compared to Cs43|Cs1 (0.5 m/s compared
to 1.4 m/s) which is much less correlated. The effect of condi-
tioning in reducing conditional design values relative to uncondi-
tioned values is nevertheless clear, and careful structural design
should exploit this.

6 Discussion & Conclusions
Covariate effects are important in extreme value analysis, for

individual metocean parameters and for joint modelling. Incor-
porating covariate effects in multivariate extreme value models
is challenging in general. However, as demonstrated in this pa-
per, incorporation of covariate effects in the conditional extremes
model is possible. Moreover, for both the NNS and OB appli-
cations illustrated, estimated models including covariate effects
are different to those excluding covariates, reflect physical reality
more adequately, and lead to different estimates for return values.

Estimation of joint occurrences of extremes of environmen-
tal variables is crucial for design of offshore facilities and achiev-
ing consistent levels of reliability. Specification of joint extremes
in design criteria has often been somewhat ad hoc, being based
on fairly arbitrary combination of extremes of variables estimated
independently. Such approaches are even outlined in design guide-
lines. More rigorous methods for modelling joint occurrences
of extremes of environmental variables are now available. In
particular, the conditional extremes model provides a straight-
forward approach to joint modelling of extreme values, based on
solid theory. It admits different forms of extremal dependence,
ensuring that the data (rather than unwittingly made modelling
assumptions) drive the estimation of design values. The model
admits uni- and multi-variate covariate effects, is scalable to high
dimensions and allows uncertainty analysis via simulation. For
this reason, we recommend the conditional extremes model for
joint extremes modelling in both response-based and response-
independent metocean design.

The conditional extremes model estimates the dependence
between random variables independently of their marginal char-
acteristics (see, e.g., Jonathan and Ewans 2013, Heffernan and
Tawn 2004). Moreover, it adopts appropriate model forms (known
from asymptotic extreme value theory) for both marginal (e.g.
generalised Pareto for peaks over threshold) and dependence mod-
els (e.g. the Heffernan and Tawn model for variables with Gum-
bel marginal distributions) of extreme values. Jonathan et al.
[2010] illustrate the conditional extremes approach in the ab-
sence of covariate effects, for estimation of joint extremes of
storm peak HS and associated TP, and compare the approach with
that of Haver [1985]. The latter assumes that large values of HS
follow a Weibull distribution, and that conditional values of TP
given HS follow a log-normal distribution. The conditional ex-
tremes model is shown to perform better than the Haver model
for simulated samples with known extremal characteristics. The
main reason for this is that there is no prescribed model form for
extrapolation of the parameter estimates of the Haver (and simi-
lar empirical) models beyond the domain of the data. We would
therefore also expect the conditional extremes model to also pro-
vide more realistic estimates of characteristic structure variables.

Incorporation of multiple (and multivariate) covariates is pos-
sible in principle, and may be justifiable and necessary in fu-
ture. Computationally, inference for one covariate is relatively

9 Copyright c© 2016 by ASME



straightforward, notwithstanding the need to estimate multiple
quantile thresholds, appropriate parameter roughnesses in marginal
and conditional models (using cross-validation), and uncertain-
ties (using bootstrapping). Bondell et al. [2010] propose simul-
taneous estimation of non-crossing quantiles. Extensions of the
method to multiple covariates will require access to good com-
putational resources. Extension to conditional modelling of three
of more random variables, and potentially even to include differ-
ent covariates for different subsets of variables are possible. Spa-
tial, spatio-directional or spatio-temporal covariates are attractive
from an oceanographic perspective.
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FIGURE 6. NNS: Raw input data showing (a) HS (m) and (b) CS (m/s)
plotted as a function of their respective directional covariates i.e., θH and
θC. All directions (including the currents) are direction “FROM”. No-
tice HS values indicating directional effects are mostly absent in the east
(around 90o) due to landmass effect. CS also shows directional effects
with higher values around North West (270-360o) (c) Scatter plot of CS
vs HS shown in different directional sectors indicating lower correlation
in the first sector (θH > 180o,θC > 180o) but higher correlation in the
fourth sector (θH > 180o,θC > 180o).
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FIGURE 7. NNS: Marginal parameter estimates for HS (left) and CS
(right). (a) & (b) Raw data with non-crossing quantile estimates. (c)
& (d) Poisson rate of occurence estimates. (e) & (f) Cross-validatory
selection of optimal roughness penalty of the Poisson model. (g) & (h)
GP model shape and scale estimate. (i) & (j) Cross-validatory selection
of optimal roughness penalty of the GP model.
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FIGURE 8. NNS: Validation of the marginal return value estimation
by comparing cdfs F of bootstrap resamples of the original data and re-
alisations under the model corresponding to the same time period as the
original for (top) HS and (bottom) CS. Plot of 1− log(F) showing 95%
quantiles for realisations of data (red) and model (black). For each plot,
the 8 right hand panels show the cdf comparisons per directional sector
for the 8 directional octants centred (from left to right, top to bottom)
on covariate directions (i.e., θH and θC) from NW, N, and NE; W and
E; SW, S and SE respectively. The left hand panel shows the equivalent
omni-directional comparison. The title for each plot, in brackets are the
numbers of actual and simulated events for each directional sector.
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FIGURE 9. NNS: Bi-variate conditional extremes model parameter
estimates and diagnostic plots.(Right) showing α , β , µ and σ parame-
ters from the HT model as a function of bi-directional covariates. Notice
the α parameter of the HT model with different values for covariate sec-
tors agrees with the scatter plots of Figure 6. This covariate dependence
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FIGURE 10. NNS: Validation of the conditional return value estima-
tion by comparing cdfs F of bootstrap resamples of the original data and
realisations under the model corresponding to the same time period as
the original for (top) CS|HS > 4 and (bottom) CS|HS > 8. The plots show
1− log(F) to emphasise tail behaviour showing 95% quantiles of data
(red) and model (black). In each plot, the 8 right hand panels show the
cdf comparisons per directional sector of the conditioning variate for the
8 directional octants centred (from left to right, top to bottom) on covari-
ate directions (i.e., θH ) from NW, N, and NE; W and E; SW, S and SE
respectively. The left hand panel shows the equivalent omni-directional
comparison. The title for each plot, in brackets are the numbers of actual
and simulated events for each directional sector.
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FIGURE 11. NNS: Sectoral marginal and conditional return value es-
timates showing 95% quantiles of realisations the model showing (top)
CS and (right) CS|max(HS) (both in m/s) for a 100-year period. For each
plot, the 8 right hand panels show the cdf estimates per directional sec-
tor for the 8 directional octants centred (from left to right, top to bottom)
on covariate directions (i.e., θH and θC) from NW, N, and NE; W and
E; SW, S and SE respectively. The left hand panel shows the equivalent
omni-directional estimate with its title indicating the average number
events for the return period of simulation.
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FIGURE 12. OB: Current speed scatter plots at different depths in
different directional sectors (i) Cs2 Vs Cs1 and (ii) Cs43 Vs Cs1. The title
in each of the four subplot indicates the bi-directional covariate quadrant
range (e.g., θC1 < 180o,θC2 < 180o for top left and so on), followed by
the correlation coefficient ρ for the observations in that quadrant.
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FIGURE 13. OB: Sectoral marginal and conditional return value es-
timates showing 95% quantiles of realisations the model showing (top)
Cs2 and (right) Cs2|max(Cs1) (both in m/s) for a 100-year period. For
each plot, the 8 right hand panels show the cdf estimates per directional
sector for the 8 directional octants centred (from left to right, top to bot-
tom) on covariate directions (i.e., θCs1 and θCs2 ) from NW, N, and NE;
W and E; SW, S and SE respectively. The left hand panel shows the
equivalent omni-directional estimate with its title indicating the average
number events for the return period of simulation.
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FIGURE 14. OB: Sectoral marginal and conditional return value es-
timates showing 95% quantiles of realisations the model showing (top)
Cs43 and (right) Cs43|max(Cs43) (both in m/s) for a 100-year period.
For each plot, the 8 right hand panels show the cdf estimates per direc-
tional sector for the 8 directional octants centred (from left to right, top
to bottom) on covariate directions (i.e., θCs1 and θCs43 ) from NW, N, and
NE; W and E; SW, S and SE respectively. The left hand panel shows the
equivalent omni-directional estimate with its title indicating the average
number events for the return period of simulation.
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