

Real-time data

... real-world applications

... almost no equations

Stijn Bierman, Jose Gonzalez-Martinez, Wayne Jones, Rakesh Paleja, Tim Park, David Randell, Emma Ross, Mingqi Wu, Philip Jonathan

Acknowledgement

- Shell Statistics and Data Science
- Shell colleagues and clients
- Lancaster
- Delft, Durham, Glasgow, Imperial, UCL

Overview

- context
- applications
 - acoustic sensing
 - malware beaconing
 - seismic hazard monitoring
 - airborne gaseous monitoring
 - wind power forecasting
 -
- opportunities

Context

the not-so-lonely statistician ... what's changed?

- digitalisation
- data science, "predictive analytics"
- data: big, streamed, unstructured, connected

credit Drew Conway and Yanir Seroussi

- statistical expertise
- problem domain knowledge
- scientific programming expertise
- communication and consultancy skills
- computer science, IT and "hacking nouse"

June 2017

Connected

everyone and everything digitally inter-connected; everything is feasible source data for statistical inference ... whether we like it or not

- global computing resources
- credit Microsoft for slides

- "crude" data from any available source ingested into an "unstructured data store"
- "unstructured" data "refined" and extracted to a structured data store, the "data mart"
- millions of transactions per second

fibre optic cable; pulsed infra-red light from DAS box; acoustic noise causes optical properties of cable to change and reflect light; reflected light detected at DAS box; infer flow rates, instabilities, composition; continuous 10 Hz data over network; preprocessed data via FFT to f(z,t); simple stats, automated large scale

up-front processing to z, t space (Jean-Philippe's talk yesterday); well operation: in- and out-flows of oil, water, gas; some flow control; signal drops with distance; "velocity tracking" of multi-phase and inhomogeneous flow "slugs"

empirical modelling of "slugs"

 $\textbf{2D-FFT}; \ \mathsf{rays} \ \mathsf{indicate} \ \mathsf{sounds} \ \mathsf{travelling} \ \mathsf{at} \ \mathsf{different} \ \mathsf{speeds} \ \mathsf{(ie} \ \mathsf{phases)} \Rightarrow \mathsf{flow} \ \mathsf{composition}$

- 2DFFT: $F(\omega, k) = \sum_{t} \sum_{z} f(t, z) \exp[-2\pi i(\omega t kz)]$
- spectrum: $S(\omega, k) = |F(\omega, k)|^2$
- phase speed: ω/k
- Radon transform

- lhs: sound transmitted through steel only 5500ms⁻¹
- \blacksquare rhs: sound transmitted through water also $1600 \, ms^{-1}$
- lacksquare non-dispersive regime: ω varies linearly with k
- Adam's talk yesterday.

compression; principal components versus wavelet

- describe f(z, t) using basis $\{\phi_i\}$, $f(z, t) = \sum_i c_i \phi_i(z, t)$
- lacksquare eliminate basis terms with small weights $|c_i|<\epsilon$

- Ihs: uncompresses has "steel" and "water"
- centre: PCA-compressed loses "water" at 70%
- rhs: wavelet-compressed keeps "water" at 70%

Malware beaconing

computer infected with malware; malware seeks instructions from command server on internet; spot beacon \Rightarrow spot infection; beaconing signal can be very sophisticated bypassing best anti-virus defences; beacons use any protocol, HTTPS increasingly used

simple stats, automated large scale

- pattern recognition in time-series, change-point partitioning
- web sessions with "unusual" mix of web-browsing metadata
- beaconing can be minor component of traffic
- Nick's talk yesterday

- Ihs: simplest beacon is regular "background" pulse
- I lhs: need to detect pulse within "normal" traffic
- rhs: beacon with 30 second pulse in infected system

Seismic hazard monitoring

gas extraction \Rightarrow reduced pore pressure \Rightarrow "compaction" \Rightarrow subsidence and seismic activity

multiple data sources, spatio-temporal hierarchical models, real-time monitoring

- $Pr(E) = f(C; \Theta)$
- lacksquare E earthquake, C compaction, Θ reservoir parameters
- $S = S(C; \Theta), S$ subsidence
- lacktriangledown $C = C(P; \Theta)$, S subsidence, P pore pressure

- Ihs: pore pressure drop causes compaction
- centre: compaction causes faults to "slip"
- rhs: surface fault in sandstone rock

Seismic hazard monitoring

multiple data sources, spatio-temporal hierarchical models, real-time monitoring

- $Pr(E) = f(C; \Theta)$
- lacksquare E earthquake, C compaction, Θ reservoir parameters
- $S = S(C; \Theta)$, S subsidence
- $C = C(P; \Theta)$, S subsidence, P pore pressure
- real-time monitoring
- random fields, non-stationary extremes

- Ihs: optical leveling network measurements
- centre: interferometric synthetic aperture radar (InSAR) measurements
- rhs: seismograph
- also, more recently: GPS

Airborne gas monitoring

carbon sequestration; pump CO_2 underground; need to ensure nothing escapes; on-line laser monitoring

detection of unusual characteristics of multivariate time-series; web-based on-line implementation

- lacksquare path-integrated $C(t, P_i) = \int_{P_i} c(\mathbf{r}(p), t) dp$ for paths $\{P_i\}$
- $c(r, t) = A(\{S_i\}, W(R, t)) + B(r, t) + \epsilon(t)$
- smooth B, "rougher" A, $B \gg A$

- Ihs: laser source
- centre: retro-reflector
- rhs: layout of sensors (source and 3 "retros")

Airborne gas monitoring

sample; web-based implementation

- path-integrated concentrations for 3 paths
- red: controlled release of gas
- black: natural variability

- strong diurnal effect (mean, variance), sensor anomalies

Wind power forecasting

wind energy logistics; optimal turbine location; production forecasting

simple stats, "resistant" on-line implementation

- wind + turbine ⇒ electrical energy ⇒ \$\$
- need to plan energy production (trading, supply assurance)
- \blacksquare \Rightarrow need to forecast wind field w(r, t)

- wind forecasting problematic; literally chaotic
- \blacksquare extreme gusts \Rightarrow turbine damage \Rightarrow shutdown forecast

Wind power forecasting

simple non-parametric model; on-line implementation

- filtering of 3rd party wind field predictions
- Ihs: prediction of power given wind speed
- rhs: on-line implementation

Other applications

Long-standing

- process monitoring in manufacturing
 - long history (≫ 40 years) of "chemometrics"
 - modelling of messy multivariate time-series
 - on-line monitoring, off-line trouble-shooting, "SPC"
- severe environments
 - spatio-temporal modelling, computationally challenging
 - Jean-Philippe's talk (c.f. comp. tricks, scale trans.)
 - "data rich": observations, forecasts, hindcasts (Adam's talk)
- cash forecasting ("spurious correlation", Chao's talk)

More recent

- vehicle telemetry
 - optimal product (fuel, lubricant) design
 - combining on-board data with other sources in road tests
- text analytics
 - "competitive intelligence", breakthrough technology
 - NI P: unstructured ⇒ structured

18

Opportunities

What clients want in terms of real-time analysis

- simplicity
- automation
 - effectively no human intervention
 - "strong and stable" algorithms
- huge numbers of concurrent analyses
- "at-line" if not on-line real-time execution

Impact on the statistician

- involvement from "solution design" to "end implementation"
 - all "traditional" statistical skills still needed
- processing multiple "unstructured" (input) data types
- IT interfaces
 - databases, software, cluster/cloud . . .
 - "hacking nouse"

