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Abstract

Extreme values of an environmental response can be estimated by fitting the generalised Pareto
distribution to a sample of exceedances of a high threshold. In oceanographic applications to
responses such as ocean storm severity, threshold and model parameters are typically functions of
physical covariates. A fundamental difficulty is selection or estimation of an appropriate threshold
or interval of thresholds, of particular concern since inferences for return values vary with threshold
choice. Historical studies suggest that evidence for threshold selection is weak in typical samples.
Hence, following Randell et al. (2016), a piecewise gamma-generalised Pareto model for a sam-

ple of storm peak significant wave height, non-stationary with respect to storm directional and
seasonal covariates, is estimated here using Bayesian inference. Quantile regression (for a fixed
quantile threshold probability) is used to partition the sample prior to independent gamma (body)
and generalised Pareto (tail) estimation. An ensemble of independent models, each member of
which corresponds to a choice of quantile probability from a wide interval of quantile threshold
probabilities, is estimated. Diagnostic tools are then used to select an interval of quantile threshold
probabilities corresponding to reasonable model performance, for subsequent inference of extreme
quantiles incorporating threshold uncertainty.
The estimated posterior predictive return value distribution (for a long return period of the order

of 10,000 years) is a particularly useful diagnostic tool for threshold selection, since this return
value is a key deliverable in metocean design. Estimating the distribution using Monte Carlo sim-
ulation becomes computationally demanding as return period increases. We present an alternative
numerical integration scheme, the computation time for which is effectively independent of return
period, dramatically improving computational efficiency for longer return periods.
The methodology is illustrated in application to storm peak and sea state significant wave height

at a South China Sea location, subject to monsoon conditions, showing directional and seasonal
variability.
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1. Introduction

1.1. Threshold selection

Threshold selection in practical application of extreme value analysis is almost always problem-
atic. Even in the absence of covariate effects, it is rarely clear where the threshold should be set,
or indeed if setting a single threshold is even desirable. A review of threshold selection for extreme
value analysis is given by Scarrott and MacDonald (2012). The generalised Pareto (GP) model
for peaks-over-threshold is motivated by asymptotic arguments: the threshold needs to be set high
enough so that a generalised Pareto model fits threshold exceedances reasonably, to reduce bias.
Yet the threshold should be set low enough that there are sufficient exceedances to estimate gen-
eralised Pareto model parameters, to reduce variance: a typical bias-variance trade-off. Graphical
techniques such as the mean excess plot (Ghosh and Resnick 2010) can be of some use in aiding a
sensible threshold choice, as can inspection of the stability of generalised Pareto shape parameter
estimate or other key inferences, such as estimates for return values or other structure variables as
a function of threshold. Here, a structure variable is any variable defined in terms of one or more
responses modelled by extreme value analysis. For example, the load on an offshore structure can
be considered a structure variable, defined in terms of extreme value responses including significant
wave height, current speed, wind speed etc. Graphical techniques are rarely conclusive however.
Some authors, including Sanchez-Archilla et al. (2008), Thompson et al. (2009), Northrop and
Coleman (2014) and Wadsworth (2016), have proposed procedures for estimating good thresholds,
but these all contain subjective elements. In the presence of covariate effects, threshold selection
is even more problematic. Typically, the threshold is set as a local (covariate-dependent) quan-
tile of the response, and the problem of threshold selection transformed into one of specifying the
appropriate threshold quantile level for the covariates used.

1.2. Threshold estimation

One approach to overcoming the need to specify an extreme value threshold ψ before extreme
value inference is to make ψ a model parameter to be estimated. To achieve this, the extreme
value model must be extended so that it describes part or all of the body of the sample, as well as
extreme value threshold exceedances, such as in Tancredi et al. (2006), Wadsworth et al. (2010),
MacDonald et al. (2011) and Randell et al. (2016). Yet in such a model, incorporating extreme
value inference and estimation of ψ, it is not clear whether is is desirable that estimation of ψ be
influenced by model fit to threshold non-exceedances: adequate fit of the generalised Pareto tail
should take priority, since tail estimation is our primary concern. From this perspective, models for
which ψ is pre-specified with no regard to threshold non-exceedances would seem advantageous.

1.3. Incorporating threshold uncertainty

Values q(ψ) for return values (and other structure variables of interest) can be found corresponding
to any threshold ψ. A final “preferred” return value q1 might then be selected corresponding a
single “best” threshold ψ̂, found either from inspection of diagnostics (or model estimation), such
that

q1
M
= q

(
ψ̂
)
.

2



Alternatively, we can provide final return values q2 by integrating over suitable values of ψ specified
by some density f(ψ), itself inferred from inspection of diagnostics (or directly estimated). Then

q2
M
=

∫
ψ
q(ψ)f(ψ)dψ.

The advantage of using q2 over q1 is that uncertainty in ψ is propagated through to return values.
When pre-specification or estimation of ψ̂ is problematic, it seems reasonable to prefer q2 over
q1. When pre-specification or estimation of ψ̂ is straightforward, we expect q2 and q1 to be similar
since f(ψ) provides probability mass only around ψ̂. Northrop et al. (2016) discuss cross-validatory
threshold selection, including a method for incorporating threshold uncertainty.
In this work, we choose to employ estimates of the form q2 for return values, but note that there

is still considerably subjectivity in the choice of f(ψ) to be used. We seek to inform this choice by
consideration of various model diagnostics. We thereby hopefully introduce some rationality, but
make no claim to have removed all subjectivity.

1.4. Non-stationary Bayesian extreme value modelling

In Randell et al. (2016), a model for the distribution of independent observations of peaks-over-
threshold of a response such as storm peak significant wave height given multidimensional co-
variates is developed, incorporating the generalised Pareto distribution for exceedances of some
estimated non-stationary threshold. A truncated Weibull distribution characterises values below
the threshold. The model is used primarily to estimate distributions of return values correspond-
ing to long return periods, for use in the design and reliability assessment of marine and coastal
structures. The methodology is intended to be easy to use, and computationally efficient for full-
scale oceanographic applications for sample sizes from 103 to 107 with at least a two-dimensional
(e.g. directional-seasonal) covariate domain. Practical applications’ experience using the model
suggests that (a) there is often little or no evidence in the sample to inform threshold selection,
that (b) the model form itself is perhaps too restrictive to facilitate easy threshold estimation using
Bayesian inference, and that (c) the gamma distribution provides an equally flexible form for the
distribution of non-exceedances, together with more stable inference when likelihood gradients are
exploited (Section 3.5).
We have concluded, for typical applications to ocean storm severity, that there is little value in

seeking to estimate extreme value threshold directly. Instead, making inferences using an ensemble
of piecewise gamma-generalised Pareto models, each of which corresponds to a specific threshold
choice, is less problematic inferentially and more useful in practice. Ensemble members (and hence
thresholds) are selected to give reasonable performance, as judged by inspection of relevant model
diagnostics. Specifically, ensemble threshold choices typically correspond to an interval of threshold
probabilities for a non-stationary quantile regression threshold, as in Randell et al. (2015). The
model is described in Section 3.

1.5. Return value estimation

Return value estimates are the key deliverable of metocean design. In the presence of covariates
and multiple extreme value thresholds, closed form expressions for return values are not available.
As a result, Monte Carlo simulation is typically used. This involves simulating under the estimated
model, generating thousands of realisations of sets of extreme values corresponding to the return
period of interest. Monte Carlo simulation also provides an intuitive framework for estimating
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return value distributions for “dissipated” or sea state significant wave height from an extreme
value model for storm peak events. The computational burden increases approximately linearly
with return period. Parallel computation is useful, but nevertheless return value estimation by
Monte Carlo simulation remains computationally intensive, accounting for the vast majority of
computing resource required for a typical study (Section 4).
We have developed numerical integration algorithms to replace all Monte Carlo simulations pre-

viously performed, resulting in a huge reduction in time required for analysis. The approach is
described in Section 4.

1.6. Outline of article

The objective of this article is to improve the applicability of the methodology presented in Randell
et al. (2016), in two major respects. Firstly, we simplify the extreme value model by performing
prior non-stationary quantile regressions to estimate possible extreme value thresholds, and use each
of these thresholds in turn to partition the sample into “body” and “tail”. Independent gamma
and generalised Pareto models are next estimated for body and tail respectively using Bayesian
inference. Finally, an ensemble of models (for different plausible threshold choices) is adopted for
return value inference. Secondly, we replace return value inference using computationally-intensive
Monte Carlo simulation by a computationally-efficient numerical integration scheme, which amongst
other things, improves the accessibility of model diagnostics based on return value distributions.
We motivate the work in Section 2 by considering estimation of return values for ocean storm sever-

ity at a location in the South China Sea, dependent on storm direction and season, corresponding
to long return periods. In Section 3 we summarise the non-stationary piecewise gamma-generalised
Pareto model. Given covariates, the model consists of a truncated gamma distribution to charac-
terise storm peak events at or below an extreme value threshold (i.e. in the body of the sample),
and a generalised Pareto distribution for threshold exceedances (in the tail). Section 3 also outlines
the spline parameterisation adopted for covariate effects, prior model parameter specification and
the inference scheme. Section 4 discusses the numerical integration procedure introduced to esti-
mate return value distributions efficiently. In Section 5, we apply the model to estimation of return
values for storm peak and sea state significant wave height in the South China Sea. Findings are
discussed and conclusions drawn in Section 6. We note that significant wave height is reported in
units of metres throughout.

2. Motivating application

The application sample is composed of time series (from the SEAFINE 2012 hindcast) for sea
state significant wave height (HS , measured in metres), (dominant) wave direction θ and season φ
(defined as day of the year, for a notional year consisting of 360 days), for consecutive three hour
sea states over the period August 1956 to July 2012, at a location offshore Borneo at a water depth
of approximately 30m. With direction to which waves travel expressed in degrees clockwise with
respect to north, Figure 1 shows plots of storm peak HS and (sea state) HS versus direction θ and
season φ.

[Figure 1 about here.]

The climate is monsoonal, with Southwest Monsoon between June and September and Northeast
Monsoon between December and March. At this location, due to atmospheric circulation and
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topographical effects, the Southwest Monsoon generates increased HS with waves propagating in a
north-northwesterly direction, and the Northeast Monsoon generates severest sea states with waves
propagating towards the south-southwest. The largest value of HS in the sample is approximately
3.1m. The absence of severe events with directions corresponding approximately to [225◦, 315◦]
coincides with the land shadow of Borneo. A total of 4631 storm events are isolated from these time-
series using the procedure described in Ewans and Jonathan (2008). Briefly, contiguous intervals
of HS above a low peak-picking threshold are identified, each interval now assumed to correspond
to a storm event. The peak-picking threshold corresponds to a directional-seasonal quantile of HS

with specified non-exceedance probability, estimated using quantile regression. The maximum of
HS during the storm interval is taken as the storm peak significant wave height. The values of
directional and seasonal covariates at the time of the storm peak HS are referred to as storm peak
values of those variables. Each storm event is thus characterised in terms of the storm peak HS ,
and corresponding storm peak direction and season.
The left-hand side of Figure 2 shows the mean annual count rate for occurrences of storm peak

events within each directional-seasonal bin of the covariate domain, as defined in Section 3. The
covariate domain is relatively sparsely occupied, with the Northwest Monsoon accounting for the
highest rate of occurrence of events. The right-hand side of Figure 2 shows the maximum value
of storm peak HS per directional-seasonal bin. The largest events correspond to the Southwest
Monsoon.

[Figure 2 about here.]

For each storm event we also isolate a storm trajectory, namely the time-series {HS(t), θ(t)} for
values of t corresponding to the storm time interval only. The maximum of HS on the storm
trajectory is the storm peak value. Knowledge of storm trajectories is essential for estimation of
return values for sea state HS in Section 4.

[Figure 3 about here.]

3. Models

3.1. Model for size of occurrence

The magnitude y of peaks-over-threshold events is assumed to follow a non-stationary two-part
distribution. Asymptotic theory suggests that an extreme value model is suitable to describe the
largest values in the sample. Exceedances of some covariate-dependent threshold ψ (> 0) are there-
fore assumed to follow a generalised Pareto distribution with shape ξ (∈ R) and scale σ (> 0), con-
ditional on exceeding the threshold. A truncated gamma distribution with shape α (> 0), (inverse)
scale ζ (> 0) and threshold ψ provides a flexible unimodal density for threshold non-exceedances.
The supports of the truncated gamma and generalised Pareto distributions are respectively [0, ψ]
and (ψ, y+) (where y+ = ψ − σ

ξ for ξ < 0 and = ∞ otherwise). All of α, ζ, ξ, σ and ψ in principle
are smoothly-varying functions of direction θ and season φ. The corresponding probability density
function is

f(y|α, ζ, σ, ξ, ψ, τ) =

{
τ × fTG(y|α, ζ, ψ) for y ∈ [0, ψ]

(1− τ)× fGP (y|σ, ξ, ψ) for y ∈ (ψ, y+)

5



where fTG and fGP are the densities of the truncated gamma and generalised Pareto distributions.
Parameter τ corresponds to the extreme value threshold non-exceedance probability assumed sta-
tionary with respect to covariates, for the transition from truncated gamma to generalised Pareto;
the factors τ and (1 − τ) weight the relative contributions of the two parts. Below extreme value
threshold ψ, y follows a truncated gamma distribution with density

fTG (y|α, ζ, ψ) =
fG (y|α, ζ)

FG (ψ|α, ζ)
for y ∈ [0, ψ],

where fG (y|α, ζ) = ζαyα−1 exp (−ζy) /Γ(α), FG (ψ|α, ζ) = γ (α, ζψ) /Γ(α), γ is the incomplete
gamma function, and FG is the cumulative distribution function of the gamma distribution. Above
extreme value threshold ψ, y follows a generalised Pareto distribution with density

fGP (y|ξ, σ) =
1

σ

(
1 +

ξ

σ
(y − ψ)

)−1/ξ−1
for y ∈ (ψ, y+) .

In practice, we choose to carry out computations with ν = σ(1 + ξ) in place of σ. This choice is
motivated by fact that, with ξ > −0.5, maximum likelihood estimates for ν and ξ are asymptot-
ically independent, simplifying their joint estimation compared with joint estimation of σ and ξ.
Nevertheless, (derived) estimates for σ are reported and visualised below for ease of interpretation.
In greatest generality, for a sample {yi}ni=1 of n storm peak events, with corresponding directions
{θi}ni=1 and seasons {φi}ni=1, sample likelihood L(α, ζ, ξ, σ, ψ, τ |{yi, θi, φi}ni=1) is

L =

τnB
∏

i:yi6ψ(θi,φi)

fTG(yi|α, ζ, ψ)

×
(1− τ)(n−nB)

∏
i:yi>ψ(θi,φi)

fGP (yi|ξ, σ, ψ)


for (spline-parameterised) functions α, ζ, ξ, σ, ψ of θ and φ, and stationary τ to be estimated, where
nB =

∑
i:yi6ψ(θi,φi)

1 is the number of events at or below threshold ψ. Note that, in the description
below, statements along the lines of “estimation of η” for model parameter η ∈ {α, ζ, ν, ξ} with a
spline representation, refer to “estimation of the spline coefficients corresponding to η on the index
set of covariates”.
As noted in Section 1, estimation of extreme value threshold ψ is typically problematic in practical

application. For this reason, we simplify the model somewhat by specifying a fixed prior distri-
bution for τ . We typically assume τ to be uniformly-distributed on an interval of non-exceedance
probabilities, the end points of which are informed by inspection of various model diagnostic plots.
Given τ , threshold ψ, a function of covariates θ and φ, is estimated from the sample using (non-
stationary) quantile regression (e.g. Koenker 2005). We seek a smooth function ψ of covariates
corresponding to a non-exceedance probability τ of the response for any combination of θ and φ.
We estimate ψ by minimising the quantile regression lack of fit criterion

`ψ = {τ
n∑

i,ri≥0
|ri|+ (1− τ)

n∑
i,ri<0

|ri|}

for residuals ri = yi − ψ(θi, φi; τ), penalised with respect to the spline roughness R of ψ with
respect to covariates (Section 3.3) for different plausible values of penalty coefficients. We then
specify the optimal penalty coefficient as that which yields best predictive performance in 10-
fold cross-validation, and use the corresponding ψ to partition the sample prior to gamma and
generalised Pareto fitting.
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Threshold ψ is then used to partition the sample into sub-samples for threshold non-exceedances
and exceedances respectively, to which truncated gamma and generalised Pareto models are fitted
independently using Bayesian inference. Markov chain Monte Carlo with the mMALA algorithm
(manifold Metropolis Adjusted Langevin Algorithm, Girolami and Calderhead 2011) is used to
estimate α and ζ for the sub-sample below threshold ψ, and independently to estimate ξ and ν
(and hence σ) above ψ. Return value distributions are then estimated by numerical integration.
The model is advantageous in that inferences above threshold ψ are not influenced at all by

inferences made at or below ψ. Specifically, the sample likelihood for fitting the truncated gamma
- generalised Pareto for different non-exceedance probabilities τ is used to guide the choice of a
sensible ensemble of models, corresponding to an interval of values for τ yielding good whole-sample
fit. This choice is informed by inspection of diagnostic plots like those discussed in the application
in Section 5. Once this choice is made, the quality of fit of the whole-sample model, i.e. the sample
likelihood, plays no further direct role. Instead, models based on all thresholds in the chosen interval
are treated as equally plausible, and carry equal weight for estimation of return values. Only the
generalised Pareto tail for each ensemble member is then used to estimate return values. The model
is also particularly suitable for parallel computation since Markov chain Monte Carlo estimation
for different draws of τ can be performed independently. The disadvantage of the model is that the
fixed prior distribution for τ dictates the extreme value thresholds considered appropriate. Prior
specification of (e.g. an interval of plausible values for) τ therefore assumes increased importance,
and is informed by inspection of model diagnostics evaluated for the widest possible range of values
for τ .

3.2. Model for rate of occurrence

The rate of occurrence of all events is estimated using a non-stationary Poisson process with rate
ρ varying with θ and φ. We approximate the Poisson process likelihood by evaluating it on the
set {Sj}mj=1 of m directional-seasonal sub-intervals (referred to colloquially as “bins”) of area d of
covariate domain D centred on {Ij}mj=1 (Section 3.3), assuming that d is small enough that ρ is
approximately constant on each bin, following Chavez-Demoulin and Davison (2005) and Randell
et al. (2016). Then, for a vector of counts c = {ck}mk=1 of occurrences on the index set, the
probability density of counts conditional on the rate of occurrence is:

f(c|ρ) = exp

(
−d

m∑
k=1

ρk

)
m∏
k=1

ρckk ,

where ρ = {ρk}mk=1 is the corresponding Poisson count rate to be estimated.

3.3. Spline parameterisation

We assume that model parameters ρ, α, ζ, ξ, ν and ψ vary smoothly with θ and φ, expressing
each in terms of a basis for B-splines for the domain D of covariates, where D = D2 × D1, and
D1 = D2 = [0, 360) is the (marginal) domain of both θ and φ. We define a m × p basis matrix B
for D using the tensor product B = B2 ⊗B1 of marginal bases, for an index set {Ij}mj=1 of m =
m1 ×m2 = 32× 24 = 768 directional-seasonal locations. The numbers of directional and seasonal
subintervals m1,m2 are specified from physical and engineering considerations. Experience suggests
that the wave environment is approximately homogeneous within 11.25◦ directional intervals and
2-weekly seasonal intervals; this implies that choices of m1 = 32,m2 = 24 are reasonable. 10 basis
parameters are estimated for each marginal basis, so that p = p1× p2 = 10× 10 = 100. The values
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of any of ρ, α, ζ, ξ, ν and ψ on the 2D index set then take the form Bβ for some p× 1 vector β of
spline coefficients to be estimated. For any model parameter, spline roughness on D is R = β′Pβ
for directional-seasonal penalty matrix P = λθP θ+λφP φ and penalty coefficients λ = {λθ, λφ}. P θ

and P φ are marginal directional and seasonal roughness penalty matrices incorporating random
roughness perturbations δθ and δφ (following Brezger and Lang 2006). For Bayesian inference
(Section 3.5), P is used as the prior precision matrix for spline coefficients β. Generalised linear
array methods (GLAM, Currie et al. 2006) greatly reduce the computational burden of spline
manipulations. A fuller description of the spline parameterisation is given in Randell et al. (2016).

3.4. Prior specification for Bayesian inference

For each of ρ, α, ζ, ξ and ν, spline roughness penalty coefficients λ are assumed to be gamma-
distributed Γ(aλ, bλ) independently and identically, so that full conditional distributions are avail-
able in closed form, enabling Gibbs’ sampling, with aλ = bλ = 10−3 throughout. Spline coefficients
β are distributed with density proportional to |P |1/2 exp(−1

2β
′Pβ) (Section 3.3); this density is

Gaussian-like, but not Gaussian since P is not a valid covariance matrix in general. For each model
parameter, the distributional characteristics of roughness perturbations δθ and δφ are not inferred,
as explained in Randell et al. (2016). Instead, all elements of roughness perturbations are sampled
identically and independently from the prior distribution Γ(aδ, bδ) with aδ = bδ = 1

2 .

3.5. Bayesian inference

Bayesian inference is used to estimate the posterior distributions of spline coefficients βη and
directional and seasonal roughnesses λη corresponding to model parameters η of the three models:
gamma body (η ∈ {α, ζ}), generalised Pareto tail (η ∈ {ν, ξ}) and rate of occurrence (η = ρ).
Unfortunately, none of these posteriors is available in closed form. We therefore use Markov chain
Monte Carlo (MCMC) to sample iteratively from full conditionals independently for each η in each
model in turn

f(βη|y,Ω \ βη) ∝ f(y|βη,Ω \ βη)× f(βη|λη) ,

f(λη|y,Ω \ λη) ∝ f(βη|λη)× f(λη) ,

where Ω is the full set of parameters for the relevant model. Since full conditionals are not available
in closed form, we use Metropolis-Hastings within Gibbs, exploiting function gradient and curvature
information (using mMALA, following Girolami and Calderhead 2011) to generate Metropolis-
Hastings proposals efficiently. For further details, see Randell et al. (2016).

4. Return value estimation by numerical integration

Typically, return value distributions are estimated by Monte Carlo simulation under the estimated
model (e.g. Randell et al. 2016). For long return periods T � 1000 years however, this simulation
can be computationally the most time-consuming stage of analysis: numerical integration is then
a more attractive strategy.
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4.1. Storm peak return values

Consider directional-seasonal bin Sj (j = 1, 2, ...,m) centred on location Ij in the index set of
covariate locations (Section 3.3). Sj is sufficiently small that all model parameters ρ, α, ζ, ξ, ν and ψ
are assumed constant within it. For bin Sj , with ωj = {αj , ζj , ξj , νj , ψj} for brevity, we define
F (y|ωj) to be the cumulative distribution function of any storm peak event given ωj . If ρj is
interpreted as the number of storm peak events in Sj per annum, we estimate the cumulative
distribution function FMT

(y|ωj) of the maximum MT observed in a period of T years in Sj as

FMT
(y|ωj) = P (MT < y)

=
∞∑
k=0

P (k events in Sj in T years )× Pk (size of an event in Sj < y)

=
∞∑
k=0

(Tρj)
k

k!
exp(−Tρj)× F k(y|ωj)

= exp (−Tρj (1− F (y|ωj))) .

Since storm peak events are independent given covariates, we estimate the cumulative distribu-
tion function FMT

(y|ω) (where ω = {ωj}mj=1) of the “omni-directional omni-seasonal” storm peak
maximum MT over all directional-seasonal bins, by taking the product

FMT
(y|ω) =

m∏
j=1

FMT
(y|ωj).

The final estimate for FMT
(y), unconditional on ω, is estimated by marginalising over ω

FMT
(y) =

∫
ω
FMT

(y|ω)f(ω)dω,

where f(ω) is the estimated posterior density for ω. In practice, we sample values of FMT
(y|ωj)

and FMT
(y|ω) for some suitable set of storm peak values y from the Markov chain Monte Carlo

simulation following convergence for all members of the ensemble over τ , providing immediate
posterior predictive estimates for distributions of storm peak maxima corresponding to return
period T years.

4.2. Sea state return values

For applications, it is also necessary to estimate the distribution of return value MTS(y) for max-
ima of sea state (as opposed to storm peak) HS events for arbitrary directional sector S (Ewans
and Jonathan 2008). To achieve this, we need to accommodate contributions of so-called “dissi-
pated” storms, the storm peak directions for which do not correspond to S, to MTS(y), again using
numerical integration.
First we estimate the storm dissipation function δ(S; j, y) for sea state HS in directional sector

S from a single storm with storm peak direction in directional-seasonal bin Sj , j = 1, 2, ...,m
and storm peak value y. δ(S; j, y) is estimated empirically from the sample of storm trajectories
described in Section 2 and illustrated in Figure 3. Next we estimate the cumulative distribution
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function FDS(d|ωj) of DS, the dissipated sea state HS in sector S from a random storm dissipating
from directional-seasonal bin Sj

FDS(d|ωj) = P(DS 6 d|ωj) =

∫
y
P(δ(S; j, Y ) 6 d|Y = y)f(y|ωj)dy,

where f(y|ωj) is the marginal directional density of storm peak HS in directional-seasonal bin Sj
corresponding to cumulative distribution function F (y|ωj). The cumulative distribution FDT

S
(d|ωj)

of DT
S , the T -year maximum of DS from directional-seasonal bin Sj , is evaluated using the same

argument as for storm peaks in Section 4.1, as exp (−Tρj (1− FDS(d|ωj))). The cumulative dis-
tribution FMTS(d|ω) of MTS, the T -year maximum of sea state HS in directional sector S from
all seasonal-directional bins, for each value of d, is therefore given by

∏m
j=1 P(MTS 6 d|ωj). Note

that, by restricting this product to directional-seasonal bins corresponding to a particular season,
seasonal estimates can be obtained. Finally, as for the storm peak case above, the estimate for
FMTS(y) is found by marginalising over ω as

∫
ω FMTS(y|ω)f(ω)dω.

4.3. Computational efficiency

In typical applications, numerical integration yields large improvements in computational effi-
ciency even for moderate values of T (e.g. 10 years) compared to Monte Carlo simulation for
estimation of return value distributions. For example, Monte Carlo simulation of 800 realisations
of length of 1, 10, 100, 1,000 and 10,000 years and subsequent estimation of the corresponding
return value distributions, for standard directional-seasonal partitions as illustrated in Section 5,
for both storm peak and sea state HS requires 6 hours 15 minutes computation on an Intel Xeon
2.7GHz workstation with 40 cores and 192GB RAM. The same inferences are made using numer-
ical integration in 2 minutes to approximately the same accuracy, as judged from the results of a
number of studies using “toy” models. In this case, time to estimate the extreme value model prior
to return value estimation, is 18 minutes. Thus, complete analysis time is reduced from around 6
hours 30 minutes to 20 minutes.

5. Application to South China Sea significant wave height

The model described in Section 3 is estimated for storm peak HS on direction θ and season
φ for a regularly spaced sequence of 20 values of quantile regression non-exceedance probability
τ ∈ [0, 1]. For each value of τ , posterior distributions for rate parameter ρ, gamma parameters
α and ζ jointly, and generalised Pareto parameters ξ and ν (and hence σ) jointly are estimated
using Bayesian inference. To confirm convergence we perform inference for each value of τ twice,
and ensure that the resulting Markov chain Monte Carlo traces are similar (in the sense of having
similar first and second-order structure) following burn-in. The posterior predictive distribution
of full sample negative log likelihood is summarised in Figure 4(a) in terms of a median and 95%
uncertainty band; this is a predictive estimate of how well the whole gamma-generalised Pareto
model fits the sample. Good model fit is desirable, hence we prefer values of τ corresponding to
low values of this likelihood. Figure 4(a) exhibits a minimum at τ = 0.2, and an approximately
constant value for τ ∈ [0.1, 0.8]; the negative log likelihood increases outside this interval (as noted
in the figure caption). The plot suggests that values of τ ∈ [0.1, 0.8] would be reasonable choices
for subsequent analysis, since the estimate of negative log likelihood is relatively low here. Figure
4(b) illustrates percentiles of the distribution of the 10,000-year return value, estimated using the
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fitted generalised Pareto model; it is desirable that the estimate of this return value be relatively
constant on the interval of τ chosen for subsequent inference. The median return value reduces
with increasing τ in general, as does the width of the distribution. However, for τ ∈ [0.2, 0.8] the
return value is relatively stable. Based on the evidence from Figure 4 (a) and (b), the interval
τ ∈ [0.2, 0.8] appears reasonable for subsequent analysis.

[Figure 4 about here.]

Figure 5 compares empirical sample-based and model-based density estimates for the two most
populous regions of the covariate domain, for τ = 0.2, 0.5 and 0.8. Agreement is reasonable for
all threshold choices in both Figure 5(a,b) (corresponding to θ × φ = [310, 350] × [Jun,Sep]) and
Figure 5(c,d) (corresponding to θ×φ = [150, 190]×[Dec,Feb]). These covariate intervals correspond
to combinations of the underlying directional-seasonal bins {Sj}mj=1. Plots for other values of
τ ∈ [0.2, 0.8] are similar. There is evidence in Figure 5 that for τ ≈ 0.2 the overall quality of model
fit is dominated by the gamma distribution fit to non-exceedances. The peak in the empirical
sample density at around 1m is described better using τ = 0.2 than when using τ > 0.2; there
is some evidence for this effect also in Figure 12 of the appendix. In this sense, the good overall
model fit at τ = 0.2 could be regarded as an “artefact” of the specific model form chosen for
threshold non-exceedances. We conclude that, whereas all threshold choices in [0.2, 0.8] provide
reasonable models, proceeding using an ensemble of models corresponding to the restricted interval
τ ∈ [0.3, 0.7] avoids the extremities of the interval [0.2, 0.8] at which diagnostic plots indicate that
model performance begins to degrade.

[Figure 5 about here.]

The ensemble model is then re-estimated for storm peak HS on direction θ and season φ for a
regularly spaced sequence of 20 values of quantile regression non-exceedance probabilities τ in the
restricted interval [0.3, 0.7]. Figure 6 shows directional-seasonal variation of the set of posterior me-
dian parameter estimates over MCMC chains and the ensemble of τ values. Extreme value threshold
ψ, gamma scale α and generalised Pareto scale σ show similar directional-seasonal variability; this
reflects the strong monsoonal influence on the response. The Poisson rate ρ is relatively similar.
Gamma shape ζ varies less with covariates, and the variability in median generalised Pareto shape
ξ is small given that ξ ∈ (−0.5, 0) is typically observed for studies of storm peak HS .

[Figure 6 about here.]

The quality of model fit, particularly for the generalised Pareto component, is judged by comparing
empirical sample-based and model-based tail estimates for a time period of the original sample,
as shown in Figure 7. Agreement between the empirical and model-based tails is excellent in
general. Poorer performance for the eastern octant (E) is attributed to a small number of large
events in this region which are not adequately captured in smooth model parameter variation with
covariates. The Poisson model characterises the rate of occurrence of events well directionally. The
corresponding plot exploring seasonal fit shows equally good agreement.

[Figure 7 about here.]

To this point, all inferences made have concerned storm peak events. From an engineering perspec-
tive however, it is critical to capture the effects of storm dissipation in return value distributions.
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Specifically, directional return values estimated from storm peaks alone ignore the influence of dis-
sipation, and will in general be biased low, particularly in directional sectors for which the rate
of occurrence of storm peaks is relatively low. Figure 8 illustrates the typical characteristics of
dissipation at the Southern China Sea location under consideration here. It summarises the dis-
tribution of fractional dissipation, namely the value of the ratio of sea state HS to storm peak
value, for sea state direction relative to storm peak direction, for all values of storm peak and all
seasons. The figure suggests that dissipation effects extend to ±45◦ for all directional sectors, but
that their influence beyond ±45◦ is small, although the angular extent of dissipation does vary
between octants. The northeastern (NE) and eastern (E) octants show asymmetry, suggesting that
storms have larger dissipative influence when sea state direction lies anticlockwise of storm peak
direction.

[Figure 8 about here.]

Using dissipation and the approach outlined in Section 4, return value distributions for sea state
HS corresponding to a return period of 10,000-year are estimated for different standard directional-
seasonal partitions, as illustrated in Figure 9 and Figure 10; the former explores the return value
distribution’s seasonal variability, and the latter directional variability. Monsoonal characteristics
are obvious in both figures: December, January and February plots in Figure 11 are dominated by
the Northeast Monsoon propagating approximately southwards (with θ ≈ 180◦). July to August is
similarly dominated by the Southwest Monsoon.

[Figure 9 about here.]

[Figure 10 about here.]

6. Discussion and conclusions

Extreme value models are motivated by asymptotic arguments. The generalised Pareto form is
justified only for peaks-over-threshold modelling for high threshold ψ. Pre-specifying ψ is in general
problematic, yet key inferences such as return values for long return periods can vary considerably
with choice of ψ. A whole sample model is desirable since it allows estimation of ψ as a model
parameter. In a whole sample model incorporating extreme value inference and estimation of ψ, it
is not clear whether estimation of ψ should be influenced by model fit to threshold non-exceedances:
adequate fit of the generalised Pareto tail should take priority, since tail estimation is our primary
concern. From this perspective, whole sample models for which ψ is pre-specified with no regard
to the values of threshold non-exceedances would seem advantageous. When there is compelling
motivation for the form of the model for threshold non-exceedances, then perhaps allowing fit
to body to influence estimation of ψ is more acceptable. For example, a Rayleigh distribution
for individual wave heights can be derived theoretically given appropriate assumptions; it would
therefore seem sensible to value the fit of a Rayleigh model to the body of a distribution of individual
wave heights as much as the generalised Pareto distribution for extreme wave heights. Wadsworth
et al. (2010) use similar logic to motivate their two part model. An alternative approach is to specify
a model for the body of the distribution sufficiently flexibly that the body fit will not materially
influence the estimation of ψ or the tail; this is the approach taken by Tancredi et al. (2006) and
MacDonald et al. (2011). In the current work, we estimate plausible thresholds ψ by inspecting the
quality of fit of gamma-generalised Pareto models, each incorporating a prior quantile regression
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specified in terms of quantile probability τ . We then retain an ensemble of plausible models for
return value inference. We find this approach to be a useful compromise between the statistical
ideal of estimating ψ as a model parameter, the concerns above regarding the influence of model
body fit on ψ and hence the tail fit, and the general weakness of evidence for ψ in typical met-ocean
samples.
We also find that numerical integration provides a much improved approach, particularly in terms

of computational efficiency, to estimation of return value distributions, even when non-trivial ef-
fects such storm non-stationarity with respect of covariates, and storm dissipation are involved.
Numerical integration also leads to efficient estimation of the effects of within-sea state variabil-
ity, e.g. of return value distributions for wave height or crest elevation. The availability of fast
estimation for return value distributions corresponding to long return periods makes their use in
model diagnosis far more tractable and appealing. Since the 10,000-year return value in particular
is a key design quantity, it is natural to assess model performance in terms of the characteristics of
this statistic. In estimating sea state return values, we are currently working to improve the model
for the storm dissipation function underlying the estimation in Section 4.2 using Markov extremal
models following Winter and Tawn (2016) and Winter and Tawn (2017).
Using the ensemble model, a complete non-stationary extreme value analysis for a sample of the

order of 5000 storms on 32 × 24 directional-seasonal bins and 10 × 10 tensor product of second-
order spline bases, including all model estimation using Bayesian inference, ensemble assessment and
refinement, and calculations of return value distributions for storm peak and sea state significant
wave height corresponding to return periods of arbitrary length, can be completed in a matter of
minutes in a statistically rigorous manner.
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Appendix: Supplementary model diagnostics

Using the procedure described in Section 4, we estimate the cumulative distribution of sea state
significant wave height, and use it to compare tails from the ensemble model with empirical esti-
mates directly from the sample. Figure 11 illustrates the tail fit, in a similar vein to Figure 7, and
shows good agreement. Figures 11 and 7 are generally similar; the left hand plots are identical (as
should be the case by definition). The right hand directional plots for sea state HS (Figure 11)
extend to more negative values of log10(1−F ) as would be expected, since the number of sea state
HS values per directional octant exceeds the corresponding number of storm peak events. The
location of the tails for corresponding directional octants is very similar, indicating that dissipated
values do not contribute to the largest values of sea state HS in Figure 11.

[Figure 11 about here.]

Figure 12 shows a whole sample quantile-quantile plot on standard Gaussian scale for the estimated
ensemble model. There is reasonable agreement except perhaps for the smallest values of response.
This lack of fit is also visible in Figure 5(a,c), and suggests that the gamma model has some
difficulty in accommodating the rapid increase in probability mass with increasing response for the
smallest values of response. We judge this not to be of major concern since the objective of this
work is characterising the right hand tail of the distribution.

[Figure 12 about here.]

To illustrate the quality of model fit further, Figure 13 compares estimates of seasonal return
values for storm peak HS , using a procedure analogous to that used to generate Figure 7.

[Figure 13 about here.]
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Figure 1: South China Sea sample. Significant wave height (HS , grey) and storm peak HS (black) on (a) direction θ
and (b) season φ. Coloured storm peak events correspond to the Southwest Monsoon (red circles) and the Northeast
Monsoon (blue crosses).
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Figure 2: South China Sea sample. Panel (a) shows mean annual count rate of occurrences of storm peak HS per
directional-seasonal bin, and panel (b) the maximum observed value of storm peak HS per directional-seasonal bin.

20



0

30

60

90

120

150

180

210

240

270

300

330

00.511.5
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Figure 4: Model diagnostics for different quantile thresholds. Panel (a) summarises the posterior predictive distribu-
tion of negative log-likelihood as a function of quantile regression non-exceedance probability τ , in terms of the 2.5%,
50% and 97.5% percentiles. Panel (b) summarises the distribution of posterior predictive 10,000-year return value
as a function of τ in terms of the same percentiles. In panel (a), omitted median values of negative log likelihood at
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Figure 7: Illustration of model validation by comparison of estimates for the distribution of storm peak HS corre-
sponding to the period of the original sample, plotted as log10(1 − F ) to accentuate tail behaviour, for cumulative
distribution function F . The dotted red curve is an empirical estimate. The black curves summarise the predictive
distribution of the quantile estimate (for given tail probability 1 − F ) under the directional-seasonal model, as the
median (solid) and 2.5% and 97.5% values (dashed), estimated using numerical integration. The left hand panel
corresponds to the omni-directional omni-seasonal case, and the right hand panels to omni-seasonal estimates for
each of 8 directional octants. Titles for plots are the numbers of actual (A:) events and the median number (M:) of
events simulated.
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Figure 8: Distribution of directional storm dissipation as a fraction of storm peak HS for directional octants centred
on the cardinal directions. Each panel illustrates the directional distribution of the fractional dissipation of storms
with storm peaks in the corresponding octant, as a function of angular difference from storm peak direction. For each
angular difference, the vertical combination of coloured bars provides a visual representation of the distribution of
dissipation: colour indicates the value of dissipation decreasing from unity (black) to zero (white), and y-axis value
the probability of at least that value of dissipation. In each octant for angular difference 0, dissipation is unity by
definition since the storm peak occurs for that angular difference. Further, e.g., in the northeast octant (NE), for
angular difference −45◦, non-zero dissipation is observed with probability approximately 0.2, and total dissipation
(to zero) with probability approximately 0.8. For the same octant and angular difference 45◦, total dissipation occurs
with probability approximately 0.9.
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values of the predictive distribution (black). Also shown are the corresponding omni-seasonal estimates (in red). The
right hand plot shows the corresponding curves for each of 8 directional octants.
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Figure 10: Predictive distribution of sea state HS corresponding to the 10,000-year return period. The left hand
panel summarises directional variation of the omni-seasonal return value in terms of the 2.5%, 37%, median and
97.5% values of the predictive distribution (black). Also shown are the corresponding omni-directional estimates (in
red). The right hand plot shows the corresponding curves for each of 12 months.
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Figure 11: Illustration of model validation by comparison of estimates for the distribution of sea state HS corre-
sponding to the period of the original sample, plotted as log10(1−F ) to accentuate tail behaviour. For other details,
see Figure 7.
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Figure 12: Quantile-quantile plot for estimated model on standard Gaussian scale. The left hand panel shows a
scatter plot of empirical quantiles against fitted quantiles for all directions and seasons. The right hand plot shows
the corresponding plot for each of 8 directional octants.
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Figure 13: Illustration of model validation by comparison of estimates for the seasonal distribution of storm peak HS

corresponding to the period of the original sample, plotted as log10(1 − F ) to accentuate tail behaviour. The titles
for panels give the numbers of actual (A:) and estimated (M:) events in the corresponding seasonal period. For other
details, see Figure 7.
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