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Abstract

We report new descriptions for the (probability) distributions of hourly maximum crest and wave height of water surface
gravity waves for intermediate water depths. Estimated distributions are based on analysis of laboratory-scale measurements
at the DHI wave basin. For a given sea state, the distribution of both hourly maximum crest and hourly maximum wave
height, normalised by sea state significant wave height, is found to follow a generalised extreme value (GEV) distribution.
Variation of the three parameters of the GEV distribution across sea states, is expressed in terms of a response surface model
as a function of non-dimensional sea state Ursell number and wave steepness, and wave directional spreading angle. For
inference, conventional Monte Carlo wave basin measurements are supplemented with measurements selected by means of a
novel “pre-selection” sampling scheme using numerical simulations. This scheme effectively guarantees that extreme events
from tails of distributions are produced, and reduces uncertainties associated with the estimated distributions. Estimation is
performed using Bayesian inference, allowing uncertainties to be quantified, and providing estimates of posterior predictive
tail distributions for sea states with arbitrary characteristics within the domain of sea state characteristics covered by the
model.
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1. Introduction

In 2012, a photograph (taken in 2007) was discovered (Tychsen et al. 2016). It shows a plunging, breaking extreme wave,
occurring in a sea state with significant wave-height Hm0 of approximately 10m in the Danish Tyra field, offshore Jutland,
with water depth d of approximately 45m. Further investigation revealed the existence of a video showing a second, even
larger plunging breaker with crest height between 17m and 17.5m for the same storm and location. The storm was estimated
to correspond to an event with return period of approximately 25 years, yet the crest observations exceeded the 10, 000-year
design criteria for both crest elevation and wave kinematics. This triggered an extensive study to quantify the characteristics
of highly non-linear extreme wave events (Tychsen 2016). The current work forms part of that study.

Distributions for individual wave height and crest

Good estimation of extremes of individual wave height H and crest elevation E, and of maximum wave height Hmax and
crest elevation Emax on some spatio-temporal domain, are essential for the design and assessment of marine structures.
There is a large literature on this subject stretching over many decades, addressing amongst other things estimation of
(probability) distributions for H, E, Hmax and Emax from theory and observation. The distribution of H in deep water has
been modelled using the Rayleigh distribution (Longuet-Higgins 1952) and the Weibull distribution (Forristall 1978). Tayfun
(1990) generalised the asymptotic model of Boccotti (1989) to include the effects of higher order non-linearities. Depth-
induced wave breaking leading to restriction on the ratio of wave height to water depth required new parameterisations of
these or other distributional forms for shallow water. To this end, Glukhovskiy (1966) proposed a Weibull parameterisation
accommodating depth-limited breaking, modified by van Vledder (1991). Battjes and Groenendijk (2000) suggested a two-
part Weibull-Weibull distribution and Wu et al. (2016) a Weibull-generalised Pareto distribution parameterised empirically in
terms of sea state variables. Mendez et al. (2004), Forristall (2007), Katsardi and Swan (2011a,b) and Katsardi et al. (2013)
reported studies of H in shallow water and also proposed Weibull-type distributions. Forristall (2000) provided a distribution
for E motivated by observations and second-order theory, and summarised earlier work on crest height distributions starting
with Haring et al. (1976). Katsardi et al. (2013) studied the tail of the distribution of E in shallow water using laboratory
measurements. There is a large literature (including Tromans and Vanderschuren 1995, Prevosto et al. 2000 and Krogstad
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and Barstow 2004) on the estimation of distributions for Hmax and Emax for a defined time interval of observation, for
example corresponding to the occurrence of one or more ocean storms, each consisting of multiple sea states with different
characteristics; Mackay and Johanning (2018) provides a recent review.
The recent work of Karmpadakis et al. (2019) discusses the statistical distribution of the crest heights associated with surface

waves in intermediate water depths, including the effects of varying sea-state steepness, effective water depth and directional
spreading are investigated. They observe amplifications of crest heights of 5%-10% above second order for realistic directional
spreads, and the increased influence of wave breaking as effective water depth reduces. The inferences of Karmpadakis et al.
(2019) concerning the effects of sea-state steepness and directional spreading are in line with those of the current work.
In addition to measurement, and solution of equations of motion for surface gravity waves, asymptotic statistical theory

can also be used to motivate useful parametric forms for the distribution of extremes of wave and crest height. Specifically
for a random variable belonging to the maximum domain of attraction of a non-degenerate distribution (informally, a “max-
stable” random variable), the distribution of peaks over threshold will converge to the generalised Pareto distribution, as
threshold level increases. Further, the distribution of maxima (over some interval) of the random variable will converge to
the generalised extreme value (GEV) distribution as the number of occurrences in the interval increases (e.g. Beirlant et al.
2004, Jonathan and Ewans 2013). A random variable M following the generalised extreme value distribution has cumulative
distribution function FM and probability density function fM given by

FM (m) = exp{−t(m)}

fM (m) =
1

σ
t(m)ξ+1 exp{−t(m)}

where

t(m) =





(
1 + ξ

σ (m− µ)
)−1/ξ

if ξ 6= 0

exp{− 1
σ (m− µ)} if ξ = 0

for shape parameter ξ ∈ R, scale σ ∈ R and σ > 0, and location µ ∈ R. When ξ < 0, the distribution FM has a finite upper
end point µ− σ/ξ.

Objective

The objective of the current work is to estimate statistical models for the distributions of hourly maximum crest height Emax

and hourly maximum wave height Hmax, across a variety of different sea states. Models are estimated using observations
(at laboratory scale) made at the DHI (formerly Danish Hydraulics Institute) wave basin at an intermediate water depth,
incorporating highly non-linear effects such as wave breaking. The estimated statistical models are intended to be used to
predict the distributions of Emax and Hmax for other sea states with similar characteristics at similar intermediate water
depths. The models therefore quantify the “short-term” distributions of Emax and Hmax, which can then be combined with
long-term distributions of sea state variables to estimate “long-term” distributions of Emax and Hmax for periods of up to
106 years (e.g. Hansen et al. 2019).

Outline

The article is arranged as follows. Section 2 introduces the data, and Section 3 provides a description of the different
model elements considered, and the model form eventually chosen. Section 4 outlines application to the estimation of the
distribution of hourly maximum crest height Emax, and briefly summarises the corresponding analysis for hourly maximum
wave height Hmax. Section 5 provides discussion and conclusions. Details of the modelling strategy, including a description
of the so-called “numerical pre-selection” procedure for sampling from the extreme tail of distributions, Markov chain Monte
Carlo sampling for Bayesian inference, response surface regression modelling, the hierarchy of statistical models considered,
and MATLAB software for the estimated distributions, are given in appendices.
For brevity, unless stated otherwise, we use the term “distribution” to refer to probability distribution, “density” to refer

to probability density function, and “tail” to refer to the upper tail of the probability distribution of a random variable.

2. Data

The data used in this study are measurements of hourly maximum wave and crest heights made at the DHI wave basin,
more details of which are given in Bredmose et al. (2016). The set-up of the wave basin for the experiments described here is
generally in line with Bredmose et al. (2016); a photograph taken during the experiments is given in Figure 1. Measurements
were made at a lattice of nL = 100 locations as illustrated in Figure 2, with dimensions given on actual laboratory (henceforth
“lab”) and equivalent full (“full”) scales. The reference location is indicated. Laboratory water depth of 0.5 m corresponds
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to 45m in full scale offshore, requiring a Froude number scaling of 1:90 and corresponding time scaling of 1:900.5. In general
terms, referring to Figure 2, waves propagate from left to right.
No walls where present in basin tests, and sloping beds made of crushed stones where placed around the sides in the basin.

Furthermore, steel wave absorbers where installed in an M shape, to direct any reflections away from the test area. The
closest wave absorber to any wave gauge was approximately 8m.

Figure 1: The DHI wave tank in operation, with acknowledgement to DHI and Total E&P Danmark A/S.

Just over 11 hours (lab-scale, corresponding to 105 hours at full scale) of continuous measurements were made at all locations
for a total of nS = 50 different sea states. From these measurements, nH = 105 observations of hourly (full-scale) maxima
Emax and Hmax, for each of nL locations, for each of the nS sea states were identified, with up-crossing definition for wave
height. The corresponding sample can be written {mijk}

nH ,nL,nS

i=1,j=1,k=1, corresponding to nH observations of each of the random

variables {Mjk}
nL,nS

j=1,k=1, where M represents either Emax or Hmax. Individual sea states, indexed by k (k = 1, 2, ..., nS), are
characterised in terms of significant wave height Hm0 (in metres), steepness ǫ, Ursell number U and directional spreading
angle θsp (in degrees). The defining expressions for ǫ and U are

ǫ =
Hm0

λp
, U =

Hm0

k2pd
3

where λp is the wavelength at spectral peak frequency satisfying λp = 2π/kp, ω
2
p = gkp tanh(kpd), ωp = 2π/Tp and Tp is

the spectral peak period. The set of nS sea states was selected to cover a range of different values of Hm0, ǫ, U and θsp
and combinations thereof appropriate for the location of interest, as illustrated in Figure 3. A listing of values of sea state
characteristics is given in full in Table A.1 of Appendix A.
Figure 4 shows the mean quantile q̄k(p) (per probability level p) of the distribution of Emax per sea state k, estimated using

q̄k(p) =
1

nL

nL∑

j=1

qjk(p) for p ∈ (0, 1)

where quantile qjk(p) is estimated empirically by solving Pr(Mjk ≤ qjk(pi)) = pi for pi = (i − 0.5)/nH , i = 1, 2, ..., nH

using the sample; each tail is constructed using nH hourly maxima measurements. There is considerable variation in the
characteristics of the tails between sea states which we seek to explain using statistical modelling, in two steps. First, extreme
value analysis is used to characterise the tail for each sea state independently. Then, a regression model is established relating
the parameters of extreme value models across sea states to the summary statistics of the sea state.
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Figure 2: Locations of wave gauges in the wave basin at DHI, including square-shaped test area with dimensions on laboratory and full scales. The
location of the reference gauge is marked with a diamond.

Figure 5 illustrates tails qjk(p) of Mjk at each of the nL locations j for the two specific sea states k indicated in Figure 4,
one sea state exhibiting (wave) breaking (Figure 5(a)) and the other no breaking (Figure 5(b)). In both figure panels, the
upper solid (red) curves correspond to tails (full-scale) measured at each of the wave gauges, and the dashed curve to the tail
of the areal maximum over all nL gauges. It is clear that there is a small number of erroneous gauge measurements which are
eliminated from subsequent analysis (and the estimation of areal maxima in the plot) following post-experiment assessment
of gauges and measurements by experts at DHI. Nevertheless, there is also considerable variability between tails for different
locations for a given sea state.

Upper tails estimated using numerical pre-selection

Tank experiments are costly and time-consuming. Observations of extreme events in a sea state are by their very nature
rare. In the current work, observations of nH = 105 values of hourly maxima M for each of nS = 50 sea states are
available. Estimation of return values corresponding to return periods ≫ 100 hours using these observations therefore
involves extrapolation. Supplementing these observations with those likely to correspond to long return periods is therefore
of considerable advantage in characterising the tail of the distribution of M . Numerical modelling makes this feasible,
provided that the numerical models adequately quantify the competing effects of non-linear wave amplification and wave
breaking well present at intermediate water depths. In the current work, numerical simulation was performed using the
compact formulation of Schäffer and Steenberg (2003) consistent with the work of Sharma and Dean (1981). Numerical
simulations conducted by LIC Engineering and SchäfferWaves are designed so that they can be coupled to the wave paddle
control system of the physical tank. In principle, therefore, up to the quality of the numerical modelling and wave tank test,
the same waves can be generated in both the physical wave tank and its numerical simulator; of course, a numerical simulator
provides only an approximation to the actual wave field. Nevertheless, we can use the numerical simulator to search for
intervals of time-series of random paddle inputs which yield extreme crests at the reference location; see Appendix B for
details. In particular, we might execute the numerical simulation of very long periods (corresponding to thousands of hours),
and isolate sequences of paddle inputs which generate the very largest values for crest height at the reference location. We
could then generate wave fields in the physical tank using the same sequences of paddle inputs, and compare observed and
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Figure 3: Locations of nS = 50 sea states in Hs-Tp space. Lines indicate a constant steepness ǫ. Labels give values of ǫ. Note that different values
of directional spreading θsp are also considered, not shown here.

numerically modelled crest heights. A useful numerical model will identify sequences of random inputs which actually provide
extreme events in the physical tank. Suppose we execute the numerical tank for periods of T hours, with T ≈ 104. The
largest hourly maximum observed will not correspond to the T -hour event, because the numerical simulator is an imperfect
model for the physical tank. However, it will correspond to a return value with different return period T̃ , with T̃ ≈ T .
The numerical pre-selection and splicing procedure is described in Appendix B. Figure 6 provides a schematic representation

of the process by which numerical pre-selected events for a given hour and sea state are used to provide an estimate for the
basin hourly maximum for that hour. Using numerical simulation, paddle inputs corresponding to extreme numerical events
for that hour are isolated. Paddle inputs corresponding to the single largest numerical event (only) are subsequently simulated
in the wave basin. The dependence between the numerical maximum and the corresponding basin event, generated using
the same paddle inputs, is therefore estimable. We cannot estimate the corresponding dependence for the kth largest events,
k = 2, 3, ..., since only the k = 1 event is simulated in the wave tank. We know from the discussion of Γ above that the
basin hourly maximum does not always correspond to the numerical maximum for the same paddle inputs, yet we only have
basin measurement of this event. We therefore use this basin measurement as an uncertain, biased estimate the actual basin
hourly maximum, with uncertain, biased return value T̃ (estimated using Γ) in place of the nominal return value T . The
statistical characteristics of Γ are estimated using the set of 105 hours of continuous simulations available for both numerical
model and wave basin.
We assume that T̃ is a random variable dependent on T . In this section, we outline how the distribution FT̃ of T̃ can be

approximated. The analysis is performed independently per sea state at the reference location R. Suppose we have a sample
of nH hours of observations {mi}

nH

i=1 in the physical tank, and corresponding numerical simulations {m̃i}
nH

i=1 based on the
same sequences of random paddle inputs, as follows. From the numerical simulations, we identify the realisation i∗ which
yields the largest value of maximum crest at the reference location

i∗ = argmax
i∈[1,2,...,nH ]

{m̃i}.
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Figure 4: Tail of distribution of hourly maximum crest per sea state k, plotted as the mean quantile q̄k(p) against log10(1− p) for non-exceedance
probability p. Tails for two sea states, used for illustrative purposes throughout this work, are highlighted. The (left-hand) dashed tail corresponds
to a sea state exhibiting no wave breaking. The (right-hand) dot-dashed line corresponds to a sea state exhibiting wave breaking. “CCDF” refers
to the complementary cumulative distribution function” or tail distribution, equal to one minus the cumulative distribution function.

Next we identify the rank γ of the corresponding physical crest mi∗ within the set of crests {mi}
nH

i=1 using

γ =

nH∑

i=1

I (mi ≥ m̃i∗) ,

where I is the indicator function with value unity when its argument is true, and zero otherwise. γ can be interpreted as
follows: the set of random inputs yielding the largest value of hourly crest at the reference location in numerical experiments
for a sea state, yields the Γth largest value in the actual physical tank experiment. In this sense, if the numerical experiment
corresponds to a return period of T hours, the physical experiment corresponds to a return period of

T̃ =
T

Γ

where γ is an estimate of random variable Γ. We then use the set of nS values {γk}
nS

k=1 across sea states to estimate the
distribution FΓ as

FΓ(x) =
1

nS

nS∑

k=1

I (γk ≤ x) .

Using FΓ we are able to sample at random from the distribution of Γ and equivalently from the distribution FT̃ of T̃ at each

iteration of Bayesian inference, to incorporate our uncertainty about the value of T̃ . By definition, the value of T̃ cannot
exceed that of T .
In Figure 5, the lower (black) curves correspond to tails (each consisting of nM ≈ 1000 hourly maxima) measured using wave

tests with nM numerically pre-selected sequences of random paddle inputs. These sequences produced the largest nM crests in
the vicinity of the reference location for the sea state of interest in second-order numerical simulation for a period of 104 hours
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(a) (b)

Figure 5: Tails for the two illustrative sea states exhibiting (a) wave breaking and (b) no wave breaking. Measured quantiles qjk(p) of hourly crest
maxima for nL locations j per sea state k, from direct measurement of nH hours (top red) and from measurements using numerically pre-selected
realisations (bottom black). Solid curves correspond to tails for specific locations. Dashed curves correspond to the tails of areal maxima. Black
curves start at (0,-1) since they correspond to the 1000 numerically-preselected largest values based on a 10,000-year numerical simulation.

Figure 6: Schematic describing how numerical pre-selection is used to provide an uncertain, biased estimate of the hourly maximum event for
crests and wave heights, for a given hour and sea state. Using numerical simulation, random paddle inputs corresponding to extreme numerical
events for the hour are isolated. Paddle inputs corresponding to the single largest numerical event (only) are subsequently simulated in the wave
basin, allowing the dependence between numerical maximum and the corresponding basin event, generated using the same paddle inputs, to be
estimated. Estimation of dependence for the kth largest events, k = 2, 3, ... is not possible since only the largest numerical event is simulated in the
wave tank. For statistical inference, the single basin measurement is adopted as an uncertain, biased estimate the actual basin hourly maximum,
with uncertain, biased return value T̃ in place of the nominal return value T . The statistical characteristics of T̃ are estimated using the set of 105
hours of continuous simulations available for both numerical model and wave basin.

(full-scale). In this sense, the largest values of crest elevation at each location from the numerically pre-selected tails provide
an estimate for the 104 hour maximum. Since the numerical wave simulation does not reflect the full physics of extreme
waves, it is unlikely that maxima from numerical pre-selection actually correspond to the 104 hour maximum. However,
observations from numerical pre-selection do provide evidence for the approximate location of the far tail of the hourly
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(a) (b)

Figure 7: Illustration of estimation of hourly Hm0 for numerically pre-selected measurement, required for local normalisation, for sea state exhibiting
(a) wave breaking and (b) no wave breaking.

maximum crest distribution, and prove useful in estimating the upper tail, as discussed in Section 3. We use the notation MT̃

to refer to the T̃ -hour maximum of E or H obtained in this way. For definiteness, we use the terms “direct measurement”
and “numerically pre-selected measurements” respectively to describe measurements made using conventional Monte Carlo
wave test, and measurements using pre-selected sequences of random paddle inputs. Only wave basin measurements are
used to estimate tail distributions; numerical simulation is used only to identify sequences of random inputs for numerical
pre-selection.

Long-term and local normalisation

Extreme value models are estimated for laboratory data, normalised with respect toHm0 at the reference location (Figure 2),
aiding the development of dimensionless models applicable for arbitrary Hm0. The target value of Hm0 for a particular wave
test is of course specified, but the actual value of Hm0 achieved at the reference location is unknown and must be estimated;
here we consider two different estimates achieved using different approaches to normalisation. The first “long-term” estimate
uses all nH hours of direct wave test to calculate Hm0; in practice, the long-term estimate is always in good agreement with
the target value for the wave test. In the second “local” (or “short-term”) approach, we normalise using the value of Hm0

calculated for that specific hour of wave test. Normalisation using the two approaches leads to somewhat different extreme
value models. Models estimated using the first long-term normalisation are likely to be more useful for practical design, and
incorporate uncertainty due to hour-to-hour variability in Hm0 for a given (fixed) long-term value. The current measurements
suggest that the coefficient of variation of hourly Hm0 over all sea states tested relative to the long-term value is ≈ 0.035.
The second local normalisation assumes more certain temporally-local knowledge of Hm0.
For long-term normalisation, we assume that the same value of long-term Hm0 (estimated over all nH hours) is appropriate

for both direct and numerically pre-selected data. For local normalisation using direct measurements, hourly estimates ofHm0

are available. For numerically preselected extreme events however, only a relatively short interval of time series before and
after the time of occurrence of the extreme event is available; this is insufficient to estimate hourly Hm0 reliably. Therefore,
hourly Hm0 for numerically pre-selected events must be predicted empirically from the direct measurements. A simple linear
regression model is used to estimate the hourly Hm0 at the reference location as a function of the observed hourly maximum
crest at the reference location, using the direct measurements. For our two illustrative sea states, estimated models for local
normalisation are shown in Figure 7. There is considerable uncertainty in the predicted hourly Hm0, which is propagated
into all subsequent inferences.
Henceforth, we adapt our notation such that M refers to hourly maxima Emax or Hmax of E or H, suitably normalised.

3. Model components

We seek to establish statistical models for the distribution of hourly maximum crest height Emax and wave height Hmax,
normalised with respect to Hm0, applicable to sea states similar to those listed in Table A.1 of Appendix A. To do this, we
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make use of the sample of normalised direct measurements of {Mjk} and normalised measurements of {MT̃ jk} corresponding

to numerically pre-selected realisations of the T̃ -hour maximum. We perform inference in two parts: first, independently
per sea state k, we estimate GEV models for hourly maxima using Bayesian inference; then, we develop response surface
models to interpolate between the values of GEV model parameters for different sea states. Throughout the analysis, we
are careful to propagate uncertainty so that predictions of distributions of hourly maxima for a previously unseen sea state
reflect aleatory and epistemic uncertainty reasonably.
For a given sea state, we assume that the wave field generating {Mjk} and {MT̃ jk} is temporally and spatially homogeneous

over the lattice of locations for each hourly observation. It follows that all measurements from all locations are useful in
estimating a common marginal distribution FMk

for sea state k. However, observations from different locations are spatially
dependent, making joint modelling over all locations a challenging problem in spatial extremes (e.g. Ribatet et al. 2012);
we seek to avoid addressing estimation of spatial (extremal) dependence (e.g. Wadsworth et al. 2017) directly in this work,
adopting more pragmatic yet useful approximate approaches.
Here, we first outline the different approaches to approximate inference investigated by us, before describing the preferred

approach eventually adopted. We subsequently report the analysis for normalised hourly maximum crest height in some detail
in Section 4, providing a summary only of the analysis for normalised wave height. Since inference is performed independently
per sea state, we suppress the subscript k in this section for clarity. Further, all probability density and cumulative distribution
functions of normalised hourly maxima M are assumed dependent on a common set of GEV parameters ξ, σ, µ; all likelihoods
are functions of these parameters.

3.1. Using observations at a single reference location only

As introduced in Section 1, the distribution of normalised maxima (of wave or crest height) can be described using the
generalised extreme value distribution GEV(ξ, σ, µ). For a sample {miR}

nH

i=1 at the reference location R, the sample likelihood
is then

LR =

nH∏

i=1

fM (miR).

In principle, any location might be used in place of the reference location, given the assumption of spatial marginal homo-
geneity. However, the fact that the wave basin is calibrated to produce the desired wave characteristics at the reference
location would suggest that this location be used.

3.2. Using mean quantiles over all locations

We can also use the mean quantiles {q̄(pi)}
nH

i=1 over all locations as a pseudo-sample of nH values following the same marginal
distribution, with likelihood

LQ =

nH∏

i=1

fM (q̄(pi)).

In this pseudo-sample, averaging over locations reduces variability in the tail of the distribution, compared with using
observations of normalised maxima from a single location. However, this approach does not reduce any bias present due to
the experimental procedure.

3.3. Using areal maximum MA

Since we assume that the wave field is temporally and spatially homogeneous over the lattice of locations for each hourly
realisation of each sea state, it follows that the distribution FMA

of normalised areal maximum MA over all nL locations
must take the form

FMA
(m) = F θD

M (m)

where θD ∈ [1, nL] is sometimes known as the extremal coefficient, quantifying the extent of dependence between normalised
maxima observed at different spatial locations. θD = 1 corresponds to perfect dependence, so that all locations experience
exactly the same value of M , and θD = nL to perfect independence, so that M at different locations are independent; in the
latter case, a 1-hour areal maximum corresponds exactly to a nL-year maximum at any one location. In reality, of course,
the value of θD for a particular wave field is unknown.
We could choose to estimate the distribution of normalised maximum M for any single location together with the areal

maximum MA jointly, assuming that both follow GEV distributions with different parameters, necessitating the estimation
of 6 parameters in total. Since we are modelling wave and crest heights at intermediate water depths, it is reasonable to
assume that the distributions of both M and MA have a finite upper end-point expressible in terms of the corresponding
GEV parameters. This upper end-point must therefore be common to both M and MA, allowing elimination of one of the
6 parameters. Of course, strictly we would also need to model the extremal dependence between M and MA, but might be
able to justify assuming that this was small in practice.
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3.4. Estimation of distribution of approximately independent maxima for a subset of locations

Extreme events at neighbouring locations exhibit spatial dependence. Nevertheless, we might select a subset I of locations
with sufficiently large inter-locations distances, such that values of M can be regarded as effectively independent on the
subset. The corresponding likelihood for sample {mij}

nH

i=1,j∈I is

LI =
∏

j∈I

nH∏

i=1

fM (mij).

Independently per sea state, the procedure for subset selection of independent locations is to: (a) first include a single central
location (typically R) in the subset; then (b) iterate, choosing the nearest location to any location in the existing subset, with
absolute value of Pearson correlation (between values of normalised maxima M for the two locations) less than a pre-specified
threshold δ; and finally (c) stop when no more locations can be added to the subset. This procedure, with δ = 0.25, was found
to yield subsets of locations with relatively low dependence between values of M . In practice, the number of independent
locations per sea state varies from 1 to 9, in the 16, 200 m2 square-shaped basin test area (full scale), reflecting the extent of
spatial dependence present.

3.5. Estimating the distribution of the T̃ -year maximum MT̃ for uncertain T̃ , from numerical pre-selected realisations

For numerically pre-selected realisations corresponding to return period T̃ , the distribution of MT̃ at any location is

FM
T̃
(m) = F T̃

M (m). If we are prepared to represent our uncertainty about T̃ using a “prior” distribution with density
fT̃ and cumulative distribution function FT̃ on some domain IT̃ , we can then estimate the distribution of MT̃ using

FM
T̃
(m) =

∫

t∈I
T̃

[FM (m)]
t
fT̃ (t) dt,

and use this to estimate a sample likelihood for an observation mT̃ of MT̃ , given by

LT̃ =

∫

t∈I
T̃

tfM (mT̃ ) [FM (mT̃ )]
t−1

fT̃ (t) dt.

Of course, the observation mT̃ itself could correspond to a direct measurement at a reference location (as in Section 3.1,
yielding likelihood LT̃R), or to the mean maximum over all locations (as in Section 3.2, yielding likelihood LT̃Q), or to
observations over a subset of approximately independent locations (as in Section 3.4, yielding likelihood LT̃ I).

3.6. Selecting a reasonable estimation strategy

The purpose of tail modelling for individual sea states k is estimation of the joint distribution of GEV parameters ξ, σ, µ
of the normalised hourly maximum value M at any single location. We could use any combination of modelling components
outlined above to achieve this. In practice, we did not find modelling of areal maximum advantageous. For some sea states,
observations at the reference location were missing. For these reasons, these modelling components were deemed less useful.
As a result, an approximate likelihood L combining estimation using independent subsets of locations LI , mean quantiles LQ

and numerical pre-selection (at the reference location) LT̃R was adopted

L = LI + LQ + LT̃R

for marginal inference per sea state. The approximate likelihood is a heuristic attempt to exploit the complete data available
(from multiple dependent locations, from direct and numerically pre-selected tests) in a broadly reasonable manner for
inference; we do not claim optimality in any sense. Note that LQ effectively contributes nH observations (or “degrees of
freedom”) with reduced variability to the inference; the extent of reduction in variability increases with reduced spatial
dependence. For a sea state with nI approximately independent locations, LI contributes approximately nH × nI degrees of
freedom.
Bayesian inference is used independently per sea state, with approximate likelihood L, to generate samples from the joint

posterior distribution of GEV shape ξ, scale σ and location µ for that sea state. The inference procedure is outlined in
Appendix A.
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3.7. Modelling GEV parameters across sea states

There is a large literature (Section 1) on the development of parametric models for wave and crest height distributions,
the parameters of which are specified in terms of covariates such as significant wave height Hm0, spectral peak period TP ,
steepness ǫ and directional spreading θsp characterising the sea state from which the observations are made. In this section,
we develop joint regression models for GEV parameters ξ, σ and µ for observations of normalised hourly maximum wave and
crest heights at the reference location in terms of non-dimensional Ursell number U and steepness ǫ, and directional spreading
angle θsp. Since the sea states selected for the study provide reasonable coverage of the domain of covariates at the location
of interest, we adopt response surface models with intercept, linear, square and interaction terms in covariates. Therefore we
estimate the model

{y|x} = x′β + ν

where y is the triad (ξ, σ, µ), x is a design vector consisting of known values of intercept, linear, square and interaction terms
in the three covariates (U, ǫ, θsp) and β is a matrix of regression parameters to be estimated. ν is a vector of correlated random
Gaussian errors, assumed to have zero mean. In developing the regression model, we are careful to propagate uncertainty
from tail fits to individual sea states into estimates of the regression parameters β and the covariance matrix of ν. Details
of the regression inference are given in Appendix A.

3.8. Applying crest and wave height models at different water depths

Models developed here for the distributions of ratios of hourly maxima Emax and Hmax to Hm0, are parameterised in terms
of ǫ1, U and θsp from a designed experiment on a pre-specified covariate domain (e.g. Table A.1). The models are applicable
to situations where the competing influences of non-linear wave amplification and wave breaking as similar to those studied
here. We believe that our models should therefore be applicable for sea states with values of ǫ1, U and θsp on the domain
specified by Table A.1.
Nevertheless, all basin measurements were conducted at water depth of 0.5m corresponding to d0 = 45m at full scale, for

maxima over time period τ0 corresponding to one hour (i.e. τ0 = 1). At any other depth d, using Froude number scaling, the
distributions here correspond to maxima over a time period τ in hours given

τ = τ0

(
d

d0

)1/2

with τ0 = 1 and d0 = 45. Thus for d = 60m, the models developed here correspond to distributions of maxima for time
periods of τ = 1.16 hours. To obtain the distribution of hourly maxima at depth d, therefore, we need to “power down” the
distribution at d0. In the notation of Section 1, the cumulative distribution function FM |d of hourly maxima at depth d is
related to the cumulative distribution function FM |d0

of hourly maxima at depth d0 by

FM |d(m) =
(
FM |d0

)1/τ
.

4. Models for the distribution of normalised Emax and Hmax

In this section we describe inferences made for distributions of long-term and locally normalised hourly maximum crest and
wave height. Since the procedure for wave height is in essence the same as that for crest height, we provide a more complete
description of crest modelling, and simply summarise inference for wave height. Freely-available algorithms accompanying
this article provides descriptions of distributions of both hourly maximum crest and wave height, allowing the choice of local
or long-term normalisation.

4.1. Marginal extreme value models for Emax

Using the approximate likelihood described in Section 3.6, we estimate the triad of GEV shape ξk, scale σk and location µk

for long-term normalised hourly maximum crest for each of nS = 50 sea states k in turn, using Bayesian inference as outlined
in Appendix A. In brief, independently per sea state, we first specify uniform prior distributions for ξk, σk and µk. Next
we generate a chain of triads of GEV parameters which eventually converges to a correlated sample from the posterior joint
distribution of parameters, using a Metropolis-Hastings with Gibbs Markov chain Monte Carlo scheme.
The resulting estimated tail distributions for the two illustrative sea states are shown in Figure 8. The estimated tail is

represented by its posterior predictive mean and 95% credible interval. Wave basin data are represented by measurements
at the independent set I of locations (shown as circles, see Section 3.4), by the mean quantile (as squares, see Section 3.2),
and by the numerically pre-selected maximum (as discs, see Section 3.5). The magnitude of uncertainty in the numerically
pre-selected maximum for specified return period T̃ is indicated by the vertical arrow. Also shown is the estimated upper
end point of the normalised crest height distribution, represented in terms of its mean value (dashed line), 50% and 95%
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(a) (b)

Figure 8: Tails for long-term normalised crest for the two illustrative sea states (a) exhibiting wave breaking, (b) not exhibiting wave breaking. Direct
measurements summarised by sample values at approximately independent subset of locations (DM, circles), and mean quantiles measurements
(MQM, q̄(p), squares). Numerically pre-selected measurement (NPM) shown as disk. Vertical arrow represents extent of uncertainty associated
with estimation of T̃ . Posterior predictive tail shown as mean and 95% credible interval. Distribution of upper end point illustrated in terms of
mean, inter-quartile range and 95% credible interval. The x-axis of panel (b) is truncated at 4.

credible intervals. Agreement between observation and estimated model is good. For the sea state exhibiting wave breaking,
we are considerably more confident about the shape of the tail distribution, and the location of the upper end point.
Figure 9 summarises the posterior distribution of model parameters for the two illustrative sea states. Unsurprisingly in

light of Figure 8, the posterior density for ξ suggests considerably more negative values for the sea state exhibiting wave
breaking, indicating a considerably shorter tail. Posterior densities generally have a Gaussian shape, with the exception of
that for ξ in the non-breaking sea state.
The corresponding estimated tail distributions for locally-normalised crests are shown in Figure 10. The characteristics of

this figure are similar to those of Figure 8; an additional feature is the horizontal arrow representing “horizontal” uncertainty
in the location of the numerically pre-selected measurement, due to our imprecise knowledge of Hm0. The goodness of fit of
extreme value tails to both long-term normalised and locally-normalised data appears comparable.

4.2. Response surface regression for Emax

Having estimated marginal extreme value models for sea states, and generated correlated samples from joint distributions
of GEV parameters, we next estimate response surface models (Section 3.7) relating those GEV parameters to the summary
characteristics of sea states, as explained in detail in Appendix A. In brief, we draw a triad of values of GEV parameters for
each sea state at random from its posterior MCMC chain, and combine these to construct a new data set. We then repeat
the process to generate a large number of data sets. For each data set in turn, we build a regression model to explain the
variation in GEV parameters in terms of variation in sea-state Ursell number U , wave steepness ǫ and directional spreading
angle θsp. We retain an ensemble of regression vectors and residuals (each corresponding to a particular data set) to represent
the uncertainty in regression due to marginal fitting of GEV models, and (if required) the correlation between regression
residuals for ξ, σ and µ.
Figure 11 summarises the marginal posterior distributions for GEV parameters, obtained directly from marginal extreme

value analysis (in red), or as estimated subsequently from the response surface regression (in grey). Distributions are
represented by means (circles) and 95% credible intervals (bars). From the figure it is clear that we are able to describe
variation in ξ, σ and µ across sea states reasonably well using the regression analysis; in general, the credible interval based
on regression contains that based on extreme value analysis indicating relatively low bias from the regression. However, there
is clearly increased uncertainty from the regression estimates, which is only to be expected. In particular, there are some
cases for which the regression analysis does not provide much skill in estimating shape parameter ξ. It is interesting that
some of the sea states for which estimation of ξ using regression is more problematic (e.g. sea states 6, 20, 21 and 36) have
larger steepness, but also lower estimated values for both ξ and σ.
The systematic variation in GEV parameters and quantiles of estimated long-term normalised hourly maximum crest

distributions is illustrated in Figure 12. Panel (a) shows contours of posterior predictive mean values for µ, σ and ξ as
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(a) (b)

Figure 9: Estimated posterior densities of GEV shape ξ, scale σ and location µ, and scatter plot of posterior parameter samples from MCMC, for
the two illustrative sea states (a) exhibiting wave breaking, (b) not exhibiting wave breaking. Long-term normalisation. Density plots also show
mean and 95% credible intervals.

(a) (b)

Figure 10: Tails for normalised crest (using local normalisation with estimated Hm0 for numerically pre-selected measurement) for the two
illustrative sea states (a) exhibiting wave breaking, (b) not exhibiting wave breaking. Direct measurements summarised by sample values at
approximately independent subset of locations (DM, circles), and mean quantiles (MQM, q̄(p), squares). Numerically pre-selected measurement
(NPM) shown as disk. Vertical arrow represents extent of uncertainty associated with estimation of T̃ . Horizontal arrow represents extent of
uncertainty associated with estimation of hourly Hm0 for numerically pre-selected measurement. Posterior predictive tail shown as mean and 95%
credible interval. Distribution of upper end point illustrated in terms of mean, inter-quartile range and 95% credible interval. The x-axis of panel
(b) is truncated at 4. To be compared with Figure 8.
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Figure 11: Posterior (predictive) distributions of sea state GEV shape ξ, scale σ and location µ of long-term normalised hourly maximum crest
height. From initial extreme value analysis (in red, circle is mean, bar is 95% credible interval) and predicted from subsequent regression model
(in grey).

functions of sea state Ursell number U and wave steepness ǫ for the case of directional spreading angle θsp = 20◦. Panel
(b) shows the corresponding contours for quantiles with non-exceedance probabilities of 0.5, 0.84, 0.95 and 0.99. As might
be expected, the mean value increases with U ; it has its maximum for intermediate values of ǫ; variation in µ and the 0.5
quantile are broadly consistent. However, the value of the 0.999 quantile of the distribution is determined primarily by ǫ;
smaller wave steepness leads to longer tails of normalised hourly maximum crest. This effect is also clear from the contour
plot for ξ.
Figure 13 summarises the relative significance of individual regression terms in the response surface model for parameters

of GEV models for long-term normalised hourly maximum crest. Listed on the x-axis of the figure are each individual
term considered in the regression for µ, σ and ξ in turn. For each term, the discs (and associated numerical values) give
the empirical probability that the posterior density of the corresponding regression parameter does not include zero, and is
therefore of greater importance in explaining variation in µ, σ and ξ between sea states. Over-interpretation of the figure can
be misleading, because of the various interactions occurring, but nevertheless it is interesting to observe e.g. that the square
of wave steepness is important in describing all responses, whereas the square of Ursell number appears to be important only
for ξ, and (to a lesser extent) the square of directional spreading angle for σ. Interaction terms between U , ǫ and θsp appear
to be generally important.

4.3. A model for the distribution of normalised Hmax

The procedure followed to establish parametric forms for the distribution of normalised Hmax is analogous to that described
above for normalised hourly maximum crest. For this reason we choose to omit details, and illustrate the inference for
normalised hourly maximum wave height in terms of contour plots for GEV parameters ξ, σ and µ and corresponding
quantiles of the GEV distribution, as a function on sea state Ursell number U and wave steepness ǫ, for the case of directional
spreading angle θsp = 20◦.
Unsurprisingly, contour plots in Figure 14 have a number of features in common with the corresponding figure for crest

height (Figure 12), e.g. the contours of σ and ξ. In constrast, extreme quantiles of normalised hourly maximum wave height
reduce with U (the reverse of the effect observed in Figure 12 for crest height); this reflects well-established differences in
non-linear influences on the distribution of wave height and crest distributions. Interestingly the behaviour of µ is somewhat
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(a)

(b)

Figure 12: Tail model for long-term normalised hourly maximum crest. Contour plots of (a) posterior predictive means for GEV shape ξ, scale σ

and location µ, and (b) posterior predictive quantiles of GEV tails, from regression model with directional spreading θsp = 20◦.
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Figure 13: Estimated probabilities that regression terms are non-zero, in regression models for GEV shape ξ, scale σ and location µ for long-term
normalised hourly maximum crest heights. Numbers give probabilities, proportional to disc radius in each case. Thus the probability that the
coefficient of Uǫ (Ursell number × wave steepness) is non-zero for the regression model for GEV shape ξ is 0.91. Int corresponds to the regression
intercept term.

different for normalised Hmax and Emax: Figure 14 exhibits a ridge of approximately constant µ (with U) at a steepness of
approximately 0.03, which is different to features in the corresponding panel in Figure 12.

5. Discussion & conclusion

In this work, we report new models for the (probability) distributions of hourly maximum crest and wave height of ocean
waves at intermediate water depths, incorporating non-linear effects such as spilling and breaking. Distributions for hourly
maximum crests and wave heights, normalised by sea state significant wave height, follow the generalised extreme value (GEV)
distribution, the parameters of which are themselves functions of the following sea-state characteristics: Ursell number U ,
wave steepness ǫ and directional spreading angle θsp. The distributions are established from measurements of 105 hourly
maxima (full-scale) made at the DHI wave basin for 50 sea states, the characteristics of which are given in Table A.1 of
Appendix A, and approximately cover the domain (full-scale) Hm0 ∈ [6, 16]m, TP ∈ [9, 21]s, U ∈ [0.03, 0.65], ǫ ∈ [0.3, 0.6]
and θsp ∈ [13, 30]◦. The (full-scale) water depth for the wave basin experiments was 45m. Conventional Monte Carlo wave
basin tests are supplemented with carefully numerically pre-selected tests, providing measurements at probability levels that
without pre-selection would have required many years of basin testing. For numerically pre-selected tests, sequences of random
inputs, known to produce large events in second-order numerical Monte Carlo simulations, are used to specify wave basin
paddle motion. Numerical pre-selection therefore typically generates large crest and wave events, rarely observed in random
Monte Carlo test, allowing better characterisation of the tails of their respective distributions. The numerically pre-selected
maximum (NPM) is informative for the location of the shape of the tail of the crest and wave height distributions for all sea
states. It provides the approximate location of the quantile level for the distribution of hourly maxima corresponding to very
low exceedance probability, not achievable in reasonable time from direct wave basin tests.
Extreme value analysis of tail distributions per sea state, performed using Bayesian inference, indicates that the GEV shape

parameter is negative, implying a finite upper end point to the distribution of hourly maximum crest and wave heights as
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(a)

(b)

Figure 14: Tail model for long-term normalised hourly maximum wave height. Contour plots of (a) posterior predictive means for GEV shape ξ,
scale σ and location µ, and (b) posterior predictive quantiles of GEV tails, from regression model with directional spreading θsp = 20◦.
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(a) (b) (c)

Figure 15: Posterior predictive tails for long-term normalised hourly maximum crest height, for different combinations of Ursell number U and wave
steepness ǫ, with directional spreading θsp of (a) 13◦, (b) 20◦ and (c) 30◦. Nine illustrative sea states chosen are shown in each panel corresponding
ǫ = 0.025 (dashed), ǫ = 0.04 (solid), ǫ = 0.06 (dotted), U = 0.03 (red), U = 0.37 (blue) and U = 0.7 (dotted).

might be expected. Response surface regression modelling provides good descriptions of the variation of GEV parameters as
functions of sea state characteristics. The influence of each of Ursell number, wave steepness and directional spreading angle
on tail distributions is quantified. Figure 15 illustrates the tail distributions for long-term normalised hourly maximum crest,
for different combinations of Ursell number, wave steepness and directional spreading angle. For the cases considered, the
normalised tail becomes longer with decreasing wave steepness, since the influence of wave breaking is reduced. The influence
of increasing directional spreading angle is to exaggerate the effect of wave steepness already noted. The influence of Ursell
number is less clear in general, consistent with the findings of Figure 12.
The influence of wave non-linearity affects the parameters of the distribution of hourly maximum wave height differently to

that of hourly maximum crest, as can be seen from comparing Figure 12 and Figure 14.
The number nI of independent locations estimated per sea state, shown in the final column of Table A.1 in Appendix Ap-

pendix A, reflects the extent of spatial dependence of hourly maximum crests for the sea state: as the value of nI decreases,
the extend of spatial dependence increases. In the table, the value of nI shows a general increasing trend with sea state
number; this is to be expected, since the sea states are arranged in order of decreasing peak periods and thus also in order
of decreasing characteristic wave lengths. The relationship between the tail distribution of hourly maximum value of crest
or wave height at a single location and that of the corresponding areal maximum for a given sea state is also indicative of
the extent of spatial extremal dependence present in the sea state: informally, as the difference between the distribution of
single location and areal maximum decreases, the extent of spatial extremal dependence increases.
The numerical pre-selection procedure used in this work allows the identification of sequences of random inputs (used in

numerical simulation to produce extreme events) for use in controlling paddle motion in the wave basin tests, thereby likely
to also produce large basin events. Numerical pre-selection might therefore be considered as a form of importance sampling,
providing more efficient estimation of tail distributions.
The models estimated here are statistical, and data driven. The choice of GEV distribution to describe maxima events is

natural, and supported by asymptotic statistical theory (e.g. Beirlant et al. 2004). However, estimation of GEV parameters,
and the systematic variation of those parameters across sea states, is entirely data driven. The estimated trends with Ursell
number, wave steepness and directional spreading angle should therefore only be used in an interpolative sense. Use of
the current models to estimate distributions for hourly maximum crest and wave heights of sea states beyond the domain
indicated in Table A.1 is not advisable.
The estimation strategy outlined in Section 3 adopts an approximate likelihood motivated by ad-hoc considerations to

combine observations from multiple dependent locations reasonably without recourse to methods of spatial extreme value
analysis. Elementary sensitivity analysis suggests that this approach is reasonable from a practical perspective. However,
choice of approximate likelihood is clearly a source of bias and uncertainty which could be better understood.
It is interesting to compare the tails of crest distributions corresponding to some standard forms (Rayleigh, Forristall here,

see Forristall 2000) with those estimated in the current work, for our illustrative sea states exhibiting breaking, and no
breaking. The Rayleigh and Forristall distributions describe individual crests; the corresponding distributions FM (m) of
hourly maxima were calculated from the distributions FInd(m) for individual crests using FM (m) = FnWav

Ind , where nWav is
an estimate for the number of waves per hour, calculated using nWav = 3600/T1, where T1 is the mean spectral period in
seconds. Results are given in Figure 16. In particular, it is clear that breaking induces obvious differences between the tail
of the Forristall distribution, and the tails estimated in the current work. The tail of the distribution of maximum hourly
crest for the non-breaking case is considerably longer than that suggested by Forristall. This is inevitable given the value of
NPM measured for the sea state, illustrated in Figures 8 and 10 (for long-term and local normalisation).
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(a) (b)

Figure 16: Comparison of estimated tails for sea states (a) exhibiting breaking and (b) not exhibiting breaking. Shown in each panel are posterior
mean and 95% credible interval from the current work, together with Rayliegh and Forristall tails for the given sea state parameters.

Uncertainties from both marginal extreme value estimation, and response surface estimation, have been carefully char-
acterised in this work. For this reason, the freely-available software accompanying this publication provides estimates for
posterior predictive tail distributions for given sea state characteristics, i.e. including estimation of credible intervals for the
tail as well as its expected form. Nevertheless, there are numerous sources of bias and uncertainty in the current work which
are more difficult to quantify. We characterise the distribution of hourly maximum paddle-generated crests and wave heights
in a laboratory-scale wave basin experiment. We assume that inferences made are relevant to describe the characteristics of
full-scale wind-driven storm waves in the ocean, even for sea states exhibiting considerable wave breaking. It is likely that
our planned experimental campaign in the wave basin provides considerably more efficient coverage of the domain of extreme
events than an equivalent period of observation of the open ocean. Measurement uncertainties for offshore measurements
of extreme events in harsh environments will be larger than in a controlled laboratory test environment. As in any mea-
surement numerous sources of uncertainty are also present in the current work: e.g. how well can a wave basin with finite
dimensions and given scale, and a given number of paddles (with given specifications) simulate a homogeneous sea state with
given characteristics? How well does the wave basin setup mimic field conditions regarding wave non-linearity and breaking,
with only a limited number of characteristic wave lengths between the wave-maker and measurement gauges? How does the
fidelity of simulation vary with e.g. increasing directional spreading angle? How well can the wave gauges estimate the crest
heights of breaking waves? Within the project rigorous efforts have been made in order to minimize these uncertainties, and
to account for the effects of remaining uncertainty. Other research (CresT, ShorTCresT and Loads JIPs, see Buchner et al.
2011, Hennig et al. 2015) has concluded that wave basin testing is absolutely necessary to quantify tails of extreme waves.
The current work attempts to combine numerical and basin modelling of extreme waves wisely to achieve this efficiently.
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Appendix A. Achieved values of sea state parameters in the laboratory tests

Table A.1 provides a list of the spectral form, and achieved long-term values (full-scale) of significant wave height Hm0,
peak wave spectral period TP , wave steepness ǫ, Ursell number U and directional spreading angle θsp for the nS = 50 sea
states used in the current study. The table also gives the number nI of independent sea states (Section 3.4) estimated per
sea state.

Table A.1: List of achieved values for sea state characteristics (full-scale) for the wave basin measurements.

The wave spectral form used for all sea states with the exception of 12, 24 and 34, and 13, 25 and 35, corresponds to

that of Torsethaugen and Haver (2004) (and see Torsethaugen 1993) for swell-dominated sea states (TP > TPf = 6.6H
1/3
m0 )

and to the JONSWAP form (with f−4.5 spectral tail) for wind-sea dominated sea states; this composite spectrum has been
referred to as the “Fabricius Hansen” form by members of the project team. The composite spectral form is also used for
sea states 13, 25 and 35, but with a f−4 spectral tail. For sea states 12, 24 and 34, a standard JONSWAP spectrum is used
with peak-enhancement factor (γ) expressed as a function of TP /Hm0 (as per DNV-RP-C205 2010 section 3.5.5.5) with f−5

spectral tail. In practice, despite careful experimentation, the measured spectral tail almost always exhibited the f−5 form,
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suggesting that some of the high-frequency energy input via the wave-paddles is lost immediately when the target spectra
tail is heavier than f−5. There is speculation that wind friction (not present in the wave basin) is responsible for maintaining
spectral tails heavier than f−5. Further development of the composite spectral form has been performed as reported in
Ewans (2019).
Table A.1 suggests that the number of independent gauge locations decreases with increasing TP . This is to be expected

since, as TP increases, typical wavelengths increase, and hence the number of wavelengths between two gauges reduces. Hence
measurements from different wave gauges become more correlated in general.

Appendix B. Numerical preselection (NPS) and splicing

The NPS algorithm

The procedure used for numerical pre-selection, described in Section 3.5, is given here algorithmically. In the notation of
Section 2, we proceed as follows:

• Generate random sequences S of spectral amplitudes, phases and directions (“random inputs”) necessary to generate
T = 104 hours of wave time-series (in the wave tank or numerical simulator);

• Use the first portion S0 of S to generate nH = 105 hours of continuous wave tank measurements in the target area;

• Use the whole of S to simulate T hours of waves in the numerical wave basin for the target area;

• Isolate the set (of size T ) of hourly maximum crest elevations from the numerical simulation;

• Compare the first nH hourly maximum crests from wave tank and numerical simulation (corresponding to sequence
S0) to assess the fidelity of the numerical simulation;

• For each of the nM = 1000 largest hourly maxima from the numerical simulation, isolate the corresponding interval
Sj (j = 1, 2, ..., nM ) of S responsible for generating the maximum (and a short period before and after it). Splice
the intervals {Sj}

nM

j=1 together, creating a spliced sequence SM , with appropriate ramp-up, warm-up and ramp-down
intervals for each Sj (see ‘Splicing’ below). Use the spliced sequence to generate corresponding large crests in the
physical wave tank.

• Use the value of the largest crest generated using sequence SM (with associated estimate of uncertainty, as explained
in the main text) as an estimate of the T̃ (≈ T ) hour maximum.

Identification of extreme events in numerical simulations is made on the basis of extreme crests not wave heights. The
assumption is therefore made that the nM intervals which generate extreme crests in numerical simulation will generate both
extreme crests and wave heights in the physical tank.

The splicing procedure

Suppose we wish to generate extreme waves in the wave tank for a specific sea state with known wave spectrum, exploiting
NPS. The nM intervals Sj (j = 1, 2, ..., nM ) of time-series each corresponding to an extreme crest event (identified by NPS)
are spliced together into a ‘daisy chain’ sequence to be used to create waves in the physical wave tank. For each interval
Sj , the splicing methodology comprises of (a) ramp-up, (b) warm-up, (c) event and (d) ramp-down. In detail, the ramp-up
interval IRU is used to ramp up the paddle signal with a cosine function, for 30 wave-maker time steps (where one wave-maker
time step corresponds to 0.1s); hence the length of IRU is 3s. The warm-up interval IWU corresponds to the time required
for the slowest frequency components generated to propagate from the wave-maker to the testing area. The duration of
IWU is 330 time steps (corresponding to 33s); this was ample time even for a 2.5Hz free lab wave component to propagate
obliquely from the far ends of the wave-maker to the reference point at the group velocity. The event interval Sj corresponds
to the occurrence of the extreme crest event. The duration of Sj is 40 time steps (4s), and the extreme crest occurs half way
through this interval. The ramp-down interval IRD is the time used to ramp down the signal with a sine function, with a
duration of 30 time steps (3s).
The ramp-down interval IRD following the jth event and the ramp-up interval IRU preceding the (j + 1)th event are

overlapping tapers. The cosine ramp-up function and sine ramp-down function and their phases are specified such that there
is conservation of energy locally, and that horizontal gradients at end points of intervals are avoided.
In addition, the full sequence of nM intervals for each seat state is not executed as one long ’daisy chain’ experiment.

Instead, the full sequence is partitioned into sub-sequences or batches, each containing 200 events. Between each batch, an
idle interval II of duration 370 wave-maker timesteps (37s) was introduced, where the wave-maker was idle and the water in
the wave basin became calm.

23



Validation of the splicing procedure

Intensive investigations where performed to determine the optimal characteristics of the approach adopted to splicing. These
included confirmatory tests that: large events can be identified from numerical simulation for a sea state and reproduced
in the wave tank as single events; individual events can be reproduced from spliced time-series; ordering of spliced events
does not affect results; and results are not sensitive to other experimental conditions. By means of a specific illustration,
the following test was conducted to assess experimental repeatability and to explore the influence of reflections or return
currents in the basin on crest characteristics. The test procedure is (a) execute base case (with Hm0 = 13.0m, TP = 15s) test
with duration of 10 hours, (b) repeat base case (to assess repeatability), (c) execute base case test with (1h periodic) control
signal shifted in time by half a basin resonance period, (d) repeat based case with control signal shifted by greater period
(e.g. 0.5h). For each of (a)-(d), the 20 largest largest events would be expected to be common to all runs. Crest elevations
and wave shapes for these events were compared and found to be in good agreement. In addition, (e) the largest 20 events
from the based case (a) were identified and their corresponding wave-maker inputs used to create a daisy-chain using the
splicing procedure described. Further, (f) wave-maker inputs for the 20 events identified were used to create single event runs
executes in the basin. Moreover, all of experiments (a)-(f) were performed at five different reference locations in the basin,
along the centre line of the wave maker. Reference points were located 3, 4, 5, 6 and 7m from the wave-maker. Therefore,
in experiments (a)-(f), the 20 largest events in the base case experiment were executed as a single event, part of a spliced
event, and as part of a random time series with and without time-shifting, for each of five different reference locations in the
basin. Results indicated that the crest height and wave shape of each event were reproducible, and hence that the influence
of any reflections or return currents could not be detected.
Diagnostic tests based on order statistics were also carried out to confirm that the statistical characteristics of the first crest

in a batch of 200 from a daisy-chain (generated from calm conditions) are indistinguishable from those of any other crest
in the batch, across all batches and sea states. It was also confirmed that the distributions of crests occurring immediately
before and after the maximum crest in a batch were indistinguishable from those of any other crest for the batch, for all
batches and sea states.

Appendix C. Bayesian tail inference

With reference to Section 3, we outline the Markov chain Monte Carlo procedure used to generate samples from the joint
distribution of GEV parameters ξ, σ, µ, using the approximate likelihood L given in Section 3, independently per sea state. We
assume we have isolated appropriate data (for normalised hourly crest of wave heights) to evaluate the likelihood components
LI , LQ and LT̃R given values of ξ, σ, µ. For those wishing to read more about MCMC (and Metropolis-Hastings within
Gibbs), Gamerman and Lopes (2006) provides a standard text, and van Ravenzwaaij et al. (2018) a simple introduction.
First we make a prior specification, that each of ξ, σ, µ is uniformly distributed on intervals Iξ = [−0.2,−0.005], Iσ =

(0.5, 1.5] and Iµ = [−1, 1]. Intervals I were selected based on preliminary GEV fits to data, ensuring that posterior distri-
butions of parameters were not overly influenced by the choice of intervals. The upper limit of Iξ was selected to impose
a finite (but large) upper bound on the value of crest and wave height. Then we generate a chain of triads of parameter
values which eventually, after a period of burn-in, yields a sample from the joint posterior distribution of parameters, using
a Metropolis-Hastings within Gibbs inference scheme to sample from the full conditional densities

f(ξ|data, σ, µ) ∝ f(data|ξ, σ, µ)f(ξ)

f(σ|data, ξ, µ) ∝ f(data|ξ, σ, µ)f(σ)

f(µ|data, ξ, σ) ∝ f(data|ξ, σ, µ)f(µ)

in turn. Here f(ξ), f(σ) and f(µ) are prior densities, and f(data|ξ, σ, µ) is the sample GEV likelihood. In brief, given current
state (ξ, σ, µ) = {ηb}

3
b=1, we propose a new state {ηcb}

3
b=1 with ηcb = ηb for all but one component b∗ (with b∗ taking values

1, 2, 3 in cycles), and ηcb∗ = ηb∗ + νζb∗ , where ν is a standard Gaussian random variate, and {ζb}
3
b=1 are a set of proposal

standard deviations tuned to give acceptance rates of ≈ 0.25. We accept the candidate state in preference to the current
state with probability

min

(
1,

f(ηcb∗ |data, {η
c
b}b 6=b∗

f(ηb∗ |data, {ηb∗}b 6=b∗

)

and otherwise retain the current state. At each iteration, since the value of T̃ is unknown in LT̃R, we simply sample a
value from the distribution FT̃ , the estimation of which is described in Section 3.5. We check convergence of the Markov
chain to its stationary distribution by performing inference multiple times from different prior starting states, confirming
that chains converge to a common joint distribution. Typically, a total of nBI ∈ [5000, 10000] burn-in iterations was used,
and a subsequent chain of length 300,000 (uniformly thinned to nR =3000) retained for regression modelling. Trace plots
of parameter chains from multiple analyses with different starting values were inspected to ensure approximate convergence.
For some sea states, considerably longer periods of burn-in were found to be necessary for reasonable convergence.

24



Appendix D. Regression model

Bayesian inference for the tail of normalised hourly maximum crest or wave height of the kth sea state provides a sample
{ξrk, σrk, µrk}

nR

r=1 of nR correlated estimates from the posterior distribution of GEV parameters. We use the corresponding
samples for all sea states as data to estimate a response surface regression model with which to predict GEV parameters in
terms of covariates U , ǫ and θsp as introduced in Section 3. First we construct a sample for regression which consists of a
single random drawing of a triad y from each of the posterior samples of GEV parameters (ξ, σ, µ), drawn independently for
each of the nS sea states. Next we construct the corresponding design vector x for each sea state consisting of intercept term
(“Int” in Figure 13), linear terms in sea state covariates, squares of covariates and interaction terms for covariates. Then we
estimate the regression model

{y|x} = x′β + ν,

where we assume that error ν ∼ N(0,Σ). We repeat the regression analysis a total of nA times, for new random drawings of
triads, to quantify the variability of the estimated regression vector β and the estimated distribution for error ν. We could
use residuals from the regression as a random sample from the distribution of ν, but in practice find that residuals for ξ,
σ and µ are relatively uncorrelated: we therefore choose instead to approximate Σ by a diagonal matrix, and estimate its
diagonal elements.
Using the accumulated samples of regression vector estimates {β̂a}

nA

a=1 and error matrices {Σ̂a}
nA

a=1, prediction of GEV tail
parameters for a new sea state with covariates represented by design vector x∗ can be made. The empirical distribution of
y∗ is estimated from the sample {y∗

a}
nA

a=1 calculated using

{y∗
a|x

∗} = x∗′

β̂a + ν̂a, for ν̂a ∼ N(0, Σ̂a), a = 1, 2, ..., nA

The domains of some GEV parameters are restricted. For example, the domain of ξ is restricted to (−0.5, 0) if the
distribution is to have finite variance and finite upper end point, and we would expect σ > 0. More specifically, based on
prior studies for a particular application, we might judge it advantageous to restrict the domains of ξ, σ and µ further. Since
the linear regression described above assumes a response with unrestricted domain, it is advantageous to transform ξ, σ and µ
such that the transformed responses have unrestricted domain for the regression. One suitable transformation is the logistic
transformation, which maps a variable y with support (a, b) to y∗ with support (−∞,∞), given by

y∗ = loge

[
y − a

b− a

]
.

Examination of estimates for GEV parameters from prior analysis using wide domains (a, b) indicated that it would be rea-
sonable to restrict the domains of σ to (0, 2). Final regression models were therefore estimated using logistically-transformed
ξ, logistically-transformed σ with restricted domain, and untransformed unrestricted µ.
The procedure described above ensures that uncertainty from estimation of extreme values models per sea state using finite

samples of data and regression of extreme value model parameter estimates onto sea-state summary variables, is propagated
to and captured within posterior estimates for the tails of predictive distributions of hourly maximum crest and wave height
for unseen sea states.

Appendix E. Preliminary studies of modelling strategy

Section 3 provides a description of the modelling strategy adopted in this work to establish sea-state GEV models. The
purpose of this section is to outline the hierarchy of modelling approaches considered before arriving at the composite approach
of Section 3.6.
GEV models were established independently per sea state. 12 different models were considered per sea state, arranged in a

hierarchy of four model levels L1-4, corresponding to inclusion of data from different measurements sources from Section 3.
Level L1 considers only the 105 measurements of hourly maxima. Level L2 additionally considers the numerically pre-selected
measurement (NPM), but ignores potential NPM uncertainty and bias (so that the influence of NPM uncertainty and bias can
be assessed). Level L3 additionally considers NPM uncertainty and bias. Finally, level L4 also considers hourly areal maxima.
Within each level, three different models M1-3 are estimated. In model M1, sample likelihood is based on independent wave
gauge measurements. In model M2, sample likelihood is based on the samples means (across wave gauges) at a sequence
of quantile levels. Model M3 uses a composite likelihood from M1 and M2. Posterior distributions for 600 sets of GEV
parameters were estimated, corresponding to 12 model choices for each of 50 sea states.
The choice of the best combination of level L and model M was made heuristically from inspection of model diagnostic plots,

and did not follow a stringent quantitative criterion. In particular it was decided that including areal maximum data was
not beneficial, so that L4 could be omitted. However, inclusion of NPM had a clear influence, reducing uncertainties in the
estimation of the shape parameter (as might be expected), implying that level L3 was important. It was concluded that the
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combination L3-M3 provided the best overall balance, with reasonable fit performance across sea states, and approximately
Gaussian-distributed posterior densities. The results shown in this paper are exclusively from L3-M3. Diagnostic plots are
available from the authors on request for all 600 models. A schematic of the hierarchy of models considered is given in
Figure E.1.

Figure E.1: Schematic of statistical models considered.

Appendix F. MATLAB code

Freely-available MATLAB code for estimation of the distribution of hourly maximum crest and wave height is provided in
a GitHub repository. Schubert and Jonathan (2019) gives details. The software generates random hourly maximum crest
and wave heights corresponding to a specified period of time, and can be called using either normalized sea state parameters
(U , ǫ, θsp,d; leading to normalized crest or wave heights) or non-normalized parameters (Hm0, TP , θsp, d; leading to crest
and wave height in metres) above mean sea level. Optionally, the software provides random realisations of the parameters
of the GEV distribution and realisations of the distribution upper end point. The MATLAB function file (editable as an
ASCII text file) provides detailed output from the regression analysis, sufficient to generate equivalent functionality in other
software applications. A warning is output if input arguments are inconsistent with the domain of sea state parameters used
for model building. Time-scale correction (see Section 3.8) is also performed.
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