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Abstract

Characterising storm surge in extreme sea states is important in offshore design. Here we estimate
key surge design characteristics such as the maximum surge observed during a storm event of given
extreme storm severity and covariates such as storm direction. Inferences are made using a simple
non-stationary implementation of the conditional extremes model of Heffernan and Tawn (2004),
comprising a set of coupled piecewise stationary marginal and dependence models defined on a
partition of the covariate domain.
The approach uses samples consisting of pairs of values for peaks over threshold of a conditioning

variate, namely storm peak significant wave height, and the corresponding peaks over threshold
of an associated value of a key surge characteristic. Each pair is allocated to a particular storm
direction covariate interval, and all pairs within the same interval are assumed to exhibit common
stationary marginal and conditional extreme value behaviour. Non-stationary marginal extreme
value characteristics for each variate are estimated using maximum roughness-penalised generalised
Pareto likelihood estimation over covariate intervals. Extremal dependence between variates on a
transformed standard Gumbel scale is then estimated using maximum roughness-penalised likeli-
hood estimation for a conditional extremes model, also piecewise stationary with respect to covari-
ates. Sample and threshold uncertainties are quantified using a bootstrapping scheme. Marginal
and conditional return value distributions, estimated using numerical integration, incorporate these
uncertainties.
From offshore radar-based measurements at locations in the northern, central and southern North

Sea, we observe that characteristics of surge and significant wave height vary with wave direction
at all locations. Surge is a larger contributor to extreme seas in the southern North Sea than in
the northern North Sea in particular. There is evidence that extremal dependence between surge
characteristics and significant wave height also varies with storm direction. Hence, the size of surge
contribution to return values of total water level also varies with storm direction and location.
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1. Introduction

The total extreme water level (TEWL) at a location during a storm event determines whether
waves will impact topsides and supporting beams of an offshore structure at that location, causing
large structural loads of considerable concern. Since TEWL is the sum of mean sea level, tide,
storm surge and wave crest elevation, a joint model for extremes of all of these components is
required in order to predict its extremal characteristics well. The physics of mean sea level, tide
and surge has been studied for decades (e.g. Pugh 1987), as has that of wind waves (e.g. Kinsman
2012).
Considerable attention has also been devoted to estimation of storm surge during tropical storms

(e.g. Needham et al. 2015) and extra-tropical storms (e.g. Bernier and Thompson 2006), and the
interaction between surge and tide (e.g. Horsburgh and Wilson 2007, Olbert et al. 2013, Williams
et al. 2016). Physically, storm surge is a large-scale increase in sea level due to a storm, lasting
from hours to days over areas of hundreds of km2. The magnitude of storm surge is influenced
by many physical processes, and those same processes control surge in both extra-tropical and
tropical cyclones. Atmospheric pressure differences in ocean storms cause the water level in the
open ocean to rise in regions of relatively low atmospheric pressure; Harris (1963) estimated an
increase in sea level of the order of 1cm for every hPa reduction in atmospheric pressure. High wind
stress at the sea surface and the horizontal gradient of atmospheric pressure are other important
contributors, as is storm intensity and trajectory. In shallow and coastal waters, bathymetry and
topography become important. In regions of high tidal range, the joint occurrence of storm and
tidal high water is sometimes referred to as “storm-tide”. The SLOSH model of hurricane surge
(Jelesnianski et al. 1992) predicts the maximum envelope of water at a location given hurricane
characteristics such as central pressure, storm size, forward motion, track and maximum sustained
winds. However, the SLOSH model does not explicitly model the aggregate impact of surge and
crest. Bernier and Thompson (2006) seeks to predict the frequency of storm surges and extreme
sea levels in the north-west Atlantic using a 2-D non-linear barotropic ocean model to construct a
40-year hindcast for the region. Where tide-surge interactions exist, they lead to lower total water
levels than in the case of independence. The degree of decrease varies with extent of dependence,
magnitude of surge peak at a particular phase of tide and the distribution of peaks over a tidal
cycle. Coles and Tawn (2005a) identify strong seasonal effects in measurements of extreme surges
at locations on the eastern coastline of the United Kingdom. Subsequently Coles and Tawn (2005b)
propose a Bayesian model for extreme surge, and outline a procedure to estimate the distribution
of the sum of surge and tide. The effect of future climate on North Sea storm surge is also of
considerable interest (e.g. Gaslikova et al. 2013; Vousdoukas et al. 2017). Butler et al. (2007a)
conduct trend estimation in synthetic storm surges. Butler et al. (2007b) reports extreme value
analysis of decadal variation in storm surges, including a discussion of the effect of North Atlantic
oscillation and tide-surge interaction.
The joint statistics of extreme storm surge and sea state severity at an arbitrary location in the

ocean has also received some attention (e.g. Hawkes et al. 2002, Rueda et al. 2016 and Mazas
and Hamm 2017). The objective of the current work is to establish a statistical model for surge
characteristics conditional on the occurrence of extreme values of significant wave height (HS).
Methods of multivariate extreme value analysis are required to describe the joint characteristics
of extremes of multiple variables. The conditional extremes model of Heffernan and Tawn (2004)
provides a flexible estimation framework. Given that the characteristics of extreme HS at a location
vary systematically with covariates such as storm direction, it is likely that the joint statistics of
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surge and HS are non-stationary with respect to covariates. Extensions to the conditional extremes
model, such as Jonathan et al. (2014) allow estimation of multivariate extremal dependence in the
presence of covariates, and hence estimation of tails of distributions of structure variables and
design contours of interest. The conditional extremes model is motivated by an asymptotic form
for the limiting conditional distribution of one or more conditioned random variables given a large
value of a conditioning variable. An outline of the approach is given by Jonathan et al. (2010)
in application to wave spectral characteristics. Conditions for the asymptotic argument to hold
have been explored by Heffernan and Resnick (2007). An alternative to the conditional extremes
model is a suitable extreme value copula (e.g. Gudendorf and Segers (2010)). Bender et al.
(2014) and Serafin and Ruggiero (2014) propose bivariate extreme value models incorporating non-
stationary marginal and dependence inference. The main advantage of the conditional extremes
model compared with models such as those of Bender et al. (2014) and Serafin and Ruggiero (2014)
is that the former incorporates a full class of asymptotic extremal dependence, and also allows
relatively straightforward extension to higher dimensions.
The layout of the article is as follows. Section 2 introduces the North Sea application, and

illustrates the data used in this work. Section 3 describes the piecewise stationary extreme value
model; mathematical detail corresponding to the model are given in the Appendix. A conditional
model for surge characteristics given extreme storm peak HS is established in Section 4. Section 5
provides discussion and conclusions.

2. Motivating application

Data for the current work comes from two sources. The first is measurements of sea surface
elevation at four offshore platforms in the North Sea using SAAB Rex wave radars. Measurements
were taken at one location in the northern and central North Sea, and two locations in the southern
North Sea (henceforth referred to as NNS, CNS, SNS1 and SNS2 for brevity). At each location,
harmonic analysis of surface elevation time-series identified mean sea level, tidal variation and
a non-tidal residual component interpreted as “surge” in the current work (see, e.g. Pugh 1987).
Significant wave height HS for sea states of 30 minutes duration was also estimated from the surface
elevation time-series. Between 12 and 16 years of measurements were available each of the NNS,
CNS, SNS1 and SNS2 locations. The second data source is the WAM North Sea hindcast (Reistad
et al. 2009), from which time-series of wave direction corresponding to the surface elevation time-
series at the four locations were extracted. Knowledge of wave direction is essential for reasonable
characterisation of extreme storms in the North Sea; wave direction is used as a covariate in the
analysis below.
Time-series of sea state HS was then used to identify storm events, following the approach de-

scribed in Ewans and Jonathan (2008); a total of between 1000 and 1100 storms were isolated at
each of the NNS, CNS, SNS1 and SNS2 locations. For each storm event, (a) storm peak HS , (b)
wave direction at the time of storm peak, referred to as storm peak direction θ, and (c) time-series
of surge for the duration of the storm, referred to “the surge trajectory” were isolated. Figure 1
shows typical surge trajectories for each of the four locations.
The relative importance of surge effects is known to vary between the four locations. In the

northern North Sea, surge generally makes a small contribution to severe seas, whereas the surge
contribution is generally larger in the southern North Sea. Figure 1 suggests that the magnitude of
surge increases with decreasing latitude in the North Sea. The relative importance of surge in the
estimation of TEWL is therefore clearly greater for locations SNS1 and SNS2. Figure 1 also shows
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that the lengths of storms, and hence of surge trajectories, varies considerably within and between
locations. Moreover, it is clear that the time of maximum surge does not typically coincide with
the time of peak storm severity, corresponding to zero on the x-axis in Figure 1.

[Figure 1 about here.]

For simplicity, each surge trajectory was next summarised in terms of four statistics for subsequent
extreme value analysis, namely the maximum value (SrgMxm), the negative of the minimum value,
(SrgNgtMnm), the median value (SrgMdn) and the range (SrgRng) of values per surge trajectory.
We chose to model the negative of minimum surge since this shows non-negative dependence with
increasing storm severity. Storm peak HS is known to vary with storm peak direction θ, and the
importance of accommodating this non-stationary in extreme value models has been established.
For this reason, each bivariate sample of storm peak HS and surge characteristic was partitioned
by inspection of plots and consideration of likely fetch effects into covariate intervals (or directional
sector for the current covariate) within which distributions of storm peak HS and surge characteris-
tic were found to be approximately stationary. Figure 2 shows scatter plots of the maximum surge
SrgMxm observed per storm event against storm peak HS per covariate interval for each of the four
locations. Four covariate intervals were used for the NNS location, and three elsewhere. There are
noteworthy differences between the characteristics of the various scatter plots. For SNS2, SrgMxm
increases with storm peak HS for directional sector [240, 0) to values above 1m. However, for the
other two directional sectors, the mean value of SrgMxm corresponding to large HS appears to be
around zero.

[Figure 2 about here.]

Figure 3 shows scatter plots of SrgRng on storm peak HS per directional sector per location.
Again, there are differences between scatter plots due to location and storm direction.

[Figure 3 about here.]

Extreme value analysis of the samples of SrgMxm, SrgNgtMnm, SrgMdn, SrgRng, storm peak HS and
direction θ per location is discussed in Section 4.

3. The piecewise stationary extreme value model

Overview

Consider a sample Ḋ = {ẏi1, ẏi2}ni=1 of n pairs of values of peaks over threshold for a conditioning
variate Ẏ1 > 0, and an associated conditioned variate Ẏ2 > 0. Further, let {xi}ni=1 be the corre-
sponding values of a covariate X on some domain X ; in this work, we assume a single directional
covariate with X = [0◦, 360◦). Extension to more complex covariate domains is straightforward
compared to other approaches as discussed in Section 5. Our objective, using the sample, is to
make inferences about joint structure of Ẏ1 and Ẏ2 for large values of Ẏ1 and likely non-stationarity
with respect to X ∈ X . The modelling procedure presented here is a refinement of the condi-
tional extremes model of Heffernan and Tawn (2004), and proceeds in four steps: (a) marginal
extreme value modelling of Ẏ1 and Ẏ2 given X, followed by (b) transformation to Y1 and Y2 given
X with standard marginal distributions, (c) dependence modelling of Y2|Y1, X for large Y1 and
(d) estimation of return values of Ẏ2|Ẏ1, X for large Ẏ1. The procedure is outlined here, first for
the general non-stationary case, then for the particular form of non-stationarity assumed in the
piecewise stationary model. We then elaborate on the four stages individually for the piecewise
stationary model in Sections 3.1-3.3. Mathematical details are provided in the Appendix.
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General non-stationary case

We estimate a marginal generalised Pareto model, non-stationary with respect to X, for threshold
exceedances for each of Ẏ1 and Ẏ2. For general variable Ẏ and threshold ψ > 0, the generalised
Pareto cumulative distribution function is FGP (ẏ; ξ, σ, ψ) = P(Ẏ ≤ ẏ|Ẏ > ψ,X = x) = 1 −
(1 + (ξ/σ)(ẏ − ψ)))−1/ξ with ξ ∈ R, σ > 0 and ẏ ∈ (ψ, ẏ+) where ẏ+ = ψ − σ/ξ when ξ < 0
and ∞ otherwise. In practice, threshold ψ might correspond to a local quantile of the sample
given covariate with specified non-exceedance probability τ ∈ (0, 1) estimated using non-stationary
quantile regression. In practice, plots of parameter estimates from models corresponding to different
thresholds aid the selection of τ per variable showing appropriate behaviour, including approximate
stability of the estimate of ξ for thresholds larger than the chosen τ . Parameter estimates for ξ, σ
and ψ per variable are all in general functions of covariate X. Fitted marginal models are used to
transform the variables Ẏ1 and Ẏ2 to Y1 and Y2 on standard Gumbel scale, and hence sample Ḋ to
D, using the probability integral transform.
Then we fit a conditional extremes model for Y2|Y1, X for various choices of high threshold φ ∈ R

for the conditioning variate Y1, retaining the estimated model parameters and residuals. φ is
typically a quantile of the standard Gumbel distribution with non-exceedance probability κ ∈ (0, 1).
Plots of model parameter estimates and residual distributions for different threshold choices aid
selection of κ consistent with modelling assumptions. The conditional extremes model form is
(Y2|Y1 = y,X = x) = αy + yβW for y > φ, where α ∈ [0, 1] and β ∈ (−∞, 1]. W is a random
variable with unknown distribution, the density of which we estimate using residuals from the fitted
model. For fitting purposes only, we assume that W ∼ N(µ, ζ2) with µ ∈ R and ζ2 > 0. The model
fitting procedure corresponds to estimating {α, β, µ, ζ} given a sample of values for Y1, Y2, X and
threshold φ. All of φ, α, β, µ and ζ are in general functions of covariate X. Using the marginal and
conditional extremes models for the distribution of threshold exceedances, and empirical sample-
based distributions for non-exceedances, numerical integration is used to estimate the distribution
of Y2|Y1, X for large Y1, and hence that of Ẏ2|Ẏ1, X for large values of Ẏ1. This permits estimation
of the conditional return value distribution, namely the distribution of Ẏ2 given occurrences of the
T -year return values of Ẏ1.

Piecewise stationary case

The piecewise stationary model uses this approach for a particularly simple description of non-
stationarity with respect to covariates in marginal and dependence models. For each observation
in the sample, the value of covariate xi is used to allocate the observation to one and only one of m
covariate intervals {Ck}mk=1 by means of an allocation vector A such that k = A(i) and X =

⋃
Ck.

For each k, all observations in the set {ẏ1i′ , ẏ2i′}A(i′)=k with the same covariate interval Ck are
assumed to have common joint extreme value characteristics.

3.1. Marginal extremes and transformation to Gumbel scale

Non-stationary marginal extreme value characteristics of each variate are estimated in turn using a
generalised Pareto model and cross-validated roughness-penalised maximum likelihood estimation,
as outlined below and in the Appendix. For variable j ∈ {1, 2} and covariate interval Ck, the
extreme value threshold ψjk > 0 is assumed to be a quantile of the empirical distribution of the
variate in that interval, with specified non-exceedance probability τj ∈ (0, 1), with τj constant
across intervals, and estimated by counting. Threshold exceedances are assumed to follow the
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generalised Pareto distribution with shape ξj ∈ R and scale σjk > 0, with cumulative distribution
function

FGP (ẏ; ξj , σjk, ψjk) = 1− (1 + (ξj/σjk) (ẏ − ψjk))−1/ξj

where ẏ ∈ (ψjk, ẏ
+
jk) with ẏ+jk = ψjk − σjk/ξj when ξj < 0 and ∞ otherwise. Since estimation of

shape parameter is particularly problematic, ξj is assumed constant (but unknown) across covariate
intervals, and the reasonableness of the assumption assessed by inspection of diagnostic plots. Pa-
rameters ξj , {σjk} are estimated by maximising the predictive performance of a roughness-penalised
model, optimally regulating the extent to which {σjk} varies across interval, using a cross-validation
procedure. Equations for marginal model estimation are given in the Appendix.
The standard Gumbel distribution has cumulative distribution function FG(y) = exp(− exp(−y))

for y ∈ R. We transform the non-stationary sample Ḋ = {ẏi1, ẏi2} on generalised Pareto scale
to the corresponding stationary standard Gumbel sample D = {yi1, yi2} using the probability
integral transform, by defining {yi1, yi2} such that FG(yij) = FGP (ẏij ; ξj , σjA(i), ψjA(i)) per covariate
interval; the transformed sample is then assumed to be a stationary sample from a standard Gumbel
distribution. Estimation of marginal extreme value models for the North Sea application is discussed
in Section 4.1. We note that transformation to Laplace scale provides a useful alternative to Gumbel
transformation, especially when considering negative tail dependence (e.g. Keef et al. 2013).

3.2. Conditional extremes

The Gumbel-scale sample D = {yi1, yi2} above some threshold of the conditioning variate Y1 is
used to estimate a conditional extremes model with parameters αk ∈ [0, 1] and β ∈ (−∞, 1] given
by

(Y2|Y1 = yi1) = αA(i)yi1 + yβi1W for y > φ,

where W ∼ N(µ, ζ2) with µ ∈ R and ζ2 > 0 is assumed for model estimation only. Threshold φ ∈ R
is defined as the quantile of the standard Gumbel distribution with non-exceedance probability
κ ∈ (0, 1). Note that, since identifying β is particularly problematic, it is assumed constant (but
unknown) across covariate intervals. Similarly, since they are intended to describe a generic residual
structure, both µ and ζ2 are also assumed to be stationary with respect to covariate. Once more,
the reasonableness of these modelling assumptions is assessed by inspection of diagnostic plots.
Estimation of the conditional extremes model for the North Sea application is discussed in Section
4.2.

3.3. Marginal and conditional return values

From an engineering perspective, the main inferences from the current analysis are estimates for
marginal and conditional return values corresponding to some long return period T . Typically,
these are obtained by Monte Carlo simulation under the models outlined in Sections 3.1 and 3.2.
Specifying a Monte Carlo scheme, even for relatively complex simulations, is generally straightfor-
ward. When T is small (of the order of 100 years, say), simulation is also computationally easy:
Monte Carlo estimation might therefore be preferred. When T is large however, with T = 107

years of interest for some analysis, Monte Carlo simulation becomes computationally tedious and
demanding. In these circumstances, numerical integration schemes yield dramatic reductions in the
computational complexity of return value estimation, as outlined in Ross et al. (2017). Specification
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of the numerical integration scheme usually requires some effort (as illustrated in the Appendix for
the current work), but computationally this effort pays dividends.
We use numerical integration to estimate cumulative distribution functions for marginal and con-

ditional return values as follows: we estimate (a) the marginal return value distributions FM1k
and

FM2k
for a T -year return period of Ẏ1 and Ẏ2 per covariate interval Ck, (b) the corresponding “omni-

directional” return value distributions FM1 and FM2 over all covariate intervals, (c) the conditional
return value distribution F2|M1k

of Ẏ2 given the occurrence of a T -year event of Ẏ1 in covariate

interval Ck, and (d) the conditional return value distribution F2|M1
of Ẏ2 given the occurrence of an

omni-directional T -year event of Ẏ1 (regardless of the covariate interval in which the T -year event
of Ẏ1 occurs). Details of the numerical integration schemes used to estimate (a)-(d) are given in
the Appendix; estimates of the different return value distributions for the North Sea application
are illustrated in Section 4.3.

3.4. Uncertainty quantification

In practice, the complete modelling procedure is repeated for nBS bootstrap resamples {Ḋb} of
the original sample Ḋ to capture sampling uncertainty. For each sample Ḋb, to capture marginal
threshold specification uncertainty, marginal models for Ẏ1, Ẏ2 are evaluated for marginal thresh-
olds ψ1, ψ2 with non-exceedance probabilities τ1, τ2 drawn at random from the intervals Iτ1 , Iτ2
(both ⊆ (0, 1)) on which model performance is deemed reasonable from inspection of diagnostics.
Following transformation to standard Gumbel scale sample Db, to capture conditional threshold
uncertainty, a conditional extremes model is then evaluated for dependence threshold φ with non-
exceedance probabilities κ drawn at random from interval Iκ ⊆ (0, 1) on which the conditional
model fit is deemed adequate. Computationally, thus, the estimate for each marginal and depen-
dence parameter corresponds to a nBS array of values capturing sampling and threshold specifi-
cation uncertainty, used for uncertainty quantification in parameter and return value inference as
described in the Appendix.

4. Application to North Sea locations

The characteristics of SrgMxm, SrgNgtMnm, SrgMdn and SrgRng given large values of storm peak
HS and direction θ per location are estimated using the piecewise stationary model. For brevity,
the analysis procedure from Section 3 is described in Sections 4.1 and 4.2 and illustrated in Figures
4-10 and Figure 12 for the case of SrgMxm at the CNS location only. Estimates for marginal and
conditional return value distributions are discussed in Section 4.3 and illustrated in Figures 11 for
all surge characteristics at all locations. Further, since the analysis involves storm peak significant
wave height, as opposed to significant wave height for individual sea states, we use “HS” to indicate
storm peak significant wave height, unless clearly indicated to the contrary.

4.1. Marginal extremes

We conduct conditional extreme value analysis of SrgMxm and (storm peak) HS , non-stationary
with respect to storm peak direction θ. As outlined in Section 3, the first stage of analysis involves
marginal extreme value modelling for HS and SrgMxm, illustrated in Figure 4. To facilitate this,
covariate intervals were selected within which the joint characteristics of SrgMxm and HS were
observed, from inspection of diagnostic plots, to be approximately stationary. In this case, the three
covariate intervals selected correspond approximately to the land shadow of the United Kingdom
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(θ ∈ [160, 270)), open water to the Atlantic and Norwegian Seas (θ ∈ [270, 40)), and the land
shadow of the European mainland from Norway to France (θ ∈ [40, 160)). The piecewise stationary
generalised Pareto model is applied independently to threshold exceedances for each variable, with
thresholds per variable specified as quantiles of the marginal distribution per directional interval
of θ, with non-exceedance probabilities τ1 ∈ Iτ1 and τ2 ∈ Iτ2 . Intervals Iτ1 , Iτ2 were specified by
inspection of diagnostic plots for model adequacy over a wide range of values of τ (e.g. Figure 7),
as discussed below.

[Figure 4 about here.]

Figures 4(a, d) show estimated thresholds for HS and SrgMxm in terms of bootstrap median and 95%
uncertainty bands (over nBS = 500 bootstrap resamples of the original sample, with Iτ1 = [0.7, 0.8]
and Iτ2 = [0.65, 0.75]). The original sample is shown in terms of threshold exceedances (black)
and non-exceedances (grey). For HS , there appears to be little variability in threshold level across
covariate intervals, The largest two HS events correspond to storms emanating from the east.
The threshold for SrgMxm shows clearer directional variability. Surge effects are larger when storms
emanate from approximately the south, and are smaller for storms from the east. For each bootstrap
resample of each variable, generalised Pareto models are estimated. Figures 4(b, e) give bootstrap
distributions for the estimated generalised Pareto shape parameter ξ, set constant with respect to θ.
For storm peak HS , ξ is centred at approximately -0.15; but for SrgMxm, the bootstrap distribution
is centred at approximately zero, indicating that the distribution of SrgMxm has a longer tail than
that of HS . Figures 4(c, f) show the estimate for generalised Pareto scale parameter σ in terms of
its bootstrap median and 95% uncertainty band per covariate interval. For HS , the estimate for σ
is larger in the covariate interval corresponding to largest values of HS . For SrgMxm, the estimate
of σ is lower in the sector corresponding to smaller values of SrgMxm.
To confirm model fit, tail diagnostic plots such as those illustrated in Figures 5 and 6 for HS and
SrgMxm are inspected. Figure 5 shows that the tail of empirical distribution of HS from the sample
is in agreement with the estimated generalised Pareto tail, represented in terms of a bootstrap
median and 95% uncertainty band, for each covariate interval and “omni-directionally” over all
covariate intervals (in the bottom right hand plot of Figure 5).

[Figure 5 about here.]

[Figure 6 about here.]

It is important also to establish that the estimate for generalised Pareto shape ξ is approximately
constant with threshold for all thresholds corresponding to intervals Iτ1 , Iτ2 . Figure 7 shows this
variation for the SrgMxm model as a function of threshold non-exceedance probability τ2. For
values of τ2 ∈ [0.65, 0.75], the estimate of ξ appears to be constant for larger values of τ2 to within
bootstrap uncertainty. For this reason, we set Iτ2 = [0.65, 75] for marginal modelling of SrgMxm

at the CNS location. Diagnostic plots such as those illustrated in Figures 5-7 were inspected to
confirm adequacy of marginal fits for HS and all surge characteristics at all locations.

[Figure 7 about here.]

4.2. Conditional extremes

For each bootstrap resample Ḋb of the original sample Ḋ and random choices of τ1 ∈ Iτ1 and
τ2 ∈ Iτ2 , marginal models for SrgMxm and HS are estimated and used to transform the resample
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to standard Gumbel scale as explained in Section 3. The Gumbel-scale sample Db is then used to
estimate the conditional extremes model for thresholds of the conditioning variate corresponding
with non-exceedance probabilities κ ∈ Iκ. Inspection of fit residuals (Figure 8) and parameter
stability with κ (Figure 10) suggested setting Iκ = [0.55, 0.65] for SrgMxm on HS at the CNS
location. With this choice, the characteristics of residuals {rh} (see Appendix) are illustrated in
Figure 8. The left hand panel suggests that residuals are centred around zero, with a unimodal
distribution showing a longer right hand tail. The right hand panel suggests that the distribution
of residuals is approximately stationary with respect to θ. These diagnostic plots suggest that the
piecewise stationary model framework, with β, µ and ζ constant with respect to θ, is reasonable.

[Figure 8 about here.]

Parameter estimates for the conditional extremes model are shown in Figure 9; only slope pa-
rameter α (= {αk}) varies between intervals in the piecewise stationary model. The top left panel
summarises α in terms of bootstrap median and 95% uncertainty bands per as a function of θ. There
is evidence that α is lower for the covariate interval [45, 150] (corresponding to the land-shadow of
mainland Europe) than elsewhere. The estimate of α is considerably less than unity everywhere,
suggesting that SrgMxm and HS show asymptotic independence (e.g. Eastoe et al. 2013). The
estimate of scale exponent parameter β is centred around 0.3, suggesting that the width of the
distribution of SrgMxm given HS increases with increasing HS . Residual mean µ and scale ζ are
centred around 0.2 and 1.1.

[Figure 9 about here.]

Figure 10 explores the stability of estimates for {αk} and β as a function of conditional extremes
threshold non-exceedance probability κ ∈ Iκ. Estimates for αk in each covariate interval, and β are
all stationary to within bootstrap uncertainty, suggesting that a reasonable choice of Iκ has been
made.

[Figure 10 about here.]

4.3. Marginal and conditional return values

Using the numerical integration approach outlined in Section 3.3 and the Appendix, marginal and
conditional return values were estimated for a T = 100 year return period. The left hand panel
of Figure 11 gives estimates for the marginal omni-directional 100-year return value distribution
FM1 of storm peak HS at each of the NNS (red), CNS (green), SNS1 (cyan) and SNS2 (purple)
locations. The median 100-year return value is approximately 15m for NNS, 12m for CNS and
4m for SNS1 and SNS2 as might be expected. The return value distributions are of course rather
broad, reflecting both inherent aleatory uncertainty as well as epistemic uncertainty (estimated
by bootstrapping); for example, we would not be too surprised to observe 100-year return values
of storm peak HS at the NNS location in excess of 17m. The centre and right hand panels of
the figure give the corresponding omni-directional marginal (FM2 , solid) and conditional (F2|M1

,
dashed) return value estimates, one panel for each of the four surge characteristics of interest.
For SrgMxm (top centre of Figure 11), marginal surge is greatest in the southern North Sea, with

median 100-year values approaching 2m, compared with approximately 1m at CNS and 0.5m at
NNS; these observations are consistent with the trends in Figure 2 and physical intuition. It is note-
worthy however that the conditional distribution of SrgMxm given the occurrence of omni-directional
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100-year HS yields considerably lower estimates; for NNS and CNS, the median conditional surge
is approximately zero. However, for SNS the median conditional surge remains at around 1.5m,
approximately 80% of the marginal 100-year maximum surge of 1.8m. This demonstrates that
consideration of surge (and conditional surge in particular) is much more important for design in
extreme seas of this region of the North Sea. Characteristics of the corresponding return value
distributions for SrgMdn, SrgNgtMnm and SrgRng are generally rather similar. Of particular interest
is the fact that the conditional distributions of SrgNgtMnm at SNS1 and SNS2 are considerably to
the left of corresponding marginal distributions; this is not the case for other surge characteristics.

[Figure 11 about here.]

Figure 11 shows that differences exist between omni-directional marginal and corresponding con-
ditional return value distributions. Figure 12 illustrates, at the CNS location, that directional
marginal and conditional return value distributions have interesting differences also. The top panel
for the figure gives directional marginal return value distributions {FM1k

} for (storm peak) HS for
T = 100 years, together with the omni-directional distribution (FM1 , black). The omni-directional
return value almost coincides with the directional distribution for the θ ∈ [45, 150) covariate in-
terval. Return values for the two remaining covariate intervals are smaller. The second panel
shows that the omni-directional return value distribution for SrgMxm has large contributions from
all covariate intervals except for θ ∈ [45, 150). This has an interesting effect on the location of
the omni-directional conditional return value distribution (dashed black). Because the most se-
vere storms correspond to θ ∈ [45, 150), for which SrgMxm is relatively small, the omni-directional
conditional return value distribution is itself similar to that for the [45, 150) covariate interval,
with median value around 0.1m. However, the conditional return value distributions of SrgMxm

for covariate intervals [270, 45) and [150, 270) are considerably to the right of the omni-directional
conditional distribution. Informally, we might interpret this information for design in the following
manner. For estimation of TEWL (ignoring mean sea level and tide) omni-directionally, HS has
a 100-year median of around 11.3m, to which a median associated SrgMxm contribution of 0.1m is
added, yielding TEWL of 11.4m. However, for the [270, 45) covariate interval, HS has a median
return value of approximately 10.0m, to which a median associated SrgMxm contribution of 0.5m
is added, yielding TEWL of 10.5m. That is, SrgMxm makes a greater associated contribution to
TEWL in covariate interval [270, 45) than it does omni-directionally. We also see, informally, that
naive addition of median omni-directional marginal HS of around 11.3m to median omni-directional
marginal SrgMxm of around 1.1m yields TEWL of 12.4m; this estimate is 1.0m larger that the more
realistic estimate based on median marginal HS and median associated SrgMxm.

[Figure 12 about here.]

5. Discussion and conclusions

In this work, we examine the statistical properties of storm surge in extreme North Sea storms
using a non-stationary conditional extreme value model consisting of a set of coupled piecewise
stationary models on a partition of the domain of a storm direction covariate. We find evidence
for variation of marginal and conditional extreme surge characteristics with storm direction and
location. In particular, we provide an efficient numerical integration algorithm to estimate marginal
and conditional return value distributions of surge characteristics. Sampling and threshold selection
uncertainties are incorporated within inferences using a bootstrapping scheme. The piecewise
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stationary model appears to be adequate in terms of its complexity for the samples examined here;
the whole modelling procedure can be completed for one surge characteristic at one location in
approximately 5 minutes.
The approach requires specification of covariate partition {Ck} prior to analysis. In the current

work, choice of covariate partition boundaries was informed by inspection of data, and elementary
physical understanding of likely directional effects on significant wave height and surge at each
location. Sensitivity of inferences to small changes in locations of partition boundaries was investi-
gated empirically, and found generally to be small. An improved procedure for specification of the
covariate partition could be considered, including estimation of the partition boundaries (and in
principle the number of boundaries) as part of the extreme value inference. This was not attempted
here, to avoid introducing undue complexity in model estimation.
Extension of the piecewise stationary model to higher p-dimensional covariates (p > 1) is rela-

tively straightforward: simply define {Ck} as a partition of the covariate domain in p-dimensions.
For the typical size n and quality of samples available for analysis, identification of models with
p > 2 is likely to be problematic. We anticipate that inclusion of season at covariate may be of
benefit. Currently, the marginal directional threshold for HS effectively eliminates all but winter
storms. Adopting a directional-seasonal threshold (and piecewise stationary model) might provide
the opportunity to examine seasonality in more detail.
Inferences concerning key surge characteristics such as SrgMxm, SrgMdn and SrgNgtMnm can be

used to forecast a complete surge trajectory s∗(t) for some interval of time t corresponding to an
extreme storm with specified storm peak HS and direction θ. We might choose to do this by
adjusting a historical surge trajectory s(t) for a storm with similar HS and θ linearly using

s∗(t) =


s∗o +

s(t)− so
s+ − so

(s∗+ − s∗o) s(t) > so

s∗o −
s(t)− so
so − s−

(s∗− − s∗o) s(t) ≤ so,

where s−, so and s+ are (negative) SrgNgtMnm, SrgMdn and SrgMxm for the selected historical surge
trajectory, and s∗−, s∗o and s∗+ are the corresponding quantities for the forecast surge trajectory,
estimated jointly using the piecewise stationary model. An alternative strategy would be to estimate
a model similar to that of Winter and Tawn (2016) and Winter and Tawn (2017) for the growth
and decay of surge in time with respect to its maximum value in an extreme storm. In this case,
the piecewise stationary model would be used to estimate the surge maximum relative to which
surge decays (forwards and backwards in time), and the surge minimum necessary for estimating
a threshold below which the surge trajectory should not extend.
The method introduced here is applicable to estimation of conditional characteristics of (in prin-

ciple arbitrary numbers of) environmental variables. It can be used for specification of associated
design conditions for (e.g.) wind speed or peak wave period given extreme HS , and in the con-
struction of design contours (e.g. Huseby et al. 2015, Vanem 2017). The method is currently being
used to estimate surge characteristics for extreme storms in other ocean basins.
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Appendix

This section contains details of the underlying statistical calculations made. Using the notation
of Section 3, we first describe the estimation of marginal and conditional extreme value models,
then the estimation of marginal and conditional return value distributions.

Marginal extreme value model

Continuing from Section 3.1, the marginal sample generalised Pareto likelihood Lj for variable j
under the piecewise stationary model is

Lj =
m∏
k=1

∏
i:A(i)=k;

ẏij>ψjk

1

σjk

[
1 +

ξj
σjk

[ẏij − ψjk]
]−1/ξj−1

,

where Lj , {ψjk}, ξj and {σjk} are functions of marginal extreme value threshold non-exceedance
probability τj , and ξj is constant across the m intervals {Ck}. The negative log likelihood, penalised
for the roughness of {σjk} across intervals, is then

`∗j = − loge Lj + λσj

 1

m

m∑
k=1

[
σjk −

1

m

m∑
k′=1

σjk′

]2 ,

where `∗j is a function of both τ and roughness coefficient λσj . For given τ and λσj , estimates
for marginal model parameters ξj and {σjk} are found by minimising `∗j . A random 10-fold cross-

validation is then used to select the value λ̂σj of λσj and corresponding ξ̂j , {σ̂jk} which, for each
τj , maximise predictive performance. These parameter estimates are used for subsequent inference.
Note that the “hat” notation is suppressed below in reference to the use of estimates of marginal
parameters for subsequent inference.

Conditional extreme value model

Continuing from Section 3.2, since W is assumed to be Gaussian-distributed for fitting, the neg-
ative log-likelihood of the piecewise stationary conditional extremes model is

˜̀=
1

2

∑
i:

yi1>φ

log(2πζ2) +
1

ζ2

(
yi2 − αA(i)yi1

yβi1
− µ

)2


for each value of threshold φ with non-exceedance probability κ. As for the marginal case, we
penalise the roughness of {αk} using roughness penalisation and 10-fold cross-validation. The
penalised negative log-likelihood, for given κ, is

˜̀∗ = ˜̀+ λα

 1

m

m∑
k=1

[
αk −

1

m

m∑
k′=1

αk′

]2 .

We estimate optimal roughness coefficient λ̂α and corresponding parameter estimates {α̂k}, β̂, µ̂ and
ζ̂2. For all subsequent inference, for given κ, the distribution of W is then represented empirically
by the sample {rh} of nr residuals from the fit

rh = y−β̂h1
(
yh2 − α̂A(h)yh1

)
,
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for all h such that yh1 > φ. In particular, the cumulative distribution function of W is assumed
to be FW (w) = 1/nr

∑
h I(rh ≤ w), where I is an indicator function returning unity when its

argument is true, and zero otherwise.

Marginal return value estimation

Continuing from Section 3.3, let Fjk(ẏ) be the cumulative distribution function of a storm peak
event Ẏj in covariate interval Ck for response indexed by j ∈ {1, 2}. For threshold non-exceedance
probability τj , this is estimated as

Fjk(ẏ) =

{
τjFEj(ẏ|Ck) ẏ ≤ ψjk
τj + (1− τj)FGP (ẏ|ξj , σjk, ψjk) otherwise,

where FEj(ẏ|Ck) = 1/ñk
∑

i:k=A(i) I(ẏij ≤ ψjk) is an empirical estimate for threshold non-exceedances,
and ñk is the number of non-exceedances in interval Ck. If ρjk > 0 is the number of storm peak
events in the interval per annum, estimated empirically from the sample, we estimate the cumu-
lative distribution function FMjk

(y) of the maximum Mjk observed in a period of T years in Ck
as

FMjk
(y) = P (Mjk < y)

=
∞∑
p=0

P
(
p peaks of Ẏj in Ck in T years

)
× Pp (size of an event in Ck < ẏ)

=
∞∑
p=0

(Tρjk)
p

p!
exp(−Tρk)× F pjk(y)

= exp (−Tρjk (1− Fjk(y))) .

Since storm peak events are assumed to be independent given covariate, we estimate the cumulative
distribution function FMj (ẏ) of the “omni-directional” storm peak maximum Mj over all intervals,
by taking the product

FMj (ẏ) =

m∏
k=1

FMjk
(ẏ).

As noted in Section 3.4, penalised maximum likelihood estimates F̂Mj (ẏ|Db) for FMj (ẏ) are available

for nBS bootstrap resamples {Db} of the original sample D, each Db using a random selection of
thresholds τ1 ∈ Iτ1 and τ2 ∈ Iτ2 for marginal estimation. The final estimate F̂Mj (ẏ) is then a model
average with respect to these, given by

F̂Mj (ẏ) =
1

nBS

∑
b

F̂Mj (ẏ|Db).

Conditional return value estimation

We estimate F2|M1
(ẏ2) = P(Ẏ2 ≤ ẏ2|M1), namely the conditional distribution of Ẏ2 given an

occurrence of an omni-directional T -year maximum of Ẏ1. Note that the covariate interval within
which M1 occurs is not known, and neither is the value of M1. We can write F2|M1

(ẏ2) as

F2|M1
(ẏ2) =

∫
ẏ1

P(Ẏ2 ≤ ẏ2|M1 = ẏ1)fM1(ẏ1)dẏ1,
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where fM1(ẏ1) is the probability density function of M1, which can be seen by differentiation of the
cumulative distribution function FMj (ẏ) given in the previous section to be

fM1(ẏ1) =
∑
k

fM1k
(ẏ1)

∏
k′ 6=k

FM1k′ (ẏ1)

 .
The kth term in the square brackets above corresponds to the occurrence of M1 = ẏ1 in the kth

covariate interval Ck. To see this informally, note that this event requires M1k = ẏ1 and M1k′ ≤ ẏ1
for k′ 6= k; the corresponding probability is fM1k

(ẏ1)dẏ1 ×
∏
k′ 6=k FM1k′ (ẏ1). The expression for

F2|M1
(ẏ2) now becomes

F2|M1
(ẏ2) =

∫
ẏ1

∑
k

P(Ẏ2 ≤ ẏ2|M1 = ẏ1)

fM1k
(ẏ1)

∏
k′ 6=k

FM1k′ (ẏ1)

 dẏ1

=

∫
ẏ1

∑
k

P(Ẏ2 ≤ ẏ2|M1 = ẏ1 in Ck)

fM1k
(ẏ1)

∏
k′ 6=k

FM1k′ (ẏ1)

 dẏ1.

Using {gjk} to represent the set of functions which map Ẏj to Yj for intervals {Ck} in Section 3.1,
we have

P
(
Ẏ2 ≤ ẏ2|M1 = ẏ1 in Ck

)
= P

(
g2k(Ẏ2) ≤ g2k(ẏ2)|g1k(M1) = g1k(ẏ1) in Ck

)
= P

(
αkg1k(ẏ1) + g1k(ẏ1)

βW ≤ g2k(ẏ2)
)

= FW

(
g2k(ẏ2)− αkg1k(ẏ1)

g1k(ẏ1)β

)
,

where residuals from fitting the conditional extremes model provide an estimate for FW .
As for marginal return values, penalised maximum likelihood estimates F̂2|M1

(ẏ2|Db) (and also

{F̂2|M1k
(ẏ2|Db)} of conditional return values are available for nBS bootstrap resamples {Db} of the

original sample D, each Db using random selections of thresholds τ1 ∈ Iτ1 and τ2 ∈ Iτ2 for marginal
estimation, and κ ∈ Iκ for conditional extremes estimation. The final estimate F̂2|M1

(ẏ2) is again
a model average given by

F̂2|M1
(ẏ2) =

1

nBS

∑
b

F̂2|M1
(ẏ2|Db),

with analogous expressions for {F̂2|M1k
(ẏ2)}.
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Figure 1: Surge trajectories for a northern North Sea location (NNS), a central North Sea location (CNS) and two
southern North Sea locations (SNS1, SNS2). Time on the x-axis is given in days relative to the time of occurrences
of storm peak HS .
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Figure 2: Scatter plots of surge maximum (SrgMxm) on storm peak HS for each of NNS, CNS, SNS1 and SNS2
locations, for each directional sector identified. Four covariate intervals used for the NNS location, and three elsewhere.
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Figure 3: Scatter plots of surge range (SrgRng) on storm peak HS for each of NNS, CNS, SNS1 and SNS2 locations,
for each directional sector identified. Two covariate intervals used for the NNS location, and three elsewhere.
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Figure 4: Marginal piecewise stationary modelling for storm peak HS ((a)-(c)) and maximum surge (SrgMxm, (d)-(f))
at the CNS location. Panel (a) shows the estimated non-stationary extreme value threshold ψ for storm peak HS

with direction θ in terms of its bootstrap median and 95% uncertainty bands in blue; storm peak HS events exceeding
ψ with θ are shown as black discs; non-exceedances are shown in grey. Boundaries of covariate intervals are shown in
red. Panel (b) gives a histogram of bootstrap estimates for the generalised Pareto shape parameter ξ for storm peak
HS , assumed stationary with θ. Panel (c) shows the estimated non-stationary generalised Pareto scale parameter σ
for storm peak HS with θ in terms of it bootstrap median and 95% uncertainty bands in black. Panels (d)-(f) show
the corresponding plots for SrgMxm.
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Figure 5: Marginal model validation for storm peak HS by comparison of estimates for the distribution of storm
peak HS corresponding to the period of the original sample, plotted as log10(1 − F ) to accentuate tail behaviour,
for cumulative distribution function F at the CNS location. Panels give comparisons for three directional sectors
[270, 45), [45, 150) and [150, 270) and omni-directionally [0, 360). In each panel, the dotted red curve is an empirical
estimate. The black curves summarise the predictive distribution of the quantile estimate (for given tail probability
1− F ) under the piecewise stationary model, as the median (solid) and 2.5% and 97.5% values (dashed), estimated
using numerical integration.
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Figure 6: Marginal model validation for maximum surge (SrgMxm) by comparison of estimates for the distribution
of storm peak HS corresponding to the period of the original sample, plotted as log10(1 − F ) to accentuate tail
behaviour, for cumulative distribution function F at the CNS location. Panels give comparisons for three directional
sectors [270, 45), [45, 150) and [150, 270) and omni-directionally [0, 360). In each panel, the dotted red curve is an
empirical estimate. The black curves summarise the predictive distribution of the quantile estimate (for given tail
probability 1−F ) under the piecewise stationary model, as the median (solid) and 2.5% and 97.5% values (dashed),
estimated using numerical integration.
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Figure 7: Variation of estimated generalised Pareto shape parameter ξ for SrgMxm with non-exceedance threshold τ
at the CNS location, estimated using 500 bootstrap resamples uniformly sampled on the interval τ ∈ [0.5, 0.95], with
bootstrap median and 95% uncertainty band in red.

27



-2 0 2 4

r

0

1

2

3

4

5

6

7

F
re

qu
en

cy
 (

x 
10

00
)

0 90 180 270 360

-2

-1

0

1

2

3

r

Figure 8: Conditional extremes model validation for maximum surge (SrgMxm) given storm peak HS at the CNS
location. The left hand panel shows a histogram of residuals r = {rh} from the conditional extremes model fit. The
right hand panel shows residuals with direction θ.
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Figure 9: Piecewise stationary conditional extremes modelling for maximum surge (SrgMxm) on storm peak HS at the
CNS location. Top left panel shows estimated slope parameter α = {αk} with direction θ in terms of its bootstrap
median and 95% uncertainty band. Subsequent panels show histograms of bootstrap estimates for scale exponent
parameter β, and for residual mean µ and scale ζ, all assumed stationary with θ.
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Figure 10: Piecewise stationary conditional extremes modelling for maximum surge (SrgMxm) on storm peak HS at
the CNS location. Estimates of the conditional extremes slope parameter α = {αk} as a function of conditional
extremes threshold non-exceedance probability κ in each of the directional sectors [270, 45), [45, 150) and [150, 270),
and estimate of conditional extremes scale exponent β assumed stationary with direction.
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Figure 11: Omni-directional marginal and conditional cumulative distribution functions for the T = 100-year return
period estimated by numerical integration for all locations. Left: marginal storm peak HS . Centre and right:
marginal (Y , solid) and conditional (Y given 100-year HS , dashed) return value distributions for maximum (SrgMxm),
median (SrgMdn) and negative minimum (SrgNgtMnm) surge and surge range (SrgRng). Colours indicate locations as
explained in the left hand panel.
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Figure 12: Directional marginal and conditional cumulative distribution functions for the 100-year return period
estimated by numerical integration at the CNS location. First row: marginal storm peak HS . Subsequent rows:
marginal (Y , solid) and conditional (Y given 100-year HS , dashed) return value distributions for maximum (SrgMxm),
median (SrgMdn) and negative minimum (SrgNgtMnm) surge and surge range (SrgRng). Colours indicate covariate
intervals.
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