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Modeling the Seasonality of
Extreme Waves in the Gulf of
Mexico
Statistics of storm peaks over threshold depend typically on a number of covariates
including location, season, and storm direction. Here, a nonhomogeneous Poisson model
is adopted to characterize storm peak events with respect to season for two Gulf of
Mexico locations. The behavior of storm peak significant wave height over threshold is
characterized using a generalized Pareto model, the parameters of which vary smoothly
with season using a Fourier form. The rate of occurrence of storm peaks is also modeled
using a Poisson model with rate varying with season. A seasonally varying extreme value
threshold is estimated independently. The degree of smoothness of extreme value shape
and scale and the Poisson rate with season are regulated by roughness-penalized maxi-
mum likelihood; the optimal value of roughness is selected by cross validation. Despite
the fact that only the peak significant wave height event for each storm is used for
modeling, the influence of the whole period of a storm on design extremes for any
seasonal interval is modeled using the concept of storm dissipation, providing a consis-
tent means to estimate design criteria for arbitrary seasonal intervals. The characteris-
tics of the 100 year storm peak significant wave height, estimated using the seasonal
model, are examined and compared with those estimated ignoring seasonality.
�DOI: 10.1115/1.4002045�
Introduction
The duration of some offshore activities is limited to a certain

eriod of time. It can be advantageous, therefore, to specify struc-
ural design criteria for short periods of the order of weeks. Here,
e consider specification of seasonal design criteria for two loca-

ions in the Gulf of Mexico.
The availability of comprehensive metocean data allows the

ffect of the heterogeneity of extremes with respect to direction,
eason, and location to be accommodated in the estimation of
esign criteria. Capturing covariate effects of extreme sea states is
mportant when developing design criteria. Design criteria derived
rom a model that adequately incorporates covariate effects can be
aterially different from a model that ignores those effects. In

revious work �e.g., Refs. �1,2��, it has been shown that omnidi-
ectional storm peak HS100 derived from a directional model can
e heavier tailed than that derived from a direction-independent
pproach, indicating that large values of storm peak HS are more
ikely than we might anticipate where we base our beliefs on
stimates that ignore directionality. There is a large body of sta-
istics literature that routinely models covariate effects in extreme
alue analysis �see, e.g., Ref. �3� or Ref. �4��. Anderson et al. �5�
erformed a seasonal analysis. The case for adopting an extreme
alue model incorporating covariate effects is clear, unless it can
e demonstrated statistically that a model ignoring covariate ef-
ects is no less appropriate. Chavez-Demoulin and Davison �6�
nd Coles �7� provided straightforward descriptions of a nonho-
ogeneous Poisson model in which occurrence rates and extremal

roperties are modeled as functions of covariates. Scotto and
uedes-Soares �8� described modeling using nonlinear thresholds.
Bayesian approach is adopted by Coles and Powell �9� using

ata from multiple locations and by Scotto and Guedes-Soares
10�. Spatial models for extremes �11,12� have also been used, as
ell as models �13,14� for the estimation of predictive distribu-
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tions, which incorporate uncertainties in model parameters. Led-
ford and Tawn �15� and Heffernan and Tawn �16� discussed the
modeling of dependent joint extremes. Chavez-Demoulin and
Davison �6� also described the application of a block bootstrap
approach to estimate the parameter uncertainty and the precision
of extreme quantile estimates, applicable when dependent data
from neighboring locations are used. Guedes-Soares and Scotto
�17� discussed the estimation of quantile uncertainty. Here, we
investigate the effect of the seasonal covariate using a nonhomo-
geneous Poisson model.

The outline of the article is as follows. In Sec. 2, we describe
the present application and illustrate the data. In Sec. 3, we outline
the extreme value model used and describe the results. In Sec. 4,
we discuss the estimation of design criteria for arbitrary seasonal
intervals. Conclusions are drawn and recommendations are made
in Sec. 5.

2 Data
The data examined are significant wave height HS values from

the proprietary Gulf of Mexico Oceanographic Study �GOMOS�
�18� for the period September 1900 to September 2005, inclusive
at 30 min intervals. For two typical Gulf of Mexico locations
�henceforth, “A” and “B”�, we selected 78 grid points arranged on
a 13�6 rectangular lattice with spacing of 0.125 �14 km�. For
each storm period for each grid point, we isolated a single storm
peak significant wave height HS

sp for modeling purposes, together
with the corresponding wave direction at storm peak �, henceforth
referred to as the storm peak direction, and the corresponding
storm peak season �. We expect storm peak significant wave
heights for different storms at the same location to be statistically
independent. For convenience and consistency, we define season
� on the interval �0,360� corresponding to 1 year and refer to a
value of � as a seasonal degree, approximately equal to a day of
the year. Thus, extreme value modeling is performed on storm
peak wave height data �one value for each storm at each of 78
locations, giving 315 storm peak values for each location in the

period 1900–2005�.
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Figure 1 shows an empirical density of storm peak events at
ocation A. Storm events occur in the second half of the year only
with two exceptions in 105 years; these are not shown here for
onvenience but are used for extreme value modeling and estima-
ion of design criteria below�. June storms are associated with a
torm peak direction of approximately 90 deg. This continues ap-
roximately until October and November when storm peak direc-
ion shifts to around 45 deg. The figure suggests that the effects of
torm peak direction and season on extreme storm events are re-
ated. Figures 2 and 3 give quantile estimates of HS

sp with respect
o season and direction, respectively, for location A. The seasonal
esolution possible in Fig. 2 is less than the directional resolution
ossible in Fig. 3 because any storm is more localized across
ocations with respect to season than it is with respect to direction.
n a previous application �1� the authors illustrated that storm peak

ig. 1 Empirical density of storm peak events at location A.
arker shading represents higher density.

Fig. 2 Quantiles of HS
sp by season at location A

sp
Fig. 3 Quantiles of HS by direction at location A
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direction varies between locations for a given storm by more than
30 deg. This is not the case for storm season; the storm peak event
occurs at almost the same seasonal degree across locations for a
given storm; there are effectively only 315 values of seasonal
degree present in these data across locations, whereas the number
of storm peak directions available is much larger. In this sense,
site averaging of data for seasonal modeling is less advantageous
than that for directional modeling.

Figure 4 gives the density of HS
sp for values over thresholds of 3

m, 6 m, 9 m, and 12 m, estimated using a kernel density approach.
The conditional density with a 12 m threshold peaks more in
September, generally consistent with Fig. 2.

For extreme value modeling with seasonal covariate, we adopt
a variable threshold u to reflect variation in extreme values with
season. A fixed threshold, above which all storm peaks are taken
to be “extreme,” appropriate in June would not be appropriate in
September. We might partition the data by direction and perform
independent extreme value analyses per month, e.g., assuming
that months are effectively homogeneous. Here, alternatively, we
adopt a threshold, which varies with storm peak season, thereby
avoiding partitioning the data while accommodating seasonal het-
erogeneity. The variable threshold is estimated locally by identi-
fying for each storm peak present, the nearest 300 storm peaks in
terms of storm peak season. The variable threshold for that sea-
sonal degree is then selected as a certain quantile q �e.g., the
median, q=0.5� of HS

sp for that sample of 300. The effect of vary-
ing the size of the local sample is to vary the smoothness of the
estimated variable threshold profile with season. In previous work,
the median was taken to provide a reasonable location for the
onset of the extremal tail for all seasons. Here, we decided to use
two variable thresholds corresponding to the median and the q
=0.8 quantile. For the latter, we set the threshold such that only
the highest 20% of peaks are retained locally for extreme value
modeling. This enables us to assess the effect of choice of variable
threshold on estimates for design conditions. For location A, vari-
able threshold estimates are shown in Fig. 5. Interestingly, Eastoe
�19� showed that, with careful model construction, forms of cova-
riate structure invariant to choice of threshold can be achieved.

For location B, Figs. 6 and 7 correspond to Figs. 1 and 2 for
location A. The empirical density in Fig. 6 is qualitatively similar
to that in Fig. 1. However, Fig. 7 shows that values of the most
extreme quantiles �99% and 99.9%� are larger at location B than
at A.

The use of hindcast data in marine structural design is well
established. Note, however, that the veracity of values for extreme
events in hindcast data is dependent on the validity of the physical
approximation used in the hindcast and on the quality of the ob-
servational data used to calibrate it. A useful summary of GOMOS

Fig. 4 Conditional density of storm peaks over threshold at
location A
development is given by Stiff et al. �20�.
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Extreme Value Modeling

Given storm peak significant wave heights �Xi�i=1
n and storm

easons ��i�i=1
n �corresponding to a total of 78 different grid points

or each of locations A and B� occurring in some period P0, the
istribution of storm peaks above variable threshold u��� can be
escribed using the generalized Pareto �GP� distribution with cu-
ulative distribution function FXi��i,u

given by

FXi��i,u
�x� = P�Xi � x��i,u��i�� = 1 − �1 +

���i�
���i�

�x − u��i��	
+

−1/���i�

�1�

or x�u , ��0, where � is the shape parameter and � is the
cale. The subscript + notation, defined as a+=max�a ,0�, is used.

ig. 5 Variable extreme value threshold at location A. Thresh-
lds set to omit 50% and 80% of values for a given seasonal
egree.

Fig. 6 Empirical density of storm peak data at location B

sp
Fig. 7 Quantiles of HS by season at location B
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We expect the extreme value parameters � and � to vary smoothly
with season and to characterize their seasonal dependence using a
Fourier series expansion 
k=0

p 
b=1
2 Aabktb�k��, where t1=cos and

t2=sin, with a=1 for � and a=2 for �. We set Aa20=0 and a
=1,2 to avoid parameter redundancy. p is the order of the Fourier
model and p=0 corresponds to a constant model. A Fourier form
for � and � guarantees that parameter estimates are periodic with
respect to season and permits a straightforward calculation of
asymptotic covariances. The asymptotic covariance matrix of pa-
rameter estimates is given by the inverse I−1 of the information
matrix, I=EX��−�2l /�Aabk�A�	
��, where l is the log likelihood
defined below. Asymptotic variances for functions of parameters,
e.g., HS100, can also be derived from I−1. Asymptotic variances are
useful as part of a bootstrapping resampling analysis to obtain
reliable estimates for parameter uncertainties. The estimates �̂ and
�̂ are intercorrelated, so that smoothing one functional form
smoothes the other. Pooling dependent data samples �from the 78
grid points for locations A and B� with the same extremal charac-
teristics is advantageous since the sample size for modeling is
increased. However, resulting asymptotic estimates for uncertain-
ties of model parameters and design criteria are too small due to
data dependency. Techniques, such as bootstrapping, are required
to obtain realistic estimates of parameter uncertainties.

It is important to note that the objective of the analysis is to
estimate extreme quantiles for a single typical location rather than
for the set of 78 dependent locations. To achieve this, we assume
that the �marginal� extremal properties of each of the 78 locations
are identical.

We estimate the parameters Aabk, a=1,2, b=1,2, and k
=1,2 , . . . ,p using roughness-penalized maximum likelihood esti-
mation. An order 5 model is sufficiently flexible to capture the
directional dependence of � and �. A roughness term is incorpo-
rated for model fitting to penalize the functional forms of � and �,
which are not smooth. The penalized negative log likelihood to be
minimized takes the form

l� = 

i=1

n

li + ��R� +
1

w
R�	 �2�

Here, the unpenalized negative log likelihood, for i=1,2 , . . . ,n, is

li = log ���i� + � 1

���i�
+ 1	log�1 +

���i�
���i�

�Xi − u��i��	
+

�3�

The roughness of � is given by

R� =�
0

2� � �2�

��2	2

d� = 

k=1

p

�k4�

b=1

2

A1bk
2 	 �4�

The roughness of � is given by

R� =�
0

2� � �2�

��2	2

d� = 

k=1

p

�k4�

b=1

2

A2bk
2 	 �5�

The constant w is set prior to modeling. In this work, we choose to
penalize the roughness of � exclusively. The value of roughness
parameter � is selected using cross validation to maximize model
predictive performance at locations not used for fitting as follows.
Using a set of ten locations �on a 3�3 grid covering the region
with an additional near-central location added�, models are fitted
using data from nine locations only. Data from the remaining
location are used to test how well the model works for prediction.
This procedure is repeated until each location has been used ex-
actly once for prediction for a range of possible values of �. Then,
we select that value of �, which gives best predictive performance
across all locations. Figure 8 illustrates overall model fitting error
and predictive error as a function of � for location A. Model fitting
error improves with decreasing �, whereas the predictive error is

−5
minimized for �=3�10 , at which predictive performance is
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ptimal. Alternative cross-validation schemes are possible, for ex-
mple, because of the dependency between locations for a given
torm; we also recommend performing cross-validation studies
ased on omitting and reinstating storms rather than locations to
onfirm consistency of estimates for roughness parameters.

Corresponding functional forms of �̂ and �̂ with season, evalu-
ted using data for all storms at all locations with �=3�10−5, are
hown in Fig. 9 for location A �only June–December period is
hown, but the model is estimated for the full year�. The value of
ˆ is seen to vary relatively smoothly from approximately 0.3 to
, indicating considerable heterogeneity in extremal behavior. Fig-
res 16 and 17 in the Appendix give corresponding forms with
0% and 80% thresholds at locations A and B, respectively. For
ocation A, estimates for 80% threshold are less smoother than
heir 50% threshold counterparts. For location B, note that �̂ ex-
eeds zero in September for both threshold choices. Various diag-
ostic plots confirm that the models explain the data well.
The current approach in the statistics literature to modeling

eaks over the threshold is to adopt the inhomogeneous Poisson
rocess model �see, e.g., Refs. �7,21��. This three parameter model
escribes the rate of occurrence and intensity of extreme events. If
ata from this model are observed over some interval, the number
f threshold exceedances is Poisson distributed. Conditional on a
iven number of exceedances, values of the exceedances are then
random sample from a GP distribution �see Ref. �3��. The log-

ikelihood can be written as

l��,�,�� = lN��� + lW��,�� �6�

here lN is the log-density of the total number of exceedances
with rate argument �� and lW is the log-conditional-density of
xceedances given a known total number N �with the usual GP
orm�. Since the log-likelihood can be partitioned in this way,

ig. 8 Overall GP model fitting and prediction error as a func-
ion of � with a 50% variable threshold at location A

ig. 9 Extreme value shape � and scale � by season with a

0% variable threshold at location A

21104-4 / Vol. 133, MAY 2011
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inferences on � can be made separately from those on � and �.
The Poisson process log-likelihood for arrivals at times �ti�i=1

n in
period P0 is

lN��� = 

i=1

n

log ��ti� −�
P0

��t�dt �7�

Chavez-Demoulin and Davison �6� described an approximate log-
likelihood achieved by partitioning P0 into a large number m of
subintervals of length � and choosing � small enough that � is
effectively constant over each subinterval. Then,

l̂N��� = 

j=1

m

cj log ��j�� − �

j=1

m

��j�� �8�

where �cj� j=1
m is the number of occurrences in each of the m sub-

intervals. Using this approach, we estimate the storm occurrence
rate based on counts of the number of storms per location per
annum per seasonal degree from the hindcast data. As for GP
parameters � and �, we adopt a Fourier form for Poisson intensity
�, penalizing its roughness R� by maximizing the penalized log-
likelihood,

l̂N
� ��� = l̂N��� − 
R� �9�

where R� has a form identical to that of R� or R� above. The
optimal value of the penalty 
 is chosen using the cross-validation
strategy described above. Figure 10 shows that a roughness pen-
alty of approximately 
=3�10−7 is appropriate for location A
with a 50% variable threshold. The corresponding estimate for
Poisson rate with season is given in Fig. 11. This figure also

Fig. 10 Extreme value shape � and scale � by season with
50% and 80% variable thresholds at location A

Fig. 11 Extreme value shape � and scale � by season with

50% and 80% variable thresholds at location B
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hows the count data �cj� j=1
m to which the model was fit. Figures

8 and 19 in the Appendix give corresponding estimates with
ither variable threshold choice for locations A and B.

Design Criteria
To estimate design criteria such as the 100 year storm peak

vent HS100 for an arbitrary seasonal interval �e.g., of length 1
eek or 1 month�, we can use our extreme value model to esti-
ate the number of occurrences of storms in the interval and the

alues of HS
sp for those occurrences. However, we also need to

ncorporate the influence of storm events whose peaks occur near
ut not within the seasonal interval at hand since these storm
vents also contribute to the extremal characteristics of the inter-
al. To achieve this, we estimate the seasonal dissipation of storm
vents as follows. First, we partition the seasonal domain �0,360�
nto 36 periods of ten seasonal degrees. Then, using hindcast data
lone, we estimate the maximum �fractional� HS

sp seen in each
nterval for a storm with any peak season. The resulting seasonal
issipation �S��� quantifies the influence of a storm with peak
eason � on seasonal interval S. If the value of � falls within S,
hen �S���=1; otherwise, �S���� �0,1�.

We then proceed to estimate the cumulative distribution of
S100 for seasonal interval S using simulation as follows. Using

he Poisson model, we generate a random number of occurrences
i of storms for each seasonal degree �i corresponding to a period
f 100 years, obtaining the set �ni�i=1

360. Then, for occurrence j at
easonal degree �i, using the generalized Pareto model, we gen-
rate random values �Xij�i=1 j=1

360 ni for HS
sp. For seasonal interval S,

e retain the maximum value of HS
sp observed, maxi,j��S��i�Xij�

rom storm events occurring within or near S using dissipation
S��i� to factor down for peak seasonal degrees �i outside S. We
epeat the procedure 10,000 times to obtain an empirical estimate
or the cumulative distribution function of HS100. By setting S
�0,360�, we can also estimate omniseasonal HS100.
Figure 12 shows omniseasonal HS100 using 50% and 80% vari-

ble thresholds at location A. For comparative purposes, we in-
lude corresponding estimates based on a constant model, which
gnores seasonal variability in extreme value parameters but does
ncapsulate variable threshold and nonhomogeneous Poisson oc-
urrence rate. In this sense, it is important to note that the constant
odel here also captures a number of influential seasonal effects

ot typically incorporated in engineering practice. It is apparent
rom the figure that there is little difference between the seasonal
nd constant models for the 50% variable threshold case and that
he 80% threshold case is less heavily tailed. The effect of choice
f variable threshold appears more influential than the incorpora-
ion of seasonally varying extreme value parameters. Figure 13

ig. 12 Overall Poisson model fitting and prediction error as a
unction of � with a 50% variable threshold at location A
ives corresponding curves for location B. Here, the 80% thresh-

ournal of Offshore Mechanics and Arctic Engineering
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old case is heavier tailed, but again there is general consistency
between the four curves shown.

Figure 14 gives cumulative distribution functions for monthly
HS100 at location A using the seasonal model. As might be ex-
pected, the September cumulant is nearest to the omniseasonal.
For comparison, Fig. 15 gives corresponding monthly cumulants
assuming the constant model. There is now less variability be-
tween monthly cumulants. �Figures 20 and 21 in the Appendix
give corresponding cumulants for location B. Trends are similar;
September dominates for estimates based on the seasonal model,
and months are more similar under the constant model.�

Fig. 13 Storm counts „o… and estimated Poisson rate � by sea-
son with a 50% variable threshold at location A. Rate is defined
as the number of storms per location per seasonal degree per
annum.

Fig. 14 Estimated Poisson rate � by season with 50% and
80% variable thresholds at location A

Fig. 15 Estimated Poisson rate � by season with 50% and

80% variable thresholds at location B

MAY 2011, Vol. 133 / 021104-5
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Seasonal cumulative distribution functions are the basis for de-
ign values for locations A and B. We consider two different ap-
roaches, both consistent with the same given omniseasonal de-
ign criterion, in this case the median omniseasonal HS100, and
uantify their relative characteristics. For definiteness, we also
ocus on the estimation of seasonal design values for calendar
onths. If the design criteria are specified in terms of an omnisea-

onal nonexceedance probability q100Omni for storm peak HS, we
btain corresponding 100 year design storm peak HS, x100Omni, by
olving q100Omni=P�Xmax 100Omni�x100Omni�. However, specifica-
ion of q100Omni does not uniquely specify design storm peak HS.
evertheless, we can calculate monthly nonexceedance probabili-

ies q100OmniSi
=P�Xmax 100Si

�x100Omni� corresponding to x100Omni

or months �Si�i=1
12 and fix the value of the all-sector nonexceed-

nce probability q̃100Omni=�i=1
12 q100OmniSi

for all designs consid-
red to ensure consistency. Note that q̃100Omni�q100Omni in general
ecause of the influence of storms on more than 1 month due to
easonal dissipation. Equality is achieved when each storm event
nfluences 1 month only �which is approximately the case in the
urrent application because of the limited dissipation of storms
ith season�. This suggests, as limiting cases, the opportunity to
esign to either the omniseasonal HS100 or design to equal sea-
onal nonexceedance probability. Note that intermediate choices
re also possible �e.g., �1�� propose a risk-cost design criterion�.

For design to omniseasonal HS100, we design the median om-
iseasonal storm peak HS100, x100Omni, in all 12 months. Using this
pproach, since months exhibit different extremal behaviors,
onthly nonexceedance probabilities will vary. The all-month

onexceedance probability will be q̃100Omni, as defined above. For
he design to equal monthly nonexceedance, we design to the
ame nonexceedance probability q100Si

= �q̃100Omni�1/12 in all 12
12

Table 1 Design values corresponding to med
variable threshold values and model forms. N

Month

Variable threshold set at 50%

Omniseasonal Equal monthly
Hs
�m� NEP

Hs
�m�

Season
January 12.5 1.00 3.0
February 12.5 1.00 3.8
March 12.5 1.00 3.9
April 12.5 1.00 3.3
May 12.5 1.00 4.5
June 12.5 1.00 8.2
July 12.5 0.96 11.9
August 12.5 0.74 15.2
September 12.5 0.65 15.9
October 12.5 0.97 11.4
November 12.5 1.00 6.4
December 12.5 1.00 4.6

Consta
January 12.6 1.00 3.2
February 12.6 1.00 3.9
March 12.6 1.00 4.1
April 12.6 1.00 3.7
May 12.6 1.00 6.5
June 12.6 0.94 12.5
July 12.6 0.93 12.9
August 12.6 0.87 14.1
September 12.6 0.75 15.3
October 12.6 0.83 14.5
November 12.6 0.96 11.4
December 12.6 1.00 6.6
onths �Si�i=1, thereby achieving the all-month nonexceedance

21104-6 / Vol. 133, MAY 2011
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probability q̃100Omni, maintaining consistency with design to me-
dian omniseasonal storm peak HS. Using this approach, since
months exhibit different extremal behaviors, sector design values
will vary.

Resulting seasonal design criteria are given in Table 1 for de-
sign to the median omniseasonal HS100 at location A using either
the seasonal or constant models, either 50% or 80% variable
threshold, and either of the two design approaches. Omniseasonal
values are similar regardless of model and variable threshold
choices in this case. Note that nonexceedance probabilities for
September are around 0.7. If we were to design to equal monthly
nonexceedance probability, design criteria obtained vary consid-
erably with month. This has interesting implications for structures
to be deployed for limited periods only. For example, assume that
we could locate a structure for June only. Using the seasonal
model �which is likely to be more accurate than the constant
model for this month�, a design value of around 8 m corresponds
to a monthly nonexceedance probability of approximately 0.94,
which is itself the equivalent monthly nonexceedance probability
were we to design to the usual omniseasonal criterion of 12.5 m.
In this sense, 12.5 m for a whole year is equivalent to 8 m for June
only.

Table 2 summarizes the analysis for location B. Variation in
design criteria between the seasonal and constant models is
greater. Seasonal model estimates a September nonexceedance
probability of around 0.55 compared with 0.76 for the constant
model, reflecting differences between cumulants in Figs. 20 and
21 in the Appendix. Nevertheless, general conclusions are similar.
For convenience, Table 3 gives median values of monthly and

omniseasonal HS100 for location A, comparing
is nonexceedance probability.

Variable threshold set at 80%

P Omniseasonal Equal monthly NEP
Hs
�m� NEP

Hs
�m� NEP

odel
11.9 1.00 5.5 0.94
11.9 1.00 3.9 0.94
11.9 1.00 4.2 0.94
11.9 1.00 5.8 0.94
11.9 1.00 5.0 0.94
11.9 1.00 7.8 0.94
11.9 0.92 12.2 0.94
11.9 0.75 13.1 0.94
11.9 0.69 14.1 0.94
11.9 0.96 11.1 0.94
11.9 1.00 6.5 0.94
11.9 1.00 4.3 0.94

odel
12.0 1.00 5.0 0.94
12.0 1.00 4.0 0.94
12.0 1.00 4.3 0.94
12.0 1.00 5.7 0.94
12.0 0.99 8.1 0.94
12.0 0.97 10.9 0.94
12.0 0.91 12.5 0.94
12.0 0.84 13.5 0.94
12.0 0.73 14.6 0.94
12.0 0.88 13.2 0.94
12.0 0.98 10.2 0.94
12.0 1.00 7.3 0.94
ian
EP

NE

NEP

al m
0.93
0.93
0.93
0.93
0.93
0.93
0.93
0.93
0.93
0.93
0.93
0.93

nt m
0.94
0.94
0.94
0.94
0.94
0.94
0.94
0.94
0.94
0.94
0.94
0.94
omniseasonal HS100 for various model and design options.
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Conclusions and Recommendations
In this work, we seek to estimate seasonal design criteria for

wo Gulf of Mexico locations using 105 years of GOMOS hind-
ast data for 78 grid points at each location. The rate of occur-
ence of storm events is modeled using a nonhomogeneous Pois-
on process. An extremal threshold, which varies with season, is
sed to characterize the changing extremal properties of storm
eak HS with season. Two different variable thresholds are used to
llustrate the influence of threshold choice on design. To model
oth storm arrival rate and threshold exceedances, a high-order
ourier form for Poisson arrival rate and generalized Pareto shape
nd scale ensures that the seasonal extreme value model is suffi-
iently flexible to characterize variation in extremal behavior with
torm season. A roughness penalty ensures that estimates for both
torm arrival rate and generalized Pareto shape and scale are as
mooth as possible consistent with the data within a maximum
ikelihood framework. Cross validation is used to estimate the

Table 2 Design values corresponding to med
ing variable threshold values and model form

Month

Variable threshold set at 50%

Omniseasonal Equal monthly
Hs
�m� NEP

Hs
�m�

Season
January 15.0 1.00 3.9
February 15.0 1.00 4.7
March 15.0 1.00 5.1
April 15.0 1.00 4.7
May 15.0 1.00 5.7
June 15.0 1.00 8.2
July 15.0 1.00 8.8
August 15.0 0.86 17.1
September 15.0 0.54 22.1
October 15.0 0.97 13.5
November 15.0 1.00 6.5
December 15.0 1.00 4.3

Consta
January 14.2 1.00 5.0
February 14.2 1.00 5.7
March 14.2 1.00 6.0
April 14.2 1.00 5.3
May 14.2 1.00 8.7
June 14.2 0.94 14.3
July 14.2 0.94 14.3
August 14.2 0.87 16.0
September 14.2 0.76 17.7
October 14.2 0.84 16.6
November 14.2 0.97 12.9
December 14.2 1.00 8.5

Table 3 Median values for monthly and omn
and model forms

Location A A A
Threshold 50% 80% 50%

Model Seasonal Seasonal Constant
Omniseasonal 12.5 11.9 12.6
June 6.3 5.6 8.0
July 8.5 8.8 8.5
August 10.9 10.9 9.6
September 11.6 11.1 10.9
October 8.4 8.0 10.2
November 5.0 5.1 7.1
December 0 0 0
ournal of Offshore Mechanics and Arctic Engineering

aded 07 Dec 2010 to 216.91.96.130. Redistribution subject to ASME
appropriate roughness penalty. In estimating seasonal design con-
ditions, the effects of storms whose peaks occur outside the sea-
sonal interval of interest are accommodated by modeling seasonal
dissipation of storms.

It is essential to capture covariate effects in extreme sea states
when developing design criteria. Design criteria estimated by in-
corporating covariate effects such as season more adequately re-
flect underlying physical processes and will be different in general
to those estimated ignoring covariates. The case for incorporating
covariate effects is clear, unless it can be demonstrated using sta-
tistical tests that ignoring covariates is no less appropriate. The
extent to which a particular covariate will influence extreme quan-
tiles is not possible to anticipate in general prior to modeling. For
current applications, estimates for monthly cumulative distribu-
tion functions of HS100 based on the seasonal model show more
variability with season than those based on ignoring seasonal ef-
fects on extreme values. One consequence is that for temporary

omniseasonal HS100 for location B, compar-

Variable threshold set at 80%

P Omniseasonal Equal monthly NEP
Hs
�m� NEP

Hs
�m� NEP

odel
15.4 1.00 5.2 0.93
15.4 1.00 4.9 0.93
15.4 1.00 5.4 0.93
15.4 1.00 6.4 0.93
15.4 1.00 7.1 0.93
15.4 1.00 8.3 0.93
15.4 1.00 9.0 0.93
15.4 0.82 19.2 0.93
15.4 0.56 24.4 0.93
15.4 0.97 14.0 0.93
15.4 1.00 6.6 0.93
15.4 1.00 4.9 0.93

odel
15.7 1.00 5.8 0.94
15.7 1.00 4.7 0.94
15.7 1.00 5.3 0.94
15.7 1.00 6.9 0.94
15.7 0.99 10.3 0.94
15.7 0.96 14.2 0.94
15.7 0.92 16.7 0.94
15.7 0.86 19.4 0.94
15.7 0.77 21.4 0.94
15.7 0.85 19.1 0.94
15.7 0.97 13.4 0.94
15.7 0.99 8.2 0.94

asonal HS100 for different variable thresholds

B B B B
% 50% 80% 50% 80%

stant Seasonal Seasonal Constant Constant
.0 15.0 15.4 14.2 15.7
.9 6.6 6.1 9.2 7.5
.6 7.2 7.1 9.2 9.4
.7 11.2 11.6 10.8 11.0
.7 14.6 14.8 12.3 12.6
.3 9.8 9.7 11.3 11.0
.3 5.1 5.2 7.7 7.2

3 0 3.3 0
ian
s

NE

NEP

al m
0.94
0.94
0.94
0.94
0.94
0.94
0.94
0.94
0.94
0.94
0.94
0.94

nt m
0.94
0.94
0.94
0.94
0.94
0.94
0.94
0.94
0.94
0.94
0.94
0.94
ise

A
80

Con
12
6
8
9

10
9
6
0
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Downlo
cean structures, a materially smaller design value can achieve
for a period of deployment avoiding the worst months of the
ear� the same nonexceedance probability as a materially larger
mniseasonal design value. Differences between seasonal and
onstant models are more pronounced at location B, suggesting
hat the extent of seasonal variation of extreme value parameters
s dependent on the location in the Gulf of Mexico. It should be
ecalled that the constant model used here necessarily incorporates
ariation in Poisson rate and extreme value threshold with season.
hese effects are usually ignored in design practice. When the
ariation in extreme value parameters with covariates is suspected
ot to be smooth, then other functional forms may be useful al-
ernatives to the Fourier representation. If natural cubic spline
orm is selected, the mechanics of the maximum likelihood meth-
dology is similar to that for Fourier form. Indeed, the same meth-
dology can be extended to encompass 2D spatial covariates us-
ng natural thin-plate splines �see Ref. �22�� or finite element
-splines �see Ref. �23��.
Site averaging for seasonal modeling is less advantageous than

hat for a directional analysis. That there is a spring period with
ffectively no storm activity suggests that the Fourier form, ideal
or characterizing periodic forms, might be replaced by a spline
odel. Illustrations of the data in Sec. 2 suggest that modeling

oth directional and seasonal covariate effects is important. This
s being addressed in current work. Another area for development
s joint modeling of multiple dependent locations �or, e.g., of
ind, wave, and current extremes� following the work of Hef-

ernan and Tawn �16�.
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ppendix
This section provides supplementary illustrations for both loca-

ions and both 50% and 80% variable thresholds for comparison,
s referred to in the main text. Figures 16–21, in order, show the
xtreme value shape � and scale � by season with 50% and 80%
ariable thresholds at locations A and B, respectively, the esti-
ated Poisson rate � by season with 50% and 80% variable

hresholds at locations A and B, respectively, and cumulants for
onthly and omniseasonal HS100 with 50% variable threshold at

ocation B for the seasonal and constant models, respectively.

ig. 16 Cumulative distribution function for omniseasonal
S100 with 50% and 80% variable thresholds at location A for the

easonal and constant models

21104-8 / Vol. 133, MAY 2011

aded 07 Dec 2010 to 216.91.96.130. Redistribution subject to ASME
Fig. 17 Cumulative distribution function for omniseasonal
HS100 with 50% and 80% variable thresholds at location B for
the seasonal and constant models
Fig. 18 Cumulative distribution functions for monthly and om-
niseasonal HS100 with 50% variable threshold at location A for
Fig. 19 Cumulative distribution functions for monthly and om-
niseasonal HS100 with 50% variable threshold at location A for
the constant model
Fig. 20 Cumulants for monthly and omniseasonal HS100 with

50% variable threshold at location B and the seasonal model
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