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1. Introduction

Offshore structures rely on Extreme Value Analysis to aid in the design of
their construction.

Spatial extremes are of particular use in this instance; a key consideration
when doing this involves characterising the nature of spatial dependence.

We are working on a model which allows a flexible dependence structure,
using a spatial conditional extremes framework.

2. Conditional Extremes Modelling

The basis of our spatial model is the conditional extremes approach of
Heffernan and Tawn (2004).

For data (X ,Y ) with Laplace marginal distributions, the bivariate
dependence model for Y | (X > u), for some high threshold u, is

Y = αX + X βZ ,

where α ∈ (−1, 1), β ∈ (0, 1) and Z is some residual process - for
example this may be a Normal distribution. Fitting this model amounts to
non-linear regression.

For higher-dimensional data, a multivariate extension of this can be
obtained by allowing Z to be a multivariate Normal distribution with
marginal distributions N(µj, γ

2
j ).

Then for data (X1, . . . ,Xn), the marginal models are as follows:

Xj | {X1 = x} ∼ N
(
αj + µjx

βj, γ2
j x

2βj
)

;

we use this as the basis of our spatial model.

3. Spatial Conditional Extremes

Suppose that X (·), the process of interest, is stationary and isotropic and
has Laplace marginal distributions.

Also suppose that we have sampling locations s, s0 ∈ S, then for
h = |s − s0|, the distance/lag between two sites, then we have

X (s) | {X (so) > u} = α(h)X (s0) + X (s0)β(h)W (s − s0). (1)

We assume W is a Gaussian process with some correlation structure to be
estimated, incorporating σ(h), and with mean function µ(h).

Different combinations of parameter values correspond to different types
of spatial dependence:
1 Asymptotic dependence at all distances h is seen when α(h) = 1 and β(h) = 0 for all
h ≥ 0.

2 A mixture of dependence types is observed if (α(h), β(h)) = (1, 0) for h ≤ hAD but
also α(h) < 1 for h > hAD. The process exhibits asymptotic dependence up to distance
hAD and asymptotic independence after this point.

Thus, we have a model able to flexibly model extremal dependence.

4. Northern North Sea (NNS) Data

We use whitened data from a North
Sea hindcast model, which comprises
of storm peak significant wave heights
during 1680 storm events at 150 sites;
these sites are shown in the map to
the left.

As there is directionality within the
data, we make use of directional
transects, which allow simpler fitting
on an approximately 1-dimensional
line.

For this analysis, a North-South
transect is used; this is highlighted in
red on the map.

5. Inference Using MCMC

To obtain inference for the spatial Heffernan-Tawn model parameters, we
utilise MCMC methods on model (1).

In particular, we use an adaptive Metropolis-within-Gibbs algorithm, which
proposes the parameters {α(i), β(i), µ(i), σ(i)}13

i=1 jointly, so that
parameters of a given lag are estimated jointly.

The correlation parameter ρ of the Gaussian process W (·) is estimated
separately.

Constraints on α(h) and β(h), such as those suggested by Keef et al.
(2013), are also implemented within the algorithm.

We pool data corresponding to particular lags (thus assuming the spatial
grid is stationary and isotropic) to give us more information and should
improve inference.

Posterior estimates of these parameters are shown below.

6. Inference using MCMC (continued)

Results appear to be physically plausible; posterior variance increases with
lag (so less information available). It appears that α(h) decays
exponentially with distance h, whilst µ(h) and σ(h) increase as h increases.

Trace plots suggest that mixing of the MCMC chains is reasonable, with
the greatest issues caused by confounding of α(h) and µ(h) and the
trade-off required in α(h) and β(h) by the imposed constraints.

7. Simulation from Fitted Model

To further assess model fit, we simulate from the fitted model and compare
the simulated data to the original data; examples are shown below.

From this, it can be seen that the simulated data at both the shortest
(left) and longest (right) lags are able to capture the behaviour in the
original data quite well - suggesting the model fit is reasonably good.

8. Further Work

Improving the MCMC procedure by utilising, for example, MMALA
techniques, plus implementation of a parameterised form for the
parameters {αi , βi , µi , σi}, for all lags i .

Extension of the model to 2 dimensions, so as to reflect the spatial grid
more accurately, as well as to including covariate effects, such as storm
direction, and spatial effects such as the effect of the conditioning location.

Application of the model to different ocean basins, which may have
different physical characteristics, and hence different behaviour of spatial
dependence of the extremes.
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