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• Characterise joint extremal spatial dependence between multiple metocean variables.
• Methodology motivated by model of Heffernan and Tawn (2004).
• Satellite scatterometer (Metop) and hindcast data (Reistad, Breivik, Haakenstad, Aarnes, Furevik and Bidlot
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• Marginal directional and seasonal covariate effects accommodated.
• Extremal spatial dependence decays over 600-800 km for conditioning on an extreme occurrence of wind speed.
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A B S T R A C T
The joint extremal spatial dependence of wind speed and significant wave height in the North
East Atlantic is quantified using Metop satellite scatterometer and hindcast observations for the
period 2007-2018, and a multivariate spatial conditional extremes (MSCE) model, ultimately
motivated by the work of Heffernan and Tawn (2004). The analysis involves (a) registering
individual satellite swaths and corresponding hindcast data onto a template transect (running
approximately north-east to south-west, between the British Isles and Iceland), (b) non-stationary
directional-seasonal marginal extreme value analysis at a set of registration locations on the
transect, (c) transformation from physical to standard Laplace scale using the fitted marginal
model, (d) estimation of the MSCE model on the set of registration locations, and assessment
of quality of model fit. A joint model is estimated for three spatial quantities: Metop wind
speed, hindcast wind speed and hindcast significant wave height. Results suggest that, when
conditioning on extreme Metop wind speed, extremal spatial dependence for all three quantities
decays over approximately 600-800 km.

1. Introduction
Severe ocean events at a location often involve extreme values for more than one oceanographic variable, leading

to interest in the development and tailoring of statistical methods for multivariate and conditional extremes in a met-
ocean context; for example, extreme loads on an offshore structure often arise from a combination of wind, wave
and current. Further, simultaneous occurrences of extreme ocean events at different locations often represent higher
risk than extreme events at one location; for example, extreme storm events often impact multiple structures simul-
taneously, requiring integrated planning of activities such as unmanning. Storms load coastal defences over a spatial
neighbourhood, rather than at a single location. Design and maintenance of a wind farms requires characterisation of
the joint spatial field for metocean variables over a spatial neighbourhood. This leads to interest in the development of
statistical models for the joint characteristics of multiple spatial fields of variables such as wind speed and significant
wave height. The objective of this article is to develop a straightforward model for Multivariate Spatial Conditional
Extremes (MSCE), and demonstrate its usefulness in met-ocean application. Specifically, we seek a model for the joint
behaviour of multiple met-ocean variables in space, given an occurrence of an extreme value of one of the variables
at some location. The idea underpinning the methodology developed is the conditional extremes model of Heffernan
and Tawn (2004). As discussed in Section 3, the MSCE model can be seen as the latest in a sequence of extensions of
the conditional extremes approach to address specific applications’ requirements. The main use of the MSCE model
is to provide a principled approach to characterising the joint structure of spatial fields, to be applied in any situation
where environmental hazard results from extreme values of at least one metocean variable.

Like its conditional extremes predecessor, inference using MSCE amounts essentially to fitting a non-linear regression
model for observations of random variables on a standard Laplace marginal scale. The model admits different types
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of extremal dependence (including asymptotic dependence and asymptotic independence, Coles, Heffernan and Tawn
1999) and is computationally rather straightforward to estimate.

Other statistical approaches to spatial extremes are motivated by the theory of max-stable processes (MSPs; see
e.g., Brown and Resnick 1977, Smith 1990, Schlather 2002, Davison, Padoan and Ribatet 2012, Ribatet 2013 and the
recent review of Huser and Wadsworth 2020). However, typical MSP models require an assumption that the extremal
spatial dependence takes a particular form. Some models in principle are able to permit different classes of extremal
dependence (e.g., Wadsworth, Tawn, Davison and Elton 2017) but can be fairly restrictive or computationally unwieldy.

Here, we are interested not only in quantifying the extremal spatial dependence for quantities such as wind speed and
significant wave height, but also the cross-dependence between different quantities. In this context, the hierarchical
max-stable spatial model of Reich and Shaby (2012) has been extended (Vettori 2017, Reich and Shaby (2018), Vettori,
Huser and Genton 2019) to the multivariate case. Further, Genton, Padoan and Sang (2015) introduced multivariate
max-stable spatial processes. These approaches certainly have their merits, but also have at least some of the limitations
outlined above pertaining to MSP models.

Estimation using the MSCE model for a sample of spatial data for a number of different quantities, first requires
that the data are presented on a common marginal standard Laplace scale for all quantities at all locations. This
transformation is achieved by estimating non-stationary directional-seasonal extreme value models for each quantity
at each location (e.g. Zanini, Eastoe, Jones, Randell and Jonathan 2020), and then application of the probability integral
transform.

The layout of the article is as follows. Section 2 provides a description of the motivating application to wind speed and
significant wave height in the North East Atlantic, satellite and hindcast data sources, and data pre-processing steps.
Section 3 then presents the MSCE methodology. Results of applying the MSCE model in the North East Atlantic are
given in Section 4, and Section 5 provides a discussion. Supporting plots for the exploratory data analysis are given in
the appendix.

2. Motivating application
We seek to characterise the joint spatial conditional structure of extreme values of wind speed and significant wave

height in the North East Atlantic between the British Isles and Iceland, subject to systematic directional and seasonal
variability. In this section, we describe data sources, and data pre-processing necessary prior to MSCE inference. Two
sources of wind data are available, namely satellite-observed wind speed StlWnd and direction, and hindcast model
wind speed HndWnd and direction. Hindcast significant wave height HndWav and wave direction are also used. These
data sources are combined to yield a set of observations of StlWnd, HndWnd and HndWav and corresponding directional
and seasonal data, on a transect of equally-spaced registration locations lying between approximately 2◦W, 67◦N and
22◦W, 55◦N.

The objective of the analysis is to evaluate our ability to quantify the joint structure of spatial fields corresponding
to significant wave height and wind speed, based on hindcast and satellite data, conditional on the occurrence of an
extreme wind speed or significant wave height event. For the North East Atlantic, one use case for the model would
be joint assessment of extreme loads on multiple offshore facilities, requiring joint characterisation of wind and wave
fields, critical e.g. in the planning and execution of operations such as unmanning (Towe, Zanini, Randell, Feld and
Jonathan 2021).

The appeal of direct earth observation by satellite is that it may provide, in the medium-to-long term, a rich source
of data to inform ocean-related human activities in real time. At present, satellite data alone is not sufficient for design
purposes of course because of poor temporal coverage and length of historical time-series for a location; hindcast data
is clearly a more useful data source at present. However, the quality of hindcast output for extreme values of waves and
wind at a location is also uncertain, usually requiring calibration to local measurements, especially to accommodate
directional and other covariate effects. Similarly, satellite output currently requires calibration. For all these reasons,
it is important to quantify how inferences for extremes from satellite observations compare with those from hindcasts,
and to consider inferences for extremes which combine hindcast and satellite input.
Metop and hindcast data sources

Metop-A, B and C are polar-orbiting meteorological satellites, forming the EUMETSAT Polar System (EPS) series.
Metop-A (launched 19 October 2006), Metop-B (launched 17 September 2012) and Metop-C (launched 7 November
2018) are in a low polar orbit, at an altitude of approximately 800 km over the Earth’s surface. Metop uses the Advanced
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SCATterometer (ASCAT) to measure wind speed and direction over the oceans. ASCAT is a real aperture radar, oper-
ating at 5.255 GHz (C-band) and using vertically polarised antennas. It transmits long pulses of microwave energy with
“chirp” linear frequency modulation towards the sea surface. Winds over the sea cause centimetre scale disturbances
of the sea surface which modify radar back-scattering characteristics dependent on both wind speed and direction. Two
sets of three antennas measure the characteristics of the back-scattered signal in two 500 km wide swaths to each side
of the satellite ground track, make sequential observations of the back-scattering coefficient of each point of interest
from three directions. The characteristics of the back-scattered signals allow estimation of surface wind speed and
direction. Over the North East Atlantic, the daily pass of each Metop satellite is from the north-east to the south-west.
All Metop satellite data for the current work were sourced from the Australian Ocean Data Network (AODN). These
datasets have been calibrated and quality controlled as described by Ribal and Young (2020b) and Ribal and Young
(2020a). At wind speeds above 30m/s scatterometers tend to saturate (Ribal, Tamizi and Young 2021). However, as
shown by Ribal and Young (2020b), Metop-A and Metop-B yield unbiased data for wind speeds up to a minimum of
25m/s. Note that only Metop-A and Metop-B data are considered here.

The NORA10 hindcast (NOrwegion ReAnalysis 10 km, Reistad et al. 2011) is a combined high-resolution atmo-
spheric downscaling and wave hindcast for the Norwegian Sea, the North Sea and the Barents Sea, based on the Euro-
pean Reanalysis dataset (ERA-40), outputting 3-hourly wave fields at a resolution of 10 km for the period 1957–2018.
Registered data

Figure 1 gives the locations of 14 equally-spaced registration locations of the registration transect selected, lying in
the North East Atlantic between the British Isles and Iceland. The end points of the registration transect were chosen
so that the transect covers the greatest number of satellite passes, thus maximising the size of the Metop sample for
MSCE analysis. For each available satellite pass, we find the nearest point on the satellite transect to each of the
registration locations, and allocate the value of wind speed and direction from the “matched” satellite location to
the registration location. If the maximum “matched” distance (calculated using the spherical law of cosines) for any
registration location corresponding to a specific satellite pass exceeds 50 km, the pass is not registered. Hindcast wind
speed and direction, significant wave height and wave direction are registered similarly, based on matching spatially
between the hindcast grid and the registration transect at the times of already-registered satellite passes. In this way, a
total of 1532 joint observations of StlWnd, HndWnd and HndWav were isolated for analysis.

Referring to Figure 1, the south-west location is taken as the conditioning location (square), and all other locations
(discs) are used as remote locations. The colour-coding scheme used indicates that the conditioning quantity is StlWnd
(green) at the conditioning location, but that all of StlWnd (green), HndWnd (orange) and HndWav (blue) are present in
the MSCE model as conditioned variates at remote locations.

Figure 2 shows the dependence between each of these quantities at selected remote locations and the conditioning
variate StlWnd at the conditioning location 𝑟𝑗 , 𝑗 = 0. The dependence between StlWnd at a given remote location (𝑟𝑗 ,
𝑗 = 1, 2, ..., 13), and StlWnd at location 𝑟0, is similar to that between HndWnd at location 𝑟𝑗 and StlWnd at location
𝑟0. There is evidence for curvature in the relationship between HndWav at location 𝑟𝑗 and StlWnd at location 𝑟0,
reflecting the typical drag-type squared relationship between wind forcing and resulting significant wave height. There
is also evidence that the dependence between HndWav at location 𝑟𝑗 and StlWnd at location 𝑟0 decays more slowly
with increasing distance (or increasing 𝑟𝑗) than that between wind speed at 𝑟𝑗 and StlWnd at location 𝑟0. Again, this is
indicative of greater spatial dependence for significant wave height in general compared to wind speed. Figures A1-A3
in the appendix provide supporting scatter plots illustrating the spatial dependence for each of StlWnd, HndWnd and
HndWav fields separately.
Marginal transformation to standard Laplace scale

The registered data also show systematic variation with direction and season, as illustrated in Figure 3. Seasonal
effects on all three quantities are clear in columns 4-6 of the figure, for all locations considered. The directional effect
is more interesting. For locations 𝑟0, 𝑟3 and 𝑟6, the prevailing direction for wind and 𝐻𝑆 is from the west as might be
expected in the north Atlantic. However, at locations 𝑟9 and 𝑟13, the directional dependence is more confused; here for
significant wave height, there is evidence for large values emanating from the Norwegian Sea to the north or from the
North Sea to the south.

Figure 3 makes clear that, to transform the registered data from physical to standard Laplace scale ready for MSCE
inference requires fitting a non-stationary marginal model to the data for each of StlWnd, HndWnd and HndWav at each
registration location, so that the effects of directional and seasonal variation are captured adequately. Non-stationary
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Figure 1: Map of the registration locations. Squares indicate the conditioning location 𝑟𝑗 , 𝑗 = 0, and discs indicate other
(remote) locations 𝑟𝑗 , 𝑗 = 1, 2, ..., 13 with increasing distance from location 𝑟0. Colour coding indicates that the conditioning
quantity is StlWnd (green square, at location 𝑟0), and that all of StlWnd (green), HndWnd (orange) and HndWav (blue)
are used as conditioned quantities (discs) at remote locations. The Metop satellite trajectories are from north-east to
south-west. (The green-orange-blue colour scheme appears as three shades of grey with decreasing intensity when viewed
in black-and-white.)

directional-seasonal marginal extreme value models are estimated using the PPC (penalised piecewise constant) ex-
treme value methodology, described previously in Ross, Sam, Randell, Feld and Jonathan (2018). Details of the
analysis are withheld for brevity, in favour of the brief description here. The directional covariate domain is parti-
tioned into eight octants centred on cardinal and semi-cardinal directions, and the seasonal covariate domain parti-
tioned into “summer” and “winter” intervals centred on “seasonal degrees” 0◦ and 180◦. This yields a partition of the
full directional-seasonal covariate domain into 16 directional-seasonal “bins”. Then a piecewise constant generalised
Pareto extreme value model for peaks over threshold is estimated simultaneously for all bins, such that the generalised
Pareto shape parameter is constant everywhere on the covariate domain, and the generalised Pareto scale parameter
is assumed constant within each bin. Further, the variation of the generalised Pareto scale parameter between bins
is penalised. The extent of penalisation is regulated using cross-validation, to give the best “out-of-sample” predic-
tive performance using the model. Moreover, a bootstrap scheme admitting a range of different plausible extreme
value thresholds is incorporated, such that model uncertainty can be quantified reasonably. Software for the analysis
is available at ESCADES-GITHUB (2019).

Models are estimated independently for each of StlWnd, HndWnd and HndWav at each registration location. Using
simulation under the fitted model, the 100-year maximum value of StlWnd is around 35 ms−1, with 95% uncertainty
interval of approximately (28,45) ms−1 at each of the registration locations. The corresponding values for HndWnd
are similar. For HndWav, there is evidence that the 100-year maximum value reduces from around 22 m,(16,30) m at
south-western locations (corresponding to small 𝑟𝑗) to around 17 m,(13,26) m at north-eastern locations. These values
are in general agreement with expectations and previous estimates at these locations.

Using the fitted models with bootstrap median parameter estimates, and the probability integral transform, the regis-
tered data are transformed to standard Laplace scale, independently for each quantity at each registration location. The
resulting Laplace-scale data are shown in Figure 4, and form the input for the MSCE inference discussed in Sections 3
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Figure 2: Scatter plots of StlWnd (green), HndWnd (orange) and HndWav (blue; all on physical scale) at selected locations
𝑟𝑗 , 𝑗 = 0, 1, 2, 3, 6, 9, 13 against StlWnd at the conditioning location 𝑟𝑗 , 𝑗 = 0.

Figure 3: Directional and seasonal covariate e�ects in registered data (on physical scale) for selected locations. The �rst
three columns give directional variation for each of StlWnd (green), HndWnd (orange) and HndWav (blue) at locations 𝑟𝑗 ,
𝑗 = 0, 3, 6, 9, 13. The corresponding seasonal variation is illustrated in the fourth to sixth columns. Direction is de�ned as
the direction from which �uid �ows, measured clockwise from north. Season is de�ned as the day of the year (1,2,...,365
or 1,2,...,366 for leap years) mapped linearly on to the interval (0, 360].

and 4 below. The characteristics of Figure 4 are discussed further in motivating the results in Sections 4.
The conditional extremes model of Heffernan and Tawn (2004) and derivatives is motivated by asymptotic arguments.

Such arguments in multivariate extreme value theory generally assume that variables have common marginal distribu-
tions. The conditional extremes model form is most simply represented when that marginal distribution is the standard
Laplace (Keef, Papastathopoulos and Tawn 2013a). From an applications perspective, the marginal transformation
from physical to Laplace scales, achieved using the PPC model, also allows the effects of covariates to be captured.
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Figure 4: Scatter plots of StlWnd (green), HndWnd (orange) and HndWav (blue; all on standard Laplace scale) at selected
locations 𝑟𝑗 , 𝑗 = 0, 1, 2, 3, 6, 9, 13 against StlWnd at the conditioning location 𝑟𝑗 , 𝑗 = 0. See Figure 2 for the corresponding
plot on physical scale.

Hence, on Laplace scale following transformation using a non-stationary marginal extreme value model, the data are
likely to exhibit little or no covariate dependence, and inference is likely to me more straightforward.

3. Methodology
3.1. Introduction

The multivariate spatial conditional extremes model is an extension of a sequence of earlier models for conditional
extremes (Heffernan and Tawn 2004) and spatial conditional extremes (Tawn, Shooter, Towe and Lamb 2018, Shooter,
Ross, Tawn and Jonathan 2019, Wadsworth and Tawn 2019, Shooter, Tawn, Ross and Jonathan 2021c, Shooter, Ross,
Ribal, Young and Jonathan 2021b).

The underlying idea for all these models is a description of the conditional distribution of one or more conditioned
variates 𝑌 given a large value 𝑥 > 𝑢 of a conditioning variate 𝑋 from Heffernan and Tawn (2004), motivated by
asymptotic arguments as 𝑢 → ∞. For variables expressed on standard Laplace scale with positive association (as
explained in Keef, Tawn and Lamb 2013b), this relationship can be written

𝑌 |{𝑋 = 𝑥} = 𝛼𝑥 + 𝑥𝛽𝑍, 𝑥 > 𝑢

for 𝛼 ∈ (0, 1], 𝛽 ∈ (−∞, 1], where the residual 𝑍 follows some unknown non-degenerate distribution 𝐺. For the
purposes of parameter estimation, it is commonly assumed that 𝑍 ∼ 𝑁(𝜇, 𝜎2) for 𝜇 ∈ ℝ and 𝜎 > 0, a normal
distribution. Inference therefore involves estimation of 𝛼, 𝛽, 𝜇 and 𝜎.

The methodology can be extended to multivariate conditional extremes by considering a vector 𝒀 = (𝑌1, 𝑌2, ..., 𝑌𝑚)of 𝑚 conditioned variates, with the model form becoming 𝒀 |{𝑋 = 𝑥} = 𝜶𝑥+ 𝑥𝜷𝒁 for 𝑥 > 𝑢. Vectors 𝜶, 𝜷 now have
elements 𝛼𝑘 ∈ (0, 1], 𝛽𝑘 ∈ (−∞, 1], and 𝒁 ∼ 𝐺 now represents the joint residual over 𝑚 conditioned quantities. We
might approximate this using a multivariate normal distribution 𝑁(𝝁,𝚺) with mean vector 𝝁 and covariance matrix
𝚺. Inference then involves estimation of 𝜶, 𝜷, 𝝁 and 𝚺.

The methodology can also be extended to a spatial context, as described by Shooter et al. (2019) and Wadsworth
and Tawn (2019), by considering a stationary spatial process 𝑋(⋅) on domain ℝ with standard Laplace marginal dis-
tributions. Then for a conditioning location 𝑟0 and remote location 𝑟 with separation 𝑑 = |𝑟 − 𝑟0|, we might write
𝑋(𝑟)|{𝑋(𝑟0) = 𝑥} = 𝛼(𝑑)𝑥 + 𝑥𝛽(𝑑)𝑍(𝑑) for 𝑥 > 𝑢. Inference for a finite set of locations 𝑟0, 𝑟1, ..., 𝑟𝑝 reduces to mul-
tivariate conditional extremes with a particular choice of parametric form for residual process 𝒁, to encode the fact
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that as 𝑑 increases, the dependence between locations will typically decrease to zero in environmental applications. In
particular, for locations 𝑟0, 𝑟 corresponding to large 𝑑, we expect that 𝛼(𝑑) → 0 and 𝛽(𝑑) → 0 so that 𝑍(𝑑) must follow
the standard Laplace distribution marginally. However, for small 𝑑, a multivariate normal choice for 𝐺 might still be
more appropriate. For this reason, a choice for 𝐺 with marginal delta-Laplace (or generalised Gaussian) distribution
is useful, admitting marginal standard normal and standard Laplace forms (Wadsworth and Tawn, 2019). The residual
dependence structure of 𝐺 might be represented by a (conditional) Gaussian field, as explained further in Section 3.2.
3.2. Outline of model

The MSCE model incorporates aspects of both multivariate conditional extremes and spatial conditional extremes.
From the perspective of inference for observations at a finite set of locations 𝑟0, 𝑟1, ..., 𝑟𝑝, the MSCE model reduces
to the multivariate conditional extremes model with a specific parametric choice for the distribution 𝐺 of the residual
process 𝒁.

Suppose that random variable 𝑋𝑗,𝑘 represents quantity 𝑘 = 1, 2, ..., 𝑚 at location 𝑟𝑗 , 𝑗 = 0, 1, ..., 𝑝 on standard Laplace
scale, and that𝑿 represents the set of “remote” random variables𝑋1,1, 𝑋2,1, ..., 𝑋𝑝,1, 𝑋1,2, 𝑋2,2, ..., 𝑋𝑝,2, ..., 𝑋1,𝑚, ..., 𝑋𝑝,𝑚.
For brevity, we also write 𝑿 as {𝑋𝑗,𝑘} for (𝑗, 𝑘) ∈ Rmt, for the ordered set

Rmt = {(1, 1), (2, 1), ...(𝑝, 1), (1, 2), ..., (𝑝, 2), ..., (1, 𝑚), ..., (𝑝, 𝑚)}

and define the function (𝑗, 𝑘) = 𝑝(𝑘 − 1) + 𝑗 which returns the location of the pair (𝑗, 𝑘) in the ordered set Rmt.Then, for a large value 𝑥 of the conditioning random variable 𝑋0,1 corresponding to quantity 𝑘 = 1 at location 𝑟0, we
assume we can write

𝑿|{𝑋0,1 = 𝑥} = 𝜶𝑥 + 𝑥𝜷𝒁, 𝑥 > 𝑢 (1)
where the vector of parameters 𝜶 has elements 𝛼(𝑗,𝑘) ∈ (0, 1] for (𝑗, 𝑘) ∈ Rmt, the exponent vector 𝜷 has ele-
ments 𝛽(𝑗,𝑘) ∈ (−∞, 1], and element-wise multiplication of terms is assumed. We assume further that the resid-
ual process 𝒁 follows a delta-Laplace distribution with conditional Gaussian covariance structure, parameterised
as 𝒁 ∼ DL(𝝁,𝝈2, 𝜹;𝚺) for mean vector 𝝁 with elements 𝜇(𝑗,𝑘) ∈ ℝ, marginal variance vector 𝝈2 with elements
𝜎2(𝑗,𝑘) > 0, delta-Laplace parameter vector 𝜹 with elements 𝛿(𝑗,𝑘) > 0. The marginal density function for any
(𝑗, 𝑘) ∈ Rmt is given by

𝑓𝑍𝑗,𝑘
(𝑧𝑗,𝑘) =

𝛿𝑗,𝑘

2𝜅𝑗,𝑘𝜎𝑗,𝑘Γ
(

1
𝛿𝑗,𝑘
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{

−
|

|

|

|

|
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|

|

|

|

|

𝛿𝑗,𝑘
}

(2)

where 𝜅2
𝑗,𝑘 = Γ

(

1∕𝛿𝑗,𝑘
)

∕Γ
(

3∕𝛿𝑗,𝑘
) and Γ(⋅) represents the gamma function. The mean and variance of this distri-

bution are respectively 𝜇𝑗,𝑘 and 𝜎2𝑗,𝑘, regardless of the choice of 𝛿𝑗,𝑘. The dependence structure of 𝒁 is described on
Gaussian scale, with correlation matrix

𝚺(𝑗,𝑘)(𝑗′,𝑘′) =
𝚺∗
∗(𝑗,𝑘)∗(𝑗′,𝑘′) − 𝚺∗

∗(𝑗,𝑘)∗(0,1)𝚺
∗
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)1∕2 (
1 − 𝚺∗2

∗(0,1)∗(𝑗′,𝑘′)

)1∕2

for (𝑗, 𝑘) and (𝑗′, 𝑘′) ∈ Rmt. The correlation matrix is simply that of a standard Gaussian field evaluated at the 𝑝
locations 𝑟𝑗 . 𝑗 = 1, ..., 𝑝 for all 𝑚 quantities, conditioned on the value of one quantity (𝑘 = 1) at an external location
𝑟0. The correlation matrix for the corresponding unconditioned standard Gaussian field is

𝚺∗
∗(𝑗,𝑘)∗(𝑗′,𝑘′) = 𝜆|𝑘−𝑘

′
|

𝑘,𝑘′ exp
(

−
(dist(𝑟𝑗 , 𝑟𝑗′ )

𝜌𝑘,𝑘′

)𝜅𝑘,𝑘′)

(3)

for pairs (𝑗, 𝑘) and (𝑗′, 𝑘′) in the extended ordered set ∗
Rmt = Rmt ∪ {(0, 1)} (i.e. including the conditioning quantity

𝑘 = 1 at conditioning location 𝑟0), where function ∗(𝑗, 𝑘) now identifies the location of pair (𝑗, 𝑘) in ∗
Rmt. Parameters

𝜆𝑘,𝑘′ ∈ [0, 1] are the assumed common correlations between quantities at any one location for 𝑘 ≠ 𝑘′, and 𝜆𝑘,𝑘′ = 1
when 𝑘 = 𝑘′. Further 𝜌𝑘,𝑘′ > 0 and 𝜅𝑘,𝑘′ > 0 are the scale and exponent parameters of the assumed powered
exponential dependence of the standard Gaussian field for quantities 𝑘 and 𝑘′. We choose to write the unique set of
R. Shooter et al.: Preprint submitted to Elsevier Page 7 of 14
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parameters {𝜆𝑘,𝑘′}𝑘′>𝑘 for estimation as vector 𝝀, and the unique sets {𝜌𝑘,𝑘′}𝑘′≥𝑘 and {𝜅𝑘,𝑘′}𝑘′≥𝑘 as vectors 𝝆 and 𝜿
respectively. dist(𝒓𝑗 , 𝒓𝑗′ ) is the distance between locations 𝒓𝑗 and 𝒓𝒋′ , calculated in metres using spherical distance on
the Earth’s surface.

Thus the joint distribution 𝐺 of 𝒁 can be written
𝐺(𝒛) = Φ𝑚𝑝

((

Φ−1(𝐹𝑍1,1
(𝑧1,1)),Φ−1(𝐹𝑍2,1

(𝑧2,1)),… ,Φ−1(𝐹𝑍𝑗,𝑘
(𝑧𝑗,𝑘)),… ,Φ−1(𝐹𝑍𝑝,𝑚

(𝑧𝑝,𝑚))
)

; 𝟎,𝚺
)

where Φ is the cumulative distribution function of a standard Gaussian distribution, and Φ𝑚𝑝(𝒛; 𝟎,𝚺) is the cumulative
distribution function of a 𝑚𝑝-dimensional Gaussian distribution with mean 𝟎 and covariance matrix 𝚺 evaluated at 𝒛.
𝐹𝑗,𝑘(𝑧) is the delta-Laplace marginal cumulative distribution function for quantity 𝑘 at location 𝑗 with density given
by Equation 2. By differentiating the expression for 𝐺(𝒛), an expression for the log-density of 𝒁 can be found, and
hence an expression for the sample log-likelihood required for inference (see Shooter et al. 2021c).
3.3. Inference

Inference involves estimation of parameter vectors 𝜶, 𝜷, 𝝁, 𝝈, 𝜹, and 𝝀, 𝝆 and 𝜿. The variation of any one of 𝛼, 𝛽, 𝜇,
𝜎 and 𝜹 with distance is described using a piecewise linear representation (with parameters estimated at each of 𝑛Nodnodes) for each of the 𝑚 quantities of interest. Thus for generic parameter 𝜂 (i.e. any of 𝛼, 𝛽, 𝜇, 𝜎, 𝛿 for a specific
quantity, varying with distance 𝑑), with node values {𝜂𝑁𝓁 }𝑛Nod

𝓁=1 , the assumed piecewise linear representation is 𝜂(𝑑) =
(ℎ𝐿𝜂𝑁𝓁∗ + ℎ𝑈𝜂𝑁𝓁∗+1)∕ℎ, where ℎ𝐿 = 𝑑 − 𝑑𝑘∗ , ℎ𝑈 = 𝑑𝑘∗+1 − 𝑑 and ℎ = 𝑑𝑘∗+1 − 𝑑𝑘∗ , and 𝑘∗ = argmax

𝑘
(𝑑𝑘 ∶ 𝑑𝑘 < 𝑑).

The full inference therefore requires the estimation of parameter set Ω given by
Ω =

(

{𝛼𝑁𝓁,𝑘, 𝛽
𝑁
𝓁,𝑘, 𝜇

𝑁
𝓁,𝑘, 𝜎

𝑁
𝓁,𝑘, 𝛿

𝑁
𝓁,𝑘}, {𝜆𝑘,𝑘′}𝑘′>𝑘, {𝜌𝑘,𝑘′ , 𝜅𝑘,𝑘′}𝑘′≥𝑘

)

, 𝓁 = 1, 2, ..., 𝑛Nod, 𝑘, 𝑘′ = 1, 2, ..., 𝑚.

Noting that the dimensions of 𝝀, 𝝆 and 𝜿 are respectively 𝑚(𝑚−1)∕2, 𝑚(𝑚+1)∕2 and 𝑚(𝑚+1)∕2, Ω therefore contains
𝑚(5𝑛Nod + (3𝑚 + 1)∕2) parameters.

We use Bayesian inference to estimate the joint posterior distribution of MSCE model parameters. An adaptive
MCMC algorithm based on Roberts and Rosenthal (2009) is used for parameter inference, described in Shooter et al.
(2019), Shooter et al. (2021c) and Shooter et al. (2021b). Briefly, random search is used to find a reasonable starting
solution. Then a Metropolis-within-Gibbs algorithm is used iteratively to sample each of the individual parameters in
turn for a total of 𝑛1 = 250 iterations. Subsequently we use the adaptive MCMC algorithm to update all parameters
jointly for a further 𝑛2 = 19750 iterations.

Uniform prior distributions were assumed for each parameter; it was confirmed that posterior densities were not
obviously restricted by prior specification. In particular, we allow the node values of 𝛼 to be > 1 (as discussed by
Tendijck, Eastoe, Tawn, Randell and Jonathan 2021 for sub-asymptotic levels), and hence did not adopt the conditional
quantile constraints of Keef et al. (2013a).

Data and prototype MATLAB code for the analysis discussed in this article are available at Shooter, Ross and Jonathan
(2021a).

4. Results
Results of applying the MSCE model to the Laplace-scale sample illustrated in Figure 4 are now discussed. Inspection

of Figure 4 provides some guidance regarding the decay of 𝛼 with distance we might expect to infer. Consider the scatter
plot of StlWnd at location 𝑟1 on StlWnd at conditioning location 𝑟0 in the first row and second column of the figure.
For large values (say ≥ 4) of StlWnd at 𝑟0, the values of StlWnd at 𝑟1 are also relatively large, suggesting that the
corresponding value of 𝛼 estimated (see Equation 1) should be near unity. As we move across the first row to larger
distances 𝑟𝑗 , it is clear that typical values of StlWnd at 𝑟𝑗 (for large values of StlWnd at 𝑟0) are centred around zero,
suggesting that 𝛼 at these locations will be near zero. Indeed, for all of StlWnd, HndWnd and HndWav, it appears that
the value of 𝛼 for all quantities will be near zero for locations 𝑟𝑗 with 𝑗 ≥ 6, or 𝑟𝑗 > 760 km. At a smaller distance 𝑟𝑗(with 𝑗 ≤ 3), the joint characteristics of the three quantities of interest appear rather similar on Laplace scale.

The corresponding posterior estimates for 𝛼, together with those for 𝛽, 𝜇, 𝜎 and 𝛿 are shown in Figure 5. As anticipated
𝛼 decays from a value > 0 at 𝑟1 to around zero for distances over 600 km. Estimates for 𝛼 are generally somewhat larger
for StlWnd than for HndWnd than for HndWav as might be expected, but the differences are small given the widths of
credible intervals. It is interesting that the profiles for 𝜇 with distance are also similar for the three quantities, reducing
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Figure 5: Posterior parameter estimates (shown as mean (solid lines) and 95% credible intervals (dashed lines)) for marginal
MSCE model parameters 𝛼, 𝛽, 𝜇, 𝜎, 𝛿, and residual dependence parameters 𝜌, 𝜅 and 𝜆. Conditioning on StlWnd at location
𝑟0 with conditioning value equal to the 0.75 quantile of the standard Laplace distribution. Colour coding indicates the
conditioned quantity: StlWnd (green), HndWnd (orange), and HndWav (blue). Estimates for residual dependence parameters
are given by large circles, centred on the posterior mean estimate, and vertical black lines re�ecting posterior 95% credible
intervals. For further interpretation of residual dependence parameters, see Equation 3.

from around 0.4 for small distances to around zero for large distances. Estimates for 𝛽 reduce from approximately 0.3
at small distances to zero or 0.1 with increasing distance. Estimates for 𝜎 increase towards approximately √

2 with
increasing distance, as suggested by the model formulation: for large distances, the effect of conditioning on 𝑋0,1 is
negligible, so that 𝑋𝑗,𝑘|{𝑋0,1 = 𝑥} is similar to the unconditioned 𝑋𝑗,𝑘 which is standard Laplace distributed, with
variance equal to 2. The behaviour of 𝜎 for HndWav is somewhat different, reflecting the difference between 𝐻𝑆 and the
other two wind speed variates. The decay of 𝛿 with increasing distance to around unity, suggests that 𝑋𝑗,𝑘|{𝑋0,1 = 𝑥}
is Laplace-distributed (with 𝛿 = 1) for large distances, but more Gaussian (with 𝛿 = 2) for small distances, as expected.

Parameter estimates for the residual dependence structure (see Equation 3) in the bottom right panel indicate rather
similar shape and scale estimates for distance decay of pairs of residuals for StlWnd (𝜌11, 𝜅11), pairs of residuals for
HndWnd (𝜌22, 𝜅22), and pairs of residuals for HndWav (𝜌33, 𝜅33). Shape and scale parameters for cross-dependence
between different quantities take similar values, although it is noteworthy that residual parameters involving HndWav

tend to be somewhat larger. We note that the values of 𝜌 and 𝜅 have been scaled so that they fall comfortably in the
interval [0,1] for convenience during MCMC inference. The actual values of these parameters (e.g. appropriate for
input to Equation 3) are given by 100𝜌 and 5𝜅 respectively. The large value for 𝜆1,2 ≈ 0.9 indicates high zero-distance
residual correlation between StlWnd and HndWnd. Similar smaller values for 𝜆1,3 and 𝜆2,3 around 0.7 indicate lower
zero-distance residual correlation between a wind speed variate and the𝐻𝑆 variate HndWnd, again as might be expected
from physical considerations.

Figure 6 shows conditional mean profiles for StlWnd (green), HndWnd (orange) and HndWav (blue) estimated under the
fitted MSCE model, for conditioning on𝑋0,1 with conditioning value corresponding to the 0.95 quantile of the standard
Laplace distribution, at approximately 2.3. The characteristics of the conditional mean are rather similar to those of 𝛼
and 𝜇 in Figure 5. At small distances, the conditional mean of StlWnd is clearly larger than that for HndWnd, which
is itself larger than for HndWav. However, after approximately 600 km, all conditional mean profiles have decayed to
a value of around 0.2. The profiles of conditional standard deviation with distance reflect the characteristics of 𝜎 in
Figure 5.

Figures 7 and 8 explore the quality of fit of the MSCE model to the sample. Figure 7 shows 0.025, 0.25, 0.5, 0.75
and 0.975 quantiles from marginal simulations for StlWnd (green), HndWnd (orange) and HndWav (blue) with distance
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Figure 6: Conditional mean (𝛼𝑥 + 𝑥𝛽𝜇) and standard deviation (𝜎𝑥𝛽 , both shown as mean and 95% credible intervals)
from estimated MSCE model for conditioning on StlWnd at location 𝑟0 with conditioning value equal to the 0.95 quantile
of the standard Laplace distribution. Colour coding indicates the conditioned quantity: StlWnd (green), HndWnd (orange),
and HndWav (blue).

for conditioning on StlWnd at location 𝑟0 with conditioning value equal to the 0.75 quantile of the standard Laplace
distribution. Also shown in black are the corresponding quantiles calculated directly from the sample. There is good
agreement, indicating that marginally at least the model is able to capture the distance-dependent features of the data.

Figure 8 compares the characteristics of observed residuals (black) and corresponding residuals simulated under
the fitted model (red). Diagonal panels compare histograms for selected (location,quantity) pairs, and off-diagonal
panels show scatter plots for different (location,quantity) pairs. Conditioning is again on StlWnd at location 𝑟0 with
conditioning value equal to the 0.75 quantile of the standard Laplace distribution. The quality of agreement between
the empirical distributions of observed and simulated residuals was also quantified using bootstrapping to estimate a
null distribution for the Kullback-Leibler divergence between the distributions of bootstrap resamples of the observed
residuals. Then the tail probability corresponding to the Kullback-Leibler divergence between the distributions of
observed and simulated residuals in the null distribution is estimated. We found that approximately 20% of the values
exceeded the 95% percentile of the null distribution. This indicates that there is reasonable if not excellent agreement
between the samples of observed and simulated residuals, and that the residual dependence model is able to capture
the sample characteristics.

5. Discussion
This article outlines a multivariate spatial conditional extremes (MSCE) model to describe the dependence between

extremes of multiple different spatial fields. The model is the latest extension of the conditional extremes model
of Heffernan and Tawn (2004). The MSCE model quantifies the conditional distribution of a number of quantities
measured on a common set of locations, conditional on the occurrence of a large value of one of the quantities at a
conditioning location. The key characteristic of the model is smooth variation of marginal and residual dependence
with increasing distance between spatial locations. Bayesian inference is used for parameter estimation. The model
is applied to observations of wind speed from satellite observation (StlWnd) and hindcast (HndWnd), and hindcast
significant wave height (HndWav) on a spatial transect lying between the British Isles and Iceland, conditioning on a
large value of StlWnd at the most south-western location on the transect.

There is evidence that the dependence between StlWnd at neighbouring locations is greater than that between StlWnd
and HndWnd at the same neighbouring locations, and that these are both greater than the dependence between StlWnd

and HndWav at the neighbouring locations. However, the overall trends of MSCE model parameters with distance
R. Shooter et al.: Preprint submitted to Elsevier Page 10 of 14
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Figure 7: Model validation. Comparison of observed (Laplace-scale) data with distance with simulations under the �tted
MSCE model. Conditioning on StlWnd at location 𝑟0 with conditioning value equal to the 0.75 quantile of the standard
Laplace distribution. Shown are 0.025, 0.25, 0.5, 0.75 and 0.975 quantiles of the observations (black) and simulation.
Colour coding indicates the conditioned quantity for simulation: StlWnd (green), HndWnd (orange), and HndWav (blue).

between locations are similar for each of StlWnd, HndWnd and HndWnd. The conditional mean for all quantities decays
to a baseline level at a distance of approximately 600 km. We note however that figures in the appendix, consider-
ing dependence for extremes of each of StlWnd, HndWnd and HndWnd separately, suggest that the extent of spatial
dependence for HndWnd (Figure A3) is somewhat larger than for the other quantities (Figure A1 and Figure A2). We
speculate that a distance of approximately 600-800km is indicative of the spatial extent of coherence for wind systems
in the North East Atlantic. It would be interesting to estimate the corresponding distance for other ocean basins.

The effect of choice of conditioning quantity, conditioning location and conditioning value were examined for a
number of cases, although not exhaustively. Results with similar general characteristics to those reported here were
obtained.

The original intention for this work was to combine all of (a) satellite scatterometer measurements for wind speed and
direction from Metop, (b) satellite altimeter measurements for significant wave height and wave direction from JASON
(e.g. Shooter et al. 2021b), and (c) corresponding hindcast data for all the variables in (a) and (b) in one MSCE model.
However, it quickly became apparent that the number of approximately joint measurements (given space and time)
from Metop and JASON available is small, and so far insufficient for joint modelling from scatterometry and altimetry.

The current analysis uses satellite observations of average wind speed and direction corresponding to a relatively
short period of time on the daily satellite swath over the North Atlantic, and corresponding spatially- and temporally-
matched data from the NORA10 hindcast. These observations are not guaranteed to be representative of wind speeds
and directions at the locations of interest, since the satellites pass over the North Atlantic at approximately the same
time each day, a source of measurement bias. Moreover, the temporal extent of a severe storm in the North Atlantic
is of the order of days, meaning that multiple satellite observations from the same storm event are possible from the
daily pass for each satellite. These observations are therefore likely to be correlated in time, at least to some extent.
Generally, it would be preferable to perform extreme value analysis on “storm peak” wind speed and direction, which
can reasonably be assumed to be temporally independent; however, these data are not available from the daily passes
per satellite.

Inference for the MSCE model is straightforward using the adaptive MCMC algorithm of Roberts and Rosenthal
(2009), and convergence of MCMC chains is relatively rapid; in practice, 10000 MCMC iterations is more than suffi-
cient. We believe that the MSCE methodology is an interesting extension to the statistician’s and met-ocean engineer’s
tool kits, providing a practically applicable yet statistically principled approach to quantification of conditional ex-
R. Shooter et al.: Preprint submitted to Elsevier Page 11 of 14
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Figure 8: Model validation. Comparison of observed residuals (black) and residuals simulated under the �tted MSCE
model (red). Diagonal panels show histograms of residuals for selected location-quantity pairs (𝑗, 𝑘) ∈ 

Rmt
. O�-diagonal

panels show scatter plots of residuals for selected pairs (𝑗, 𝑘), (𝑗′, 𝑘′) ∈ 
Rmt

. Conditioning on StlWnd at location 𝑟0 with
conditioning value equal to the 0.75 quantile of the standard Laplace distribution.

tremes behaviour over multiple spatial fields.
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Figure A1: O�-diagonal entries give scatter plots of StlWnd on physical scale for selected pairs of registration locations
𝑟𝑗 , 𝑗 = 0, 1, 2, 3, 6, 9, 13 (see Figure1). Diagonal elements give empirical densities for StlWnd at the locations.

A. Scatter plots of original data
Figures A1-A3 provide scatter plots and histograms for StlWnd, HndWnd and HndWav on their original physical scales,

for selected representative registration locations. The figures reveal a number of interesting features. For example,
comparison of Figures A1 and A2 suggests that dependence with distance is rather similar for StlWnd and HndWnd.
In contrast, the decay of dependence with distance is more gradual for HndWav as might be expected from physical
considerations.
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Figure A2: O�-diagonal entries give scatter plots of HndWnd on physical scale for selected pairs of registration locations
𝑟𝑗 , 𝑗 = 0, 1, 2, 3, 6, 9, 13. Diagonal elements give empirical densities for HndWnd at the locations.

Figure A3: O�-diagonal entries give scatter plots of HndWav on physical scale for selected pairs of registration locations
𝑟𝑗 , 𝑗 = 0, 1, 2, 3, 6, 9, 13. Diagonal elements give empirical densities for HndWav at the locations.
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