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ABSTRACT
We provide a computationally-efficient scheme for the esti-

mation of joint extremes of significant wave height (Hs) and wind
speed (U) for tropical cyclones. The method incorporates the
simple spatial extremes method (STM-E) of Wada et al., 2019
(for spatial extremes of each of Hs and U) and the conditional ex-
tremes model of Heffernan and Tawn, 2004 (for conditional mod-
eling of Hs given extreme U and U given extreme Hs). We demon-
strate the methodology in application to data generated from
hindcast simulations and track shifting of past tropical cyclones
in the neighborhood of Réunion island in the Indian Ocean. Fol-
lowing the STM-E approach, spatio-temporal maxima (STM) and
exposures (E) of both Hs and U are extracted for each tropical
cyclone event. Marginal extreme value distributions are then es-
timated independently for the STM samples of Hs and U, provid-
ing a means for marginal extrapolation to long return periods.
Exposure data are used to estimate densities for the spatial dis-
tribution of Hs and U. The conditional extremes model is then
used to characterize the joint structure of STM for Hs and U, con-
ditional on one of those variables being extreme. The estimated
joint return values for Hs and U are validated by comparison
with the original data.

INTRODUCTION
This paper discusses the estimation of joint extremes of sig-

nificant wave height (Hs) and wind speed (U) for tropical cy-
clones. Such joint extremes are critical e.g. for designing robust
offshore and coastal infrastructure, as well as for impact assess-

ments related to cyclones, see [1]. However, the typically lim-
ited availability of observational data for tropical cyclone events
makes statistical modeling using extreme value analysis chal-
lenging, especially for joint extremes.

Copula [2] [3] and hierarchical [4] [5] models are both com-
mon approaches to estimate joint extremes, and have been ap-
plied previously in ocean engineering. These methods often as-
sume that pairs of variables are either perfectly independent or
otherwise asymptotically dependent. In contrast, the conditional
extremes model proposed by Heffernan and Tawn, 2004 [6] in-
corporates both asymptotic dependence and asymptotic indepen-
dence [7]. The method proposed in this paper incorporates the
conditional extremes approach.

During a tropical cyclone, time sequences of extreme meto-
cean conditions occur, where wind and wave conditions vary
rapidly as the cyclone passes a location, and maxima of wind
and wave may not occur at the same time. Structural response
analysis during a cyclone passage requires knowledge of this se-
quential profile. The approach developed here does not require
the occurrence of time-coincident maxima.

This article describes a computationally-efficient estimation
scheme incorporating the STM-E method of Wada et al., 2019 [8]
(for spatial extremes of Hs and U) and the conditional extremes
model of Heffernan and Tawn, 2004 [6] (for conditional model-
ing of Hs given extreme U and U given extreme Hs). We demon-
strate the methodology in application to data for Hs and U in
the neighborhood of Réunion island in the Indian Ocean, gen-
erated from hindcast simulations and random track shifting of
past tropical cyclones. Following the STM-E approach, spatio-
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temporal maxima (STM) and exposures (E) of both Hs and U
are extracted from each tropical cyclone event. The tail distribu-
tions of STM data for Hs and U are then modeled independently
using extreme value analysis, providing a basis for marginal ex-
trapolation to long return periods. The exposure data are used to
estimate density functions for the spatial distribution of Hs and U
independently. The conditional extremes model is then used to
characterize the joint structure of STM for Hs and U , conditional
on at least one of those variables being extreme. Do demonstrate
the usefulness of the approach, we then compare estimates of ex-
treme iso-contours of Hs and U with those obtained directly from
the original sample.

DATA
Case study description

Réunion Island is a French Overseas Department located in
the Indian Ocean (see the regional setting in Fig.1 ). This region
is particularly prone to cyclone-induced marine flooding. The
absence of continental shelf around the island increases the po-
tential impact of waves that are not dissipated before reaching
the coast (except in the few reef zones) and whose breaking on
the steep slopes may generate considerable over-topping. This
means that the main drivers of cyclone-induced marine flooding
at Réunion Island are energetic high and/or long waves [9].

To investigate extreme waves and winds induced by cy-
clones, we use a database of 477 synthetic cyclones derived
from historical cases. Numerical cyclone generation was per-
formed by Meteo-France (French national meteorological ser-
vice) RSMC (Regional Specialised Meteorological Center) and
is fully described by [10]. The procedure is as follows: 125 cy-
clonic events in the Indian ocean basin between 1981 and 2016
are selected. For each cyclonic event, the track position where
the system reached maximum intensity is placed on the center of
Réunion Island. Each track is shifted by randomly choosing a
direction (between 0◦ and 355◦) and a distance from the island’s
center (between 0 and 400 km). For each track, the random shift
is performed 4 times. Two criteria of validity are tested after
each translation, namely (1) that no cyclo-genesis beyond the
20th parallel occurs, and (2) that the wind intensity cannot ex-
ceed the maximum statistical intensity (which is a function of
latitude) by more than 10 kt. If one of more of these criteria is
not met, the translated track is rejected, and another track-shift
is attempted, following the same process. The range of selected
distances, though of moderate magnitude compared to the size of
the Indian Ocean basin, is considerable compared to the size of
Réunion island, whose diameter is about 50 km. This procedure
faciliates simulation of scenarios that are likely to generate major
over-topping at some coastal towns at Réunion island, as well as
scenarios with low-to-moderate waves that do not generate over-
topping.

Given a cyclonic scenario (track, intensity, and size), a se-

ries of models that fully resolve the physical equations is im-
plemented [10]. The wind and pressure fields are simulated se-
quentially at 1-hour intervals at regional scale (about 8km, over
a large domain with latitude -25 to -11◦ and longitude 47 to
67◦), with the original and optimized approach developed by
RSMC La Réunion and fully described by [9] using the model
Meso-NH [11]. These outputs are used as forcing conditions
for the wave model (corresponding to a combination of a two-
way nested Wavewatch 3 modeling framework [12], denoted
NWW3). NWW3 version 4.18 is used with the source term pack-
age described by [13] and discretization into 32 frequencies and
36 directions. Two grids are used: a first grid covering a large re-
gion of the South Indian Ocean with a regular resolution of 0.1◦,
and a second grid centered on Réunion Island and composed of
finite elements with a spatial resolution reaching approximately
300m at the coast. Wind speed U (measured at 10m height) and
significant wave height Hs outputs computed on this second grid
are analyzed in this study.

One example of the spatial distribution of peak Hs and U is
illustrated in Fig.2.

METHODOLOGY
STM-E

STM-E is a simple spatial extremes method proposed in [8]
and applied in [14] [15] [16]. The approach provides a means of
estimating extreme environments on a spatial domain, particu-
larly for events such as cyclones. These are relatively rare events
of limited spatial extent. The influence of a cyclone event tends
to be limited to a part of the study region only. In the STM-
E methodology, the space-time characteristics of each cyclone
event are summarised using two quantities: the space-time max-
imum (STM) of the cyclone and the spatial exposure (E) of each
location in the study region to the event. The STM for a variable
is defined as the maximum value of that variable observed any-
where in the study region during the cyclone’s life. Exposure E
for a variable is then defined at each location as the maximum
fractional value of STM ∈ [0,1] observed at that location during
the cyclone’s life. For a particular variable, STM si and Exposure
ei j are defined using:

si = max
t∈Ti,r j∈Ri

h(r j, t) (1)

ei j = max
t∈Ti

h(r j, t)
si

(2)

where h(r j, t) denotes Hs or U at location r j and time t, and i, j
are the cyclone event index and the spatial position index respec-
tively. The STM-E model assumes per variable that it is valid to
associate any STM with any E, and in this sense that STM and
E for a variable are independent. Based on this assumption, the
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FIGURE 1: Left: Location of Réunion Island, Right: Water depth contour around Réunion Island (see [10] for data processing details) corresponding
to the study region.

FIGURE 2: Spatial distribution of peak Hs and U around Réunion island for a given cyclone event (extracted from the simulation database described
by [10])

joint distributions of STM and E over variables is sufficient to
derive the extreme characteristics at each location.

Conditional extremes
A conditional extremes model for multivariate extremes was

proposed in [6], describing the limiting form of the distribu-
tion of one variable conditional on another variable exceeding
a threshold, for variables on a common standard Gumbel scale.

Estimating this model and simulating values consists of 3 steps.
First, each marginal distribution is estimated independently using
a generalized Pareto form, subsequently used to transform the
sample to have standard Gumbel margins. Secondly, the condi-
tional model (in equation (3)) is estimated for the Gumbel-scale
data. Finally, data simulated under the conditional model is back-
transformed from Gumbel scale to the original physical scale to
allow estimation of iso-contours, conditional return values and
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other characteristics of the joint tail of interest.
For positively-associated variables X1,X2, ...,Xp with stan-

dard Gumbel marginal distributions, and a large value x j for X j,
the conditional model form is

(X− j|X j = x j) = a− jx j + x
b− j
j Z− j for x j > ψ j (3)

for Gumbel-scale threshold ψ j, where X− j represents all vari-
ables excluding X j. Further a− j ∈ [0,1]p−1 and b− j ∈ (−∞,1)p−1

are location and scale parameters. The residual Z− j ∈ Rp−1 is
a random variable independent of X j with limiting distribution
G− j. The form of G− j is not specified by theory, and a Gaus-
sian distribution with mean µ− j ∈ Rp−1 and standard deviation
σ− j ∈ Rp−1 is typically adopted for model fitting purposes only.

To simulate values of (Hs,U) on the original scale from the
estimated multivariate extreme model, we first simulate x j > ψ j
from a truncated Gumbel distribution. A value of Z− j is then
sampled independently (from the empirical distribution of resid-
uals from model fitting), and is substituted into equation (3) to
obtain value X− j for x j. It is important to note that the Gaus-
sian form of Z− j is used only for estimation, whereas the em-
pirical distribution of Z− j is used for simulation, ensuring that
dependence between residual components is preserved in simu-
lation. At this point, if x j < maxX− j (i.e. the maximum over
all p−1 components of X− j), the simulated values are rejected,
thus ensuring that, for retained simulated points, the value of
x j is more extreme in its marginal distribution than any of the
components of X− j. If x j > maxX− j, the inverse of the Gum-
bel transformation is applied to each variable, to transform the
random sample back to the original physical scale. This process
is repeated for all conditioning variables X j, and the results are
combined to get a sample from the tail of the full joint distribu-
tion of X1,X2, ...,Xp. We note that the form of equation (3) is also
valid for variables on common standard Laplace scale.

Multivariate STM-E
We now introduce the multivariate STM-E model (MSTM-

E), extending the underpinning STM-E method by exploiting the
conditional extremes model to infer the dependence between ex-
tremes of components (i.e. Hs, U) of STM. The underlying STM-
E procedure of isolating STM and E (for all variates), estimat-
ing marginal distributions for STM components, and re-sampling
from the distributions of STM and E assuming their indepen-
dence to generate synthetic data is retained. The dependence in
exposure across variates is preserved in simulation, by ensuring
that exposures of (Hs,U) for any single cyclonic event are al-
ways sampled together. STM and exposure are then multiplied
together to simulate from the spatial distribution of (Hs,U).

The most straightforward way to evaluate the performance
of MSTM-E is to compare the tails of the original and simu-
lated bivariate distributions. If these are similar for a location,

we infer that the multivariate STM-E method provides reason-
able estimates of extremal dependence there. This comparison is
sometimes challenging, since data is sometimes sparse. Further,
only the distributions of threshold exceedances are comparable,
rather than the full joint distributions. In the current work, we
compare observation and simulation by means of the 100-year
return period iso-contour w(θ) = (w1(θ),w2(θ)) with (Hs, U)
components and circular parameter θ ∈ [0,2π), satisfying

F (w(θ)) = P(Hs > w1(θ),U > w2(θ)) (4)

Here, F(w(θ)) is estimated empirically using the original sam-
ple or the simulation (of threshold exceedances only), such that
F(w(θ)) = 1/(100 f ) for the original sample, and F(w(θ)) =
1/(100 f pe) for the conditional simulation, for any value of θ .
Further, f is defined as the frequency (=1.04) of cyclonic events
per annum for the area defined by a radius of 400km around
Réunion Island, and pe is the probability that an STM value ex-
ceeds the threshold ψ in either variable.

The performance of MSTM-E is evaluated for four specific
locations along a transect running from the city of Saint-Denis
(located on the Northern part of the island) to a point 0.3◦ North
of Saint-Denis. shown in Fig.3.

Diagnostics Like many other extreme value methods,
the choice of threshold is fundamental to the success of MSTM-
E inference. Marginal model fit is dependent on threshold se-
lection. Marginal threshold choice is usually justified using the
mean residual life plot to demonstrate stability of the estimated
shape parameter ξ of the generalized Pareto. Given sufficient
data and large threshold, the estimated ξ should be invariant to
threshold.

Threshold also influences parameter estimation in the con-
ditional extremes model. We confirm the conditional threshold
selection by assessment of parameter stability. Plots of samples
of residuals Z are also examined.

Further, MSTM-E makes the assumption that the distribu-
tion of multivariate STM and E are independent. Since threshold
selection defines the extremes of STM, the extent of indepen-
dence is also affected by threshold selection. As in [8], Kendall’s
tau rank correlation analysis can be used to evaluate the validity
of this assumption.

Uncertainty quantification Quantification of fitting
uncertainty is essential in general in all empirical modelling, but
especially so in extreme value modelling with small samples. We
use resampling techniques throughout to achieve this in the cur-
rent work. Conventional non-parametric bootstrap resampling is
used to quantify uncertainty in estimation of marginal extreme
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FIGURE 3: Kendall’s tau rank correlation for STM and exposure. Red plots indicate locations where the p-value was under 0.05. The colored points
with numbered labels are the selected points along a transect, starting from the city of Saint-Denis

value models. We use the adjusted resampling approach de-
scribed in [6] to quantify uncertainty in estimation of the con-
ditional extremes model; this approach involves simulation of
bivariate samples of the same size as the original sample, the
same marginal generalised Pareto distributions as the original
sample, and identical dependence structure (in terms of asso-
ciations between ranks of occurrences of its components). At
present, we do not propagate uncertainty from the marginal to
the conditional extremes inference, using instead the bootstrap
median generalised Pareto parameter estimates for the transfor-
mation, although this could be incorporated at additional compu-
tational cost.

RESULTS
Marginal model

Illustrations of diagnostics for marginal threshold choice for
Hs and U are provided in Fig. 4 and Fig. 5. For Hs and U re-
spectively, upper bounds for thresholds of 16m and 40m/s are
judged plausible, since higher values would result in huge max-
imum values of Gumbel variates. Thresholds of 6m and 20m/s
were chosen as support shape parameter stability whilst retain-
ing reasonable sample size. However, other choices of threshold
in the range of 6 16m and 20 40m/s did not materially affect
results. Fig. 6 illustrates the estimated generalized Pareto dis-
tributions for threshold exceedances against the original data for
Hs and U . As described in the data section, wind intensity satu-
rates at around 55m/s (corresponding to the maximum observed

value in the original data that has been used for track shifting)
and the estimation reflects this; the shape parameter inevitably
approaches -1, and the cumulative distribution function (CDF)
is close to a straight line. The transformed samples on Gumbel
scale are shown in Fig. 7.

Conditional model
Sample size for conditional extremes estimation as a func-

tion of Gumbel threshold is illustrated in Fig. 8. Corresponding
parameter estimates are illustrated in Fig. 9, with 50% and 95%
bootstrap uncertainty bands. A conditional extremes threshold of
1.25 was selected, reflecting the largest threshold possible before
parameter estimates become unstable in general. The bootstrap
scatter of estimates for a and b is shown in Fig. 10. The large
variance of a is due in part to the redundancy of a and µ in the
model (Eq.(3)) when b= 1. The mean of each parameter estimate
was used to simulate random samples in the following sections.

For the 1.25 threshold, residuals in Fig. 11 do not show
obvious signs of dependence on Hs and U . Fig. 3 illustrates
the estimated Kendall’s tau per location, indicating unexpected
dependence between STM and E in red. In general, we judge
this result acceptable, but note one region on the west coast of
Réunion Island where the statistic appears significant. We note
further that coral reefs are present in this region, and that wave
processes here are known to be very complex. The area that ex-
ceeds the 95% confidence interval is small.

The results in Fig. 13 illustrate simulations under the esti-
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FIGURE 4: Number of occurrences as a function of marginal threshold, with shaded area representing bootstrap 95% uncertainty interval.

FIGURE 5: Marginal generalised Pareto shape parameter estimate as a function of extreme value threshold, with shaded area representing bootstrap
95% uncertainty interval.

mated conditional model on the Gumbel and original scales. On
Gumbel scale, extreme values of Hs and U are evidently asymp-
totically independent (also apparent since the estimate for a < 1
in Fig. 10 for both conditional extremes models). The rays (or
lines) present in the simulated values are the result of resampling

the same residual from a the sparse sample of residuals, as il-
lustrated in Fig.11; these rays can be eliminated by smoothing
the empirical distribution of residuals. We choose not to do this,
preferring instead to “let the data speak” as much as possible.
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FIGURE 6: Empirical cumulative distribution function of threshold exceedances (Black), with corresponding estimates using 100 bootstrap estimates
of generalized Pareto distributions (Red), with their median (Blue).

MSTM-E
On the original scale, 100-year return period iso-contours

are drawn using the empirical data (in black), and using the back-
transformed simulated data under the model (in color) in Fig.
12. The two iso-contours are in reasonable agreement for the
four locations under consideration. However, contour lines from
simulation lie nearer to the origin that those estimated directly
from the original sample.

DISCUSSION
From a physical perspective, the conditional extremes pa-

rameter estimates in Fig. 10 suggest asymptotic independence of
Hs and U , contrary to presumed wave growth dependent on wind
energy. One possibility is that the estimated wind-wave interac-
tion is representative of the actual behavior of cyclone-induced
wind and wave around Réunion Island. The estimated general-
ized Pareto model defines the maximum possible Hs and U to
be around 19m and 56m/s respectively; wind-wave interaction is
complicated by factors such as saturation of drag coefficient at
very high wind speeds [17]. Another possible cause of the esti-
mated asymptotic behavior is the very low shape parameters of
the estimated marginal distributions. When the shape parameter
of a generalized Pareto distribution is negative, small increases
in the original margin are amplified when transforming to Gum-
bel margins and variability in the residual model. It is also likely
that outputs of numerical models for wind and wave simulation
are less accurate in general for extreme values.

Another issue is the underestimation of iso-contour levels
from MSTM-E compared to the iso-contours estimated empiri-
cally directly from the original sample. The iso-contours of STM
illustrated by Fig.13 do not seem to be contributing to the under-
estimation. This suggests that the exposure distribution is the
cause of the underestimation, which requires further investiga-
tion. The shape of the empirical iso-contours also differs from
that of the MSTM-E iso-contours. The empirical iso-contours
at locations closer to the coast (i.e. locations 1 and 2) have a
stronger convexity in the upper-right corner, marking a stronger
joint effect, suggesting that exposure did not capture some fea-
tures of the physical process. The “staircase” effect seen in the
empirical iso-contours is due to the small number of available
data. In future work, we will incorporate the effect of uncertain
marginal thresholds, marginal models and conditional extremes
models in estimates of return period iso-contours.

The multivariate STM-E method (MSTM-E) provides a
computationally-simple approach to multivariate spatial extreme
value analysis, underpinned by sound statistical principles from
marginal and conditional extreme value analysis, and the exist-
ing STM-E approach. In a preliminary study, MSTM-E has been
used to quantify the marginal distributions of Hs and U , and the
dependence between STMs of Hs and U , without requiring time-
coincident STMs per cyclone. MSTM-E also preserves the de-
pendence between spatial exposures for Hs and U . The initial
study suggests that the MSTM-E provides reasonable estimates
of return value iso-contours of joint extremes. However, further
work is clearly necessary to establish the approach fully. In par-
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FIGURE 7: Scatter plot of data on original scale (Left) and Gumbel scale (Right) with marginal thresholds (Hs,U) = (6,20). Transformation to
Gumbel scale made using bootstrap median generalised Pareto parameters.

ticular, the time sequence of occurrences of extreme components
of metocean variables can be important when quantifying risks
e.g. associated with coastal flooding. We intend next to extend
MSTM-E to incorporate a model for the temporal evolution of
exposure.
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FIGURE 9: Estimation of conditional model parameters a,b,µ and σ as a function of conditional threshold, with shaded area representing 50% and
95% uncertainty intervals estimated using the procedure of [6] discussed in the Methodology section. Marginal thresholds for (Hs,U) are
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FIGURE 10: Scatter plot of estimated values for parameters a and b for conditional models U |H (Left) and H|U (Right) from 1000 adjusted bootstrap
resamples generated using the procedure of [6] discussed in the Methodology section.

FIGURE 11: Residuals Z− j and variables over threshold transformed to uniform margins. Conditional model threshold is 1.25, with parameter
estimates of (a,b) of (0.40, 0.78) for conditioning on Hs (Left), and (0.25, 0.42) for conditioning on U (Right).
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FIGURE 12: Estimated 100-year iso-contours from the original data (Black) and MSTM-E (Color) for the four locations marked in Fig.3.
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FIGURE 13: Scatter plot of observed and simulated STM of Hs and U . Black points represent the original STM. Overlaid are 1000 simulated values
from models for U |H (Orange) and H|U (Green). Left : On Gumbel scale, with horizontal and vertical black lines representing the
conditional thresholds. Right: On original scale, following back-transformation. The black and red lines are the 100-year return period
iso-contours drawn from the empirical data and the simulated data respectively.
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