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Shell Statistics and Data Science
Shell colleagues and clients

Lancaster

Delft, Durham, Glasgow, Imperial, UCL

Shell Statistics and Data Science StatScale, Lancaster June 2017 2



m context

m applications

acoustic sensing

malware beaconing

seismic hazard monitoring
airborne gaseous monitoring
wind power forecasting

m opportunities
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the not-so-lonely statistician ...what's changed? credit Drew Conway and Yanir Seroussi

‘ Statistics Programming
%, -~

’4 Communi- f The
cation / Business

m statistical expertise

[ ] lisation m  problem domain knowledge
m data science, “predictive analytics” m scientific programming expertise
m data: big, streamed, unstructured, connected m communication and consultancy skills

m computer science, IT and “hacking nouse”
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Connected

everyone and everything digitally inter-connected; everything is feasible source data for statistical inference

... whether we like it or not

The Azure Cloud

m global computing resources

m  credit Microsoft for slides

Shell Statistics and Data Science

Step 1. Data Distillation

Log Files ~ —
Sensor Streams  ngestion i Structured
- ‘ Data
Language Text

Unstructured Analytics
Data Store Data Mart

m  ‘“crude” data from any available source ingested into an
“unstructured data store"

m  ‘“unstructured” data “refined” and extracted to a
structured data store, the “data mart”

m  millions of transactions per second
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Distributed acoustic sensing (DAS)

fibre optic cable; pulsed infra-red light from DAS box; acoustic noise causes optical properties of cable to change
and reflect light; reflected light detected at DAS box; infer flow rates, instabilities, composition; continuous 10Hz
data over network; preprocessed data via FFT to f(z, t); simple stats, automated large scale

Real-time Data Analysis
& Visualization

o]
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Distributed acoustic sensing (DAS)

up-front processing to z, t space (Jean-Philippe’s talk yesterday); well operation: in- and out-flows of oil, water,
gas; some flow control; signal drops with distance; “velocity tracking” of multi-phase and inhomogeneous flow

“slugs”

Tubing-Head Pressure

Condensate Production

Water Production

Gas Production

Well Shope

i
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Distributed acoustic sensing (DAS)

empirical modelling of “slugs”

Velocity Likelihood Matrix

= PLT (2007)
= = DAS (2011)

06
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L

velocity, m/s Inclination, deg
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Distributed acoustic sensing (DAS)

2D-FFT; rays indicate sounds travelling at different speeds (ie phases) = flow composition

2DFFT

2DFFT: F(w, k) = Zr Zz f(t, z) exp[—2mi(wt — kz)]

spectrum: S(w, k) = |F(w, k)|?
phase speed: w/k

Radon transform

Shell Statistics and Data Science

StatScale,

Lancaster

2D FFT

lhs: sound transmitted through steel only 5500ms !

rhs: sound transmitted through water also 1600ms ™

non-dispersive regime: w varies linearly with k

Adam'’s talk yesterday.
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Distributed acoustic sensing (DAS)

compression; principal components versus wavelet

PCA at 70% Compression Wavelet at 70% Compressiol

Original UnCompressed

w1

Volosty ateaase0

bl I
=
3
N
]
vesenyms
} i . m |hs: uncompresses has “steel” and "water”
m describe f(z, t) using basis {¢;}, f(z,t) = >_; cidi(z, t)
o . . X m centre: PCA-compressed loses “water” at 70%
m eliminate basis terms with small weights |¢;| < e
m rhs: wavelet-compressed keeps “water” at 70%
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Malware beaconing

computer infected with malware; malware seeks instructions from command server on internet; spot beacon =-
spot infection; beaconing signal can be very soph ated bypassing best anti-virus defences; beacons use any
protocol, HTTPS increasingly used

simple stats, automated large scale

——Tafic
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pattern recognition in time-series, change-point
partitioning m lhs: simplest beacon is regular “background” pulse
web sessions with “unusual” mix of web-browsing metadata m lhs: need to detect pulse within “normal” traffic
beaconing can be minor component of traffic m rhs: beacon with 30 second pulse in infected system

Nick's talk yesterday
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Seismic hazard monitoring

gas extraction = reduced pore pressure = “compaction” = subsidence and seismic activity

multiple data sources, spatio-temporal hierarchical models, real-time monitoring

PORE SPACE

MINERAL GRAIN

Pr(E) = f(C;©)

E earthquake, C compaction, © reservoir parameters m Ihs: pore pressure drop causes compaction
S = S(C:©), S subsidence m centre: compaction causes faults to “slip”
C = C(P; ©), S subsidence, P pore pressure m rhs: surface fault in sandstone rock
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Seismic hazard monitoring

multiple data sources, spatio-temporal hierarchical models, real-time monitoring

Heavy Mass (resists mation)

Fen
(moves in

dwstionof
artow)

20 0 w0 20

m Pr(E) = f(C;©)

m  E earthquake, C compaction, © reservoir parameters m |hs: optical leveling network measurements
. m centre: interferometric synthetic aperture radar (InSAR
m S =5(C;0), S subsidence Y P (InSAR)
measurements

m C = C(P;®©), S subsidence, P pore pressure u rhs: seismograph

m real-time monitoring m also, more recently: GPS

m random fields, non-stationary extremes
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Airborne gas monitoring

carbon sequestration; pump CO, underground; need to ensure nothing escapes; on-line laser monitoring

detection of unusual characteristics of multivariate time-series; web-based on-line implementation

m path-integrated C(t, P;) fp t)dp for paths {P;} m lhs: laser source
m c(r,t) = A({S;}, W(R, t)) + B(r, t) + €(t) m centre: retro-reflector
m smooth B, “rougher” A, B > A m rhs: layout of sensors (source and 3 “retros”)
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Airborne gas monitoring

sample; web-based implemen
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path-integrated concentrations for 3 paths

red: controlled release of gas
black: natural variability
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m cross-correlation important

m strong diurnal effect (mean, variance), sensor anomalies

m  multivariate dynamic linear modelling
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wind energy logistics; optimal turbine location; production forecasting

simple stats, “resistant” on-line implementation

Actual Power verus Actual Windspeed
o 0 © »

Mean_Turbine_Power

m wind + turbine = electrical energy = $$ . . o )
. . m  wind forecasting problematic; literally chaotic
m need to plan energy production (trading, supply assurance) i
i . m  extreme gusts = turbine damage = shutdown forecast
m = need to forecast wind field w(r, t)
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Poweroutput / kW

Wind power forecasting

simple non-parametric model; on-line implementation

Probability density
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m filtering of 3rd party wind field predictions
m |hs: prediction of power given wind speed

m rhs: on-line implementation

Shell Statistics and Data Science
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Other applications

Long-standing
m process monitoring in manufacturing
m long history (> 40 years) of “chemometrics”
m modelling of messy multivariate time-series
m on-line monitoring, off-line trouble-shooting, “SPC”
B severe environments
m spatio-temporal modelling, computationally challenging
m Jean-Philippe’s talk (c.f. comp. tricks, scale trans.)
m “data rich”: observations, forecasts, hindcasts (Adam's talk)
m cash forecasting (“spurious correlation”, Chao's talk)

More recent
m vehicle telemetry

m optimal product (fuel, lubricant) design
m combining on-board data with other sources in road tests

m text analytics

m ‘competitive intelligence”, breakthrough technology
m NLP: unstructured = structured
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Opportunities

What clients want in terms of real-time analysis
m simplicity
m automation

m effectively no human intervention
m “strong and stable” algorithms

m huge numbers of concurrent analyses

m “at-line” if not on-line real-time execution

Impact on the statistician
m involvement from “solution design” to “end implementation”
m all “traditional” statistical skills still needed
m processing multiple “unstructured” (input) data types
m T interfaces

m databases, software, cluster/cloud ...
m "hacking nouse”
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